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ABSTRACT

FPGAs have been used in many applications to achieve
orders-of-magnitude improvement in absolute performance
and energy efficiency relative to conventional microproces-
sors. Despite their promise in both processing performance
and efficiency, FPGAs have not yet gained widespread ac-
ceptance as mainstream computing devices. A fundamental
obstacle to FPGA-based computing today is the FPGA’s
lack of a common, scalable memory architecture. When de-
veloping applications for FPGAs, designers are often directly
responsible for crafting the application-specific infrastruc-
ture logic that manages and transports data to and from the
processing kernels. This infrastructure not only increases
design time and effort but will frequently lock a design to
a particular FPGA product line, hindering scalability and
portability. We propose a new FPGA memory architecture
called Connected RAM (CoRAM) to serve as a portable
bridge between the distributed computation kernels and the
external memory interfaces. In addition to improving per-
formance and efficiency, the CoRAM architecture provides
a virtualized memory environment as seen by the hardware
kernels to simplify development and to improve an applica-
tion’s portability and scalability.

Categories and Subject Descriptors

C.0 [Computer System Organization]: [System archi-
tectures]

General Terms

Design, standardization
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FPGA, abstraction, memory, reconfigurable computing

1. INTRODUCTION

With power becoming a first-class architectural con-
straint, future computing devices will need to look beyond
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general-purpose processors. Among the computing alter-
natives today, Field Programmable Gate Arrays (FPGA)
have been applied to many applications to achieve orders-of-
magnitude improvement in absolute performance and energy
efficiency relative to conventional microprocessors (e.g., [11,
6, 5]). A recent study [6] further showed that FPGA fabrics
can be an effective computing substrate for floating-point
intensive numerical applications.

While the accumulated VLSI advances have steadily im-
proved the FPGA fabric’s processing capability, FPGAs
have not yet gained widespread acceptance as mainstream
computing devices. A commonly cited obstacle is the diffi-
culty in programming FPGAs using low-level hardware de-
velopment flows. A fundamental problem lies in the FPGA’s
lack of a common, scalable memory architecture for appli-
cation designers. When developing for an FPGA, a designer
has to create from bare fabric not only the application kernel
itself but also the application-specific infrastructure logic to
support and optimize the transfer of data to and from ex-
ternal memory interfaces. Very often, creating or using this
infrastructure logic not only increases design time and ef-
fort but will frequently lock a design to a particular FPGA
product line, hindering scalability and portability. Further,
the support mechanisms which users are directly responsi-
ble for will be increasingly difficult to manage in the future
as: (1) memory resources (both on- and off-chip) increase in
number and become more distributed across the fabric, and
(2) long-distance interconnect delays become more difficult
to tolerate in larger fabric designs.

Current FPGAs lack essential abstractions that one comes
to expect in a general purpose computer—i.e., an Instruc-
tion Set Architecture (ISA) that defines a standard agree-
ment between hardware and software. From a computing
perspective, a common architectural definition is a critical
ingredient for programmability and for application portabil-
ity. To specifically address the challenges related to mem-
ory on FPGAs, the central goal of this work is to create
a shared, scalable memory architecture suitable for future
FPGA-based computing devices. Such a memory architec-
ture would be used in a way that is analogous to how general
purpose programs universally access main memory through
standard “loads” and “stores” as defined by an ISA—without
any knowledge of hierarchy details such as caches, memory
controllers, etc. At the same time, the FPGA memory ar-
chitecture definition cannot simply adopt what exists for
general purpose processors and instead, should reflect the
spatially distributed nature of today’s FPGAs—consisting
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Figure 1: Assumed System Context.

of up to millions of interconnected LUTs and thousands of
embedded SRAMs [24]. Working under the above premises,
the guiding principles for the desired FPGA memory archi-
tecture are:

o The architecture should present to the user a common,
virtualized appearance of the FPGA fabric, which en-
compasses reconfigurable logic, its external memory in-
terfaces, and the multitude of SRAMs—uwhile freeing de-
signers from details irrelevant to the application itself.

o The architecture should provide a standard, easy-to-use
mechanism for controlling the transport of data between
memory interfaces and the SRAMs used by the applica-
tion throughout the course of computation.

e The abstraction should be amenable to scalable FPGA
microarchitectures without affecting the architectural view
presented to existing applications.

Outline. Section 2 presents an overview of the CoRAM
memory architecture. Section 3 discusses a possible mi-
croarchitectural space for implementing CoRAM. Section 4
demonstrates concrete usage of CoRAM for three exam-
ple application kernels—Black-Scholes, Matrix-Matrix Mul-
tiplication and Sparse Matrix-Vector Multiplication. Sec-
tion 5 presents an evaluation of various microarchitectural
approaches. We discuss related work in Section 6 and offer
conclusions in Section 7.

2. CORAM ARCHITECTURE
2.1 System Context

The CoRAM memory architecture assumes the co-existence
of FPGA-based computing devices along with general-
purpose processors in the context of a shared memory mul-
tiprocessor system (see Figure 1). The CoRAM architec-
ture assumes that reconfigurable logic resources will exist
either as stand-alone FPGAs on a multiprocessor memory
bus or integrated as fabric into a single-chip heterogeneous
multicore. Regardless of the configuration, it is assumed
that memory interfaces for loading from and storing to a
linear address space will exist at the boundaries of the re-
configurable logic (referred to as edge memory in this paper).
These implementation-specific edge memory interfaces could
be realized as dedicated memory /bus controllers or even co-
herent cache interfaces. Like commercial systems available
today (e.g., Convey Computer [8]), reconfigurable logic de-
vices can directly access the same virtual address space of
general purpose processors (e.g., by introducing MMUs at
the boundaries of fabric). The combined integration of vir-
tual memory and direct access to the memory bus allows
applications to be efficiently and easily partitioned across
general-purpose processors and FPGAs, while leveraging the
unique strengths of each respective device. A nearby proces-
sor is useful for handling tasks not well-suited to FPGAs—
e.g., providing the OS environment, executing system calls,
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Figure 2: CoRAM Memory Architecture.

and initializing the memory contents of an application prior
to its execution on the FPGA.

2.2 Architectural Overview

Within the boundaries of reconfigurable logic, the CoRAM
architecture defines a portable application environment that
enforces a separation of concerns between computation and
on-chip memory management. Figure 2 offers a conceptual
view of how applications are decomposed when mapped into
reconfigurable logic with CoRAM support. The reconfig-
urable logic component shown in Figure 2a is a collection
of LUT-based resources used to host the algorithmic ker-
nels of a user application. It is important to note that the
CoRAM architecture places no restriction on the synthesis
language used or the internal complexity of the user ap-
plication. For portability reasons, the only requirement is
that user logic is never permitted to directly interface with
off-chip I/O pins, access memory interfaces, or be aware of
platform-specific details. Instead, applications can only in-
teract with the external environment through a collection
of specialized, distributed SRAMs called CoRAMs that pro-
vide on-chip storage for application data (see Figure 2b).

CoRAMs. Much like current FPGA memory architectures,
CoRAMSs preserve the desirable characteristics of conven-
tional fabric-embedded SRAM [16]—they present a simple,
wire-level SRAM interface to the user logic with local ad-
dress spaces and deterministic access times (see Figure 2b),
are spatially distributed, and provide high aggregate on-chip
bandwidth. They can be further composed and configured
with flexible aspect ratios. CoRAMs, however, deviate dras-
tically from conventional embedded SRAMs in the sense
that the data contents of individual CoRAMs are actively
managed by finite state machines called “control threads” as
shown in Figure 2c.

Control threads. Control threads form a distributed col-
lection of logical, asynchronous finite state machines for me-
diating data transfers between CoRAMs and the edge mem-
ory interface. Each CoRAM is managed by at most a single
control thread, although a control thread could manage mul-
tiple CoRAMs. Under the CoRAM architectural paradigm,
user logic relies solely on control threads to access exter-
nal main memory over the course of computation. Control
threads and user logic are peer entities that interact over
predefined, two-way asynchronous channels (see Figure 2e).
A control thread maintains local state to facilitate its ac-
tivities and will typically issue address requests to the edge
memory interface on behalf of the application; upon comple-



tion, the control thread informs the user logic through chan-
nels when the data within specific CoRAMs are ready to be
accessed through their locally-addressed SRAM interfaces.
Conversely, the user logic can also write its computational
results into CoRAMs and issue “commands” to the control
threads via channels to write the results to edge memory.

Control actions. To express the memory access require-
ments of an FPGA application, control threads can only
invoke a predefined set of memory and communication prim-
itives called control actions. Control actions describe logi-
cal memory transfer commands between specific embedded
CoRAMs and the edge memory interface. A control thread
at the most basic level comprises a sequence of control ac-
tions to be executed over the course of a program. In gen-
eral, a control thread issues control actions along a dynamic
sequence that can include cycles and conditional paths.

Software versus RTL. An important issue that merits
early discussion is in determining what the “proper” level
of abstraction should be for expressing control threads and
control actions. The most straightforward approach to ex-
posing control actions to user logic is to distribute standard,
wire-level interfaces throughout the fabric. In this case, the
application designer would be directly responsible for con-
structing hardware control threads (i.e., FSM) that generate
memory address requests on behalf of the user logic and is-
sue control actions through the standard interfaces.

In this paper, we make the key observation that from
a performance perspective, expressing control threads in a
low-level abstraction such as RTL is not a critical require-
ment. In many cases, the process of generating address re-
quests to main memory is not a limiting factor to FPGA ap-
plication performance since most time is either spent wait-
ing for memory responses or for computation to progress.
For the remainder of this paper, it is assumed that control
threads are expressed in a high-level C-based language to
facilitate the dynamic sequencing of control actions.

Our selection of a C-based language affords an application
developer not only simpler but also more natural expressions
of control flow and memory pointer manipulations. The con-
trol threads implemented in software would be limited to a
subset of the C language and would exclude “software” fea-
tures such as dynamic memory allocation. Any high-level
language used must be synthesizable to finite state machines
or even compiled to hard microcontrollers that can execute
control thread programs directly if available in an FPGA.
Generally, the overall inefficiencies of executing a high-level
language would not directly impede the overall computation
throughput because the control threads do not “compute” in
any usual sense and are used only to generate and sequence
the control actions required by an application.

2.3 CoRAM Architecture in Detail

In this section, we describe in detail the standard mem-
ory management interface exported by control actions, and
how they are invoked within control threads. Figure 3 illus-
trates the set of control actions available to an application
developer. The control actions shown have the appearance
of a memory management API, and abstract away the de-
tails of the underlying hardware support—similar to the role
served by the Instruction Set Architecture (ISA) between
software and evolving hardware implementations. As will
be demonstrated later in Section 4, the basic set of con-

/**% CoRAM handle definition and acquisition **x/

struct {int n; int width; int depth; ...} coh;
coh get_coram(instance_name, ...);
coh append_coram(coh coram, bool interleave, ...);

/*** Singleton control actions **x*/

void coram_read(coh coram, void *offset,
void *memaddr, int bytes);

tag coram_read_nb(coh coram, ...);

void coram_write(coh coram, void *offset,
void *memaddr, int bytes);

tag coram_write_nb(coh coram, ...);

void coram_copy(coh src, coh dst, void *srcoffset,
void *dstoffset, int bytes);

tag coram_copy_nb(coh src, coh dst, ...);

bool check_coram_done(coh coram, tag, ...);

void coram_membar();

/*x* Collective control actions **x/

void collective_write(coh coram, void *offset,
void *memaddr, int bytes);

void collective_read(coh coram, void *offset,
void *memaddr, int bytes);

/*** Channel control actions #**x*/
void fifo_write(fifo f, Data din);
Data fifo_read(fifo f);
void ioreg_write(reg r, Data din);
Data ioreg_read(reg r);

Figure 3: Control action definitions.

trol actions defined can be used to compose more sophis-
ticated memory “personalities” such as scratchpads, caches,
and FIFOs—each of which are tailored to the memory pat-
terns and desired interfaces of specific applications.

The first argument to a control action is typically a
program-level identifier (called co-handle) for an individual
CoRAM or for a collection of CoRAMs that are function-
ing as a single logical structure (in the same way embed-
ded SRAMSs can be composed). The co-handle encapsulates
both static and runtime information of the basic width and
depth of the logical CoRAM structure and the binding to
physical CoRAM blocks in the fabric. (A co-handle can also
be used to represent a channel resource such as a FIFO or
I/0 register, although only the appropriate communication
control actions are compatible with them.) The CoRAM
definitions in Figure 3 comprise basic memory block trans-
fer operations (coram_read, coram_write) as well as on-chip
CoRAM-to-CoRAM data transfers (coram_copy). In addi-
tion to memory operations, control actions support asyn-
chronous two-way communication between user logic and
control threads via FIFOs (e.g., fifo_write) and I/O regis-
ters (e.g., ioregwrite). Although not listed in the defini-
tions, control threads can also communicate to each other
through ordered message-passing primitives.

Example. To illustrate how control actions are used, the
example in Figure 4 shows how a user would (1) instantiate
a CoRAM as a black-box module in their application, and
(2) program a corresponding control thread to read a single
data word from edge memory into the CoRAM. The control
thread program shown in Figure 4 (right) first acquires a co-
handle (L2), and passes it into a coram_write control action
(L3), which performs a 4-byte memory transfer from the
edge memory address space to the CoRAM blocks named
by the co-handle. To inform the application when the data
is ready to be accessed for computation, the control thread
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Figure 4: Example Usage of CoRAMs.

passes a token to the user logic using the fifo_write control
action (the acquisition of the channel FIFO’s co-handle is
omitted for brevity).

Advanced control actions. Control threads can employ
more advanced control actions to either increase memory
level parallelism or to customize data partitioning. The
non-blocking control actions (e.g., coram_write_nb) explic-
itly allow for concurrent memory operations and return a tag
that must be monitored using check_coram_done. A control
thread can also invoke coram_membar, which serializes on
all previously executed non-blocking control actions by that
control thread. For parallel transfers to a large number of
CoRAMSs, a collective form of read and write control actions
is also supported. In the collective form, append_handle is a
helper function that can be used to compose a static list of
CoRAMs. The newly returned co-handle can then be used
with collective control actions to perform transfers to the
aggregated CoRAMs as a single logical unit. When oper-
ating upon the composed handle, sequential data arriving
from memory can either be striped across the CoRAMs’ lo-
cal addresses in a concatenated or word-interleaved pattern.
Such features allow the user to customize the partitioning
of application data across the multiple distributed CoRAMs
within the reconfigurable logic.

Future enhancements. It is not difficult to imagine that
many variants of the above control actions could be added to
support more sophisticated patterns or optimizations (e.g.,
broadcast from one CoRAM to many, prefetch, strided ac-
cess, etc.). In a commercial production setting, control
actions—Ilike instructions in an ISA—must be carefully de-
fined and preserved to achieve the value of portability and
compatibility. Although beyond the scope of this work, com-
pilers could play a significant role in static optimization of
control thread programs. Analysis could be used, for ex-
ample, to identify non-conflicting control actions that are
logically executed in sequence but can actually be executed
concurrently without affecting correctness.

3. CORAM MICROARCHITECTURE

The CoRAM architecture presented thus far has deliber-
ately omitted the details of how control threads are actually
executed and how data is physically transported between the
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Figure 5: Conceptual Microarchitecture Sketch of
Reconfigurable Logic with CoRAM Support.

CoRAMs and the edge memory interfaces. The CoRAM
architecture definitions (i.e., control actions) form a con-
tractual agreement between applications and hardware im-
plementations. In the ideal case, a good implementation of
CoRAM should provide robust hardware performance across
a range of applications without affecting correctness and
without significant tuning required by the user.

Hardware overview. By construction, the CoORAM archi-
tecture naturally lends itself to highly distributed hardware
designs. The microarchitectural “sketch” shown in Figure 5
is architected in mind to scale up to thousands of embed-
ded CoRAMSs based on current FPGA design trends [24].
CoRAMs, like embedded SRAMs in modern FPGAs, are
arranged into vertical columns [26] and organized into local-
ized clusters. Each cluster is managed by an attached Con-
trol Unit, which is a physical host responsible for executing
the control programs that run within the cluster. Control
programs can be realized by direct synthesis into reconfig-
urable logic (e.g., using high-level synthesis flows) or can be
compiled and executed on dedicated multithreaded micro-
controllers (e.g., a multithreaded RISC pipeline). Control
Units must also maintain internal queues and scoreboarding
logic to track multiple outstanding control actions, and to
allow querying of internal state (e.g., check_coram_done).

Data distribution. An integral component to the Control
Unit is the network-on-chip, which is responsible for rout-
ing memory address requests on behalf of Control Units to
a multitude of distributed memory interfaces and delivering
data responses accordingly. Within each cluster, multiple
CoRAMs share a single network-on-chip router for commu-
nication and data transport. At the macroscale level, mul-
tiple routers are arranged in a 2D mesh to provide global
connectivity between clusters and memory interfaces. Inter-
nal to each cluster, queues and local interconnect provides
connectivity between the CoRAMs and the shared router
interface. The local interconnect internal to the cluster also
contains marshalling logic to break large data transfers from
the network into individual words and to steer them accord-
ingly to the constituent CoRAMs based on the data parti-
tioning a user desires (e.g., a collective_write).

Soft versus hard logic. To implement the CoRAM ar-
chitecture, the most convenient approach in the short term
would be to layer all the required CoRAM functionality on
top of conventional FPGAs. In the long term, FPGAs de-
veloped in mind with dedicated CoRAM architectural sup-
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port can become more economical if certain features be-
come popularly used. From the perspective of a fabric de-
signed to support computing, we contend that a hardwired
network-on-chip (NoC) offers significant advantages, espe-
cially if it reduces or eliminates the need for long-distance
routing tracks in today’s fabrics. Under the CoRAM ar-
chitectural paradigm, global bulk communications are re-
stricted to between CoORAM-to-CoRAM or CoRAM-to-edge.
Such a usage model would be better served by the high per-
formance (bandwidth and latency) and the reduced power
and energy from a dedicated hardwired NoC that connects
the CoRAMs and the edge memory interfaces. With a hard-
wired NoC, it is also more cost-effective in area and energy
to over-provision network bandwidth and latency to deliver
robust performance across different applications. Similarly,
the control units used to host control threads could also
support “hardened” control actions most commonly used by
applications. The microarchitecture shown in Figure 5, with
its range of parameters, will be the subject of a quantitative
evaluation in Section 5. We next present three case studies
that demonstrate concrete usage of CoRAM.

4. CoRAM IN USAGE

The CoRAM architecture offers a rich abstraction for ex-
pressing the memory access requirements of a broad range of
applications while hiding memory system details unrelated
to the application itself. This section presents our expe-
riences in developing three non-trivial application kernels
using the CoRAM architecture. Below, we explain each ker-
nel’s unique memory access pattern requirements and dis-
cuss key insights learned during our development efforts.
The control thread examples presented in this section are
excerpts from actual applications running in our CoRAM

1 coh ram = get_coram(...); // handle to FIFO buffer

2 char *src = ...; // initialized to Black-Scholes data
3 int src_word = 0, head = 0, words_left = ...; // size
4 while(words_left > 0) {

5 int tail = ioreg_read(ram) ;

6 int free_words = ram->depth - (head - tail);

7 int bsize_words = MIN(free_words, words_left);

8

9 if (bsize_words != 0) {

10 coram_write(ram, head, src +

11 src_word * ram->wdsize, bsize_words);
12 ioreg_write(ram, head + bsize_words);

13 src_word += bsize_words;

14 words_left -= bsize_words;

15 head += bsize_words;

16 }

17 ¥

Figure 8: Control program for Input Stream FIFO.

simulator, which models a microarchitecture based on Fig-
ure 5. For our applications, the compute portions of the
designs were placed-and-routed on a Virtex-6 LX760 FPGA
to determine the peak fabric processing throughput.

4.1 Black-Scholes

The first FPGA application example, Black-Scholes, is
widely used in the field of quantitative finance for option
pricing [21]. Black-Scholes employs a rich mixture of arith-
metic floating-point operators but exhibits a very simple
memory access pattern. The fully pipelined processing ele-
ment (PE) shown in Figure 6 consumes a sequential input
data stream from memory and produces its output stream
similarly. The application’s performance is highly scalable;
one could increase performance by instantiating multiple
PEs that consume and produce independent input and out-
put data streams. Performance continues to scale until ei-
ther the reconfigurable logic capacity is exhausted or the
available external memory bandwidth is saturated. The
characteristics of our Black-Scholes PE are shown in Fig-
ure 6 (bottom).

Supporting Streams with CoRAM. To support the se-
quential memory access requirements of Black-Scholes, we
develop the concept of a stream FIFO “memory personality”,
which presents a simple FIFO interface to user logic (i.e.,
data, ready, pop). The stream FIFO employs CoRAMs and
a control thread to bridge a single Black-Scholes pipeline to
the edge memory interface. Figure 7 illustrates the stream
FIFO module, which instantiates a single CoRAM to be
used as a circular buffer, with nearby head and tail registers
instantiated within reconfigurable logic to track the buffer
occupancy. Unlike a typical FIFO implemented within re-
configurable logic, the producer of the stream FIFO is not
an entity hosted in logic but is managed by an associated
control thread.

Figure 7 (right) illustrates a simple control thread used
to fulfill the FIFO producer role (the corresponding code
is shown in Figure 8). The event highlighted in Step 1 of
Figure 7 first initializes a source pointer to the location in
memory where the Black-Scholes data resides (L2 in Fig-
ure 8). In Step 2, the control thread samples the head and
tail pointers to compute how much available space is left
within the FIFO (L5-L7 in Figure 8). If sufficient space ex-
ists, the event in step 3 performs a multi-word byte transfer
from the edge memory interface into the CoRAM using the
coram_write control action (L10 in Figure 8). The event in



1 void mmm(Data* A, Data* B, Data *C, int N, int NB) {
2 int j, i, k;

3 for (j = 0; j <N; j += NB) {

4 for (i = 0; i < N; i += NB) {

5 for (k = 0; k < N; k += NB) {

6 block_mmm_kernel(A + i*N + k,

7 B + kxN + j,

8 C + i*N + j, N, NB);
9 }

10 }

11 }

12 }

Figure 9: Reference C code for Blocked MMM [4].
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Step 4 completes the FIFO production by having the control
thread update the head pointer using the ‘oreg_write control
action to inform the reconfigurable logic within the stream
FIFO module when new data has arrived (L12 in Figure 8).
Finally, L13-L.15 show updates to internal state maintained
by the control thread. (Note: we do not show the control
thread program for the corresponding output stream FIFO.)

Discussion. The use of CoORAM simplified the overall de-
velopment efforts for Black-Scholes by allowing us to express
the application’s memory access pattern at a high level of
abstraction relative to conventional RTL flows. Our control
thread program described the sequential memory transac-
tions required by Black-Scholes as a sequence of untimed
steps using a simple, C-based language. This abstraction
was simple to work with and allowed us to iterate on changes
quickly and conveniently. An important idea that emerged
during our development efforts was the memory personality
concept. A memory personality “wraps” CoRAMs and con-
trol threads within reconfigurable logic to provide an even
higher level of abstraction (i.e., interface and memory se-
mantics) best suited to the application at hand. As will
be discussed later, many other kinds of memory personali-
ties can also be constructed and further combined to form a
re-usable shared library for CoRAM.

4.2 Matrix-Matrix Multiplication

The next example, Matrix Matrix Multiplication (MMM),
is a widely-used computation kernel that multiplies two ma-
trices encoded in dense, row-major format [18]. For multipli-
cations where the input and output matrices are too large to
fit in on-chip SRAMs, a commonly used blocked algorithm
decomposes the large calculation into repeated multiplica-

. void mmm_control(Data *A, Data *B, ...) {
coh ramsA = ..; // ‘a’ CoRAMs, word-interleaved
coh ramsB ..; // ‘b’ CoRAMs, concatenated
for (j = 0; j <N; j += NB) {
for (i = 0; i < N; i += NB) {
for (k = 0; k < N; k += NB) {
fifo_read(...);
for (m = 0; m < NB; m++) {
collective_write(ramsA, m*NB, A + ixN+k +
m*N, NB*dsz);
10. collective_write(ramsB, m*NB, B + kxN+j +
m*N, NB*dsz);

© 0O NOOOPd WN -

11. }

12. fifo_write(...);
13. }

14. }

15. }

Figure 11: MMM control thread code example.

tions of sub-matrices sized to fit within the on-chip SRAMs
(see reference C code in Figure 9). This strategy improves
the arithmetic intensity of MMM by increasing the average
number of floating-point operations performed for each ex-
ternal memory byte transferred.

Figure 10 illustrates a parameterized hardware kernel de-
veloped for single-precision blocked MMM. The design em-
ploys p identical dot-product processing elements (PE) and
assumes that the large input matrices A, B, and the output
matrix C' are stored in external memory. In each iteration:
(1) different sub-matrices subA, subB, and subC are read
in from external memory, and (2) subA and subB are mul-
tiplied to produce intermediate sums accumulated to sub-
matrix subC'. The sub-matrices are sized to utilize available
SRAM storage. (Square sub-matrices of size 4x4 are as-
sumed in this explanation for the sake of simplicity.) The
row slices of subB and subC are divided evenly among the p
PEs and held in per-PE local CoRAM buffers. The column
slices of subA are also divided evenly and stored similarly. A
complete iteration repeats the following steps p times: (1)
each PE performs dot-products of its local slices of subA and
subB to calculate intermediates sum to be accumulated into
subC, and (2) each PE passes its local column slice of subA
to its right neighbor cyclically (note: as an optimization,
step 2 can be overlapped with step 1 in the background).

MMM Control thread. To populate the CoRAM buffers
of each PE, a single control thread is used to access all of
the necessary per-row and per-column slices of subA, subB,
and subC. The pseudo-code of the control thread program
used to implement the required memory operations is shown
in Figure 11 (for brevity, the reading and writing of subC' is
omitted). In L2, ramsA is a co-handle that represents an
aggregation of all the ‘a’ CoRAMs belonging to the PEs
in word-interleaved order (ramsA can be constructed from
multiple CoORAMs using append_handle). If passed into a
collective_write control action, matrix data arriving sequen-
tially from edge memory would be striped and written across
multiple ‘a’ CoRAMSs in a word-by-word interleaved fash-
ion. This operation is necessary because the ‘a’ CoRAMs
expect the data slices in column-major format whereas all
matrix data is encoded in row-major. The co-handle ramsB
expects data in a row-major format and is simply a concate-
nation of all of the ‘b> CoRAMs. Within the body of the
inner loop, the control thread first waits for a token from
the user logic (L7) before executing the collective_write con-
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1. void spmv_csr (int n_rows, int *cols,
2 Data *rows, Data *x, Data *y) {
3 for(int r = 0; r < n_rows; r++) {
4 int sum = 0;
5. for(i = rows([r]; i <= rows[r+1]; i++)
6 sum += vals[i] * x[cols[il];
7 ylr] = sum;
8.
9. %}

Figure 12: Sparse Matrix-Vector Multiplication.

trol actions used to populate the CoRAMs (L9-L10). Upon
completion, the control thread informs the user logic when
the data is ready to be accessed (L12). The control thread
terminates after iterating over all the blocks of matrix C.

Discussion. Our overall experience with developing MMM
highlights more sophisticated uses of CoORAM. In particular,
the collective control actions allowed us to precisely express
the data transfers for a large collection of CoRAMs in very
few lines of code. Control actions also allowed us to cus-
tomize the partitioning of data to meet the on-chip memory
layout requirements of our MMM design. It is worth noting
how the code in Figure 11 appears similar to the C reference
code, with the exception that the inner-most loop now con-
sists of memory control actions rather than computation.
One insight we developed from this example is that con-
trol threads can allow us to easily express the re-assignment
of FPGA kernels to different regions of the external mem-
ory over the course of a large computation. This feature of
the CoRAM architecture could potentially be used to sim-
plify the task of building out-of-core FPGA-based applica-
tions that support inputs much larger than the total on-chip
memory capacity.

4.3 Sparse Matrix-Vector Multiplication

Our last example, Sparse Matrix-Vector Multiplication
(SpMV), is another widely-used scientific kernel that multi-
plies a sparse matrix A by a dense vector z [18]. Figure 12
(top) gives an example of a sparse matrix A in Compressed
Sparse Row (CSR) format. The non-zero values in A are
stored in row-order as a linear array of values in external
memory. The column number of each entry in wvalues is
stored in a corresponding entry in the column array (cols).
The i'th entry of another array (rows) holds the index to
the first entry in values (and cols) belonging to row 7 of A.
Figure 12 (bottom) gives the reference C code for comput-
ing Axz. Of all the kernels we studied, SpMV presented the
most difficult design challenge for us due to a large external
memory footprint and an irregular memory access pattern.

Figure 13 illustrates an FPGA design for SpMV, where
multiple processing elements (PEs) operate concurrently on
distinct rows of A. The contents of the rows array are
streamed in from edge memory to a centralized work sched-
uler that assigns rows to different PEs. For each assigned
row, a PE employs two stream FIFOs to sequentially read in
data blocks from the values and cols arrays, respectively. To

— rows
— tial
— (sequentia) @m—>l Work Scheduler I
— v <
— vals, cols valsfi] _ cols[i]
—1 (sequential) eee | PE
3 FIFO
[—1 x vector
— (random x[cols[i]]
—— access) Cache
(3
H y vector
(sequential)
—] FPGA
Edge sum += vals[i] * x[cols[i]];
Memory
Single PE resources “2KLUTSs
Clock frequency 300 MHz

Peak PE throughput 600 MFLOP/s
PE memory bandwidth  >3.6GB/s

Figure 13: FPGA design for SpMV.

configure the memory pointers for each of the two stream FI-
FOs, the PE logic must continously pass row assignment in-
formation (via channels) to the control threads belonging to
the stream FIFOs. To calculate each term of a dot-product,
a PE must make an indirect reference to vector z (L6). This
type of memory access poses a particularly difficult challenge
because the memory addresses (i.e., cols) are not necessarily
sequential and could be accessed randomly. Furthermore, x
can be a very large data structure that cannot fit into ag-
gregate on-chip memory. Unlike the MMM example from
earlier, the performance of SpMV is highly dependent on
efficient bandwidth utilization due to its low arithmetic in-
tensity. An optimization to reduce memory bandwidth is to
exploit any reuse of the elements of z across different rows
through caching.

To implement caching within each PE, Figure 14 illus-
trates a read-only cache memory personality built using the
CoRAM architecture. Within the cache, CoRAMs are com-
posed to form data and tag arrays while conventional recon-
figurable logic implements the bulk of the cache controller
logic. A single control thread is used to implement cache
fills to the CoRAM data arrays. When a miss is detected,
the address is enqueued to the control thread through an
asynchronous FIFO (step 1 in Figure 14). Upon a pending
request, step 2 of the control thread transfers a cache block’s
worth of data to the data array using the coram_write con-
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Hit/miss < Tag Check Array (1) Check for cache miss
2 T (corAm) (read 7ifo)
Miss , -
Address : e (2) Perform cache fill
Fill done ¢ H TT g (coram_write)
. ~_ 7
“& < X (3) Acknowledge
— RdAddr /) (Fifo write)
Data ¢ Data Array yl
(CoRAM)
L [LLCCTOORETTID == T8
FPGA

Figure 14: SpMYV cache personality.



trol action. In step 3, the control thread acknowledges the
cache controller using the fifo_write control action.

Discussion. The SpMV example illustrates how different
memory personalities built out of CoORAM can be employed
in a single design to support multiple memory access pat-
terns. Caches, in particular, were used to support the ran-
dom access pattern of the x vector, whereas the stream FI-
FOs from Black-Scholes were re-used for the remaining se-
quential accesses. In our development efforts of SpMV, the
instantiation of CoRAM-based memory personalities along
with spatially-distributed PEs allowed us to quickly instan-
tiate “virtual taps” to external memory wherever needed.
This level of abstraction was especially convenient as it al-
lowed us to concentrate our efforts on developing only the
processing components of SpMV.

4.4 Case Study Remarks

The overall experience in developing applications with
CoRAM reveals significant promise in improving the pro-
grammability of FPGA-based applications on the whole.
While the CoRAM architecture does not eliminate the ef-
fort needed to develop optimized stand-alone processing ker-
nels, it does free designers from having to explicitly manage
memory and data distribution in a low-level RTL abstrac-
tion. Specifically, control threads gave us a general method
for dynamically orchestrating the memory management of
applications, but did not force us to over-specify the se-
quencing details at the RTL level. Control threads also did
not limit our ability to support fine-grained interactions be-
tween processing components and memory. Fundamentally,
the high-level abstraction of CoORAM is what would enable
portability across multiple hardware implementations.

The memory personalities developed in our examples
(stream FIFO, read-only cache) are by no means sufficient
for all possible applications and only highlighted a subset of
the features possible. For example, for all of the memory
personalities described, one could replace the coram_write
control action with coram_copy, which would permit trans-
fers from other CoRAMs within the fabric and not neces-
sarily from the memory edge. Such control actions could,
for instance, be used to efficiently compose multi-level cache
hierarchies out of CoRAMs (e.g., providing the SpMV PEs
with a shared L2 cache) or be used to setup streams be-
tween multiple application kernels. It is conceived that in
the future, soft libraries consisting of many types of memory
personalities would be a valuable addition to the CoRAM
architecture. This concept is attractive because hardware
vendors supporting the CoRAM abstraction would not have
to be aware of all the possible personality interfaces (e.g.,
caches, FIFOs) but would only be implementing the “low-
level” control actions, which would automatically facilitate
compatibility with existing, high-level libraries.

5. EVALUATION

This section presents our initial investigations to under-
stand the performance, area, and power implications of in-
troducing the CoRAM architecture to a conventional FPGA
fabric. Given the large design space of CoRAM, the goal of
this evaluation is to perform an early exploration of design
points for future investigations.

Methodology. To model an FPGA with CoRAM support,
a cycle-level software simulator was developed in Bluespec

Variables

FPGA resources
Clock rates

Selected parameters

474KLUTs, 720 CoRAMs, 180 threads

User Logic @ 300MHz, CoRAM @ 0.3-1.2GHz
Off-chip DRAM 128GB/sec, 60ns latency

Control Unit 8-thread, 5-stage MIPS core

Network-on-Chip  2D-mesh packet-switched NoC

3-cycle hop latency, 300MHz-1.2GHz
{16,32,64} nodes x {8,16} memports
{32,64,128}-bit router datapaths

Topology
Router datapath

Table 1: FPGA Model Parameters.

System Verilog [3] to simulate instances of the design illus-
trated in Figure 5. Table 1 summarizes the key configuration
parameters of the simulated fabric design. The simulator
assumes a baseline reconfigurable fabric with 474 KLUTs
and 720 CoRAMs (4KB each) to reflect the capacity of
the Virtex-6 LX760, the largest FPGA from Xilinx today.
In the performance simulations, we assume the user logic
within the fabric can operate at 300MHz based on placed-
and-routed results of the processing kernels from Section 4.
For design space exploration, we considered different points
based on CoRAMSs assumed to operate at 300 MHz to
1.2 GHz to study the relative merits between soft- versus
hard-logic implementations.

The simulator models a 2D-mesh packet-switched network-
on-chip based on an existing full-system simulator [22]. The
NoC simulator models the cycle-by-cycle traffic flow among
the CoRAMs and the edge memory traffic resulting from
the control actions issued by control threads. The band-
width available at each network endpoint is shared by a
concentrated cluster of locally connected CoRAMSs. For de-
sign space exploration, we varied the NoC performance along
three dimensions: (1) operating frequency between 300MHz
to 1.2GHz (in sync with the CoRAM frequency); (2) net-
work link and data width (32, 64, 128 bits per cycle); and
(3) number of network end-points (16, 32, 64) and thus the
number of CoRAMs sharing an end-point.

To incorporate memory bandwidth constraints, our sim-
ulator models an aggressive external memory interface with
four GDDR5 controllers, providing an aggregate peak band-
width of 128GB/sec at 60ns latency. This external memory
interface performance is motivated by what can be achieved
by GPUs and CPUs today. Even then, the performance sim-
ulations of the Sparse Matrix-Vector Multiplication (SpMV)
kernels reported in this section are all memory bandwidth
bound, never able to completely consume the reconfigurable
logic resources available in the fabric.

The Control Unit from Figure 5 is modeled as a multi-
threaded microcontroller that executes control thread pro-
grams directly. The model assumes that the fabric has
740kB of SRAM (beyond CoRAMs) needed to hold the 180
control thread contexts (code and data). The performance
simulator also does not model the multithreaded pipelines
explicitly. However, the control threads are compiled and ex-
ecuted concurrently as Pthreads within the simulation pro-
cess and are throttled with synchronization each simulated
cycle to mimic execution delay (varied between 300MHz and
1.2GHz for design space exploration).

RTL Synthesis. For each of the design points considered
by the performance simulation, the power and area is also
estimated by synthesizing RTL-level designs of the CoRAM
mechanisms using Synopsys Design Compiler v2009 to tar-
get a commercial 65nm standard cell library. The power



C = CoRAMs, T = control threads, N = nodes = clusters, M =mbanks
K = C/N = CoRAMs per cluster, X = T'/N = control threads/cluster

P = watts, p = watts/GHz, freq = CoRAM clock frequency

Actuster = Arouter + X X Acostate + % X (Amips + Aother)
Atotat = N X Actuster + M X Arouter

Pouster = fTeq X (proutcr + X X DPeostate + % X (p'mips + pother))
Piotal = N X Pepuster + freq X M X prouter

Table 2: Area and Power Overhead Formulas.

Component mm? mW/GHz
MIPS core (8 threads) .08 59
Per-thread state (SRAM) .04 8

32-bit router .07 38

64-bit router 11 48
128-bit router .30 64

Other (queues, logic, etc.) (est’d) .40 -

Table 3: 65nm Synthesis Results.

and area of the NoC are estimated by synthesizing an open-
sourced router design'. The power and area of the Control
Unit is estimated by synthesizing an 8-way multithreaded 5-
stage MIPS core automatically generated from the T-piper
tool [17]. The power and area of the SRAMs for the control
thread contexts are estimated using CACTT 4.0 [20]. Table 3
summarizes the resulting area and power characteristics of
various components. The total power and area overhead for
a particular design point is calculated using the formulas in
the bottom of Table 2 by setting the parameters in the top
portion of the table.

It is important to keep in mind that, despite the efforts
taken, the reported power and area estimates are only ap-
proximate. However, by just comparing relative magnitudes,
the estimates give an adequate indication that the total cost
of adding even an aggressive, pure hard-logic CoRAM im-
plementation is small relative to the inherent cost of a re-
configurable fabric like the Virtex-6 LX760. Our estimates
also have a large conservative margin built-in since they are
based on a 65nm standard cell library several years old.

5.1 Design Space Exploration Results

From the design explorations, we report results for the
Sparse Matrix-Vector Multiplication kernel, which was our
most memory-intensive application (results for Matrix Ma-
trix Multiplication and Black-Scholes are discussed qualita-
tively at the end). We simulated the execution of the SpMV
kernel running on design points generated from an exhaus-
tive sweep of parameters given in Table 1. For each design
point, we report the SpMV kernel’s execution performance
averaged over test input matrices from [9]. The graphs in
Figure 15 plot the performance (GFLOP /sec) achieved by
each design point (on the x-axis) against its area and power
overheads (on the y-axis) from adding the CoRAM archi-
tecture support. The data points represented by the same
markers correspond to design points with CoRAM mecha-
nisms at the same frequency (300MHz, 600MHz, 900MHz or
1.2GHz). All of the design points incur a fixed 18mm? from
SRAM storage and the MIPS cores for the required 180 con-
trol thread contexts; this can be a very significant portion
of the total area overhead for some design points. Neverthe-
less, the total area overhead is small in comparison to the
hundreds of mm? typical of even small FPGAs today [1].

. http://nocs.stanford.edu/cgi-bin/trac.cgi/wiki/Resources/Router
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Figure 15: Estimated area and power overhead.

In Figure 15 (top), points in the lower-right corner corre-
spond to higher performance and lower area overhead. For
all of the frequencies, a nearly minimal area design point
achieves almost the best performance possible at a given fre-
quency. This suggests that the operating frequency of the
CoRAM mechanisms has a first-order impact on the overall
application performance, beyond the impact of microarchi-
tectural choices. This result suggests that it may be difficult
for soft implementations of the CoRAM mechanisms to per-
form comparably well as hard implementations in the future
even when reconfigurable logic resources are made plentiful.

The power-overhead-vs-performance plot in Figure 15
(bottom) exhibits a cleaner Pareto front. In this plot, the
higher performance design points tend to require a greater
power overhead. It should be pointed out that the microar-
chitecture design point jx4nodes-16mbanks-128bit appears
consistently on the Pareto front for all frequencies (also op-
timal in the area-overhead-vs-performance plot). This sug-
gests that it is possible to select this point to achieve mini-
mum area overhead and apply frequency scaling to span the
different positions on the power-performance Pareto optimal
front. However, this conclusion is based only on the results
of the SpMV application kernel. Further study including
a much greater range of application kernels is needed. Al-
though performance results were not presented for MMM
or BS, our experiments showed that less aggressive de-
signs (e.g., 600MHz-4x4nodes-16mbanks-128bit) were suffi-
cient for these compute-bound applications to reach peak
performance running on the CoRAM architecture.

6. RELATED WORK

A large body of work has explored specialized VLSI de-
signs for reconfigurable computing. GARP [12] is an ex-
ample that fabricates a MIPS core and cache hierarchy
along with a collection of reconfigurable processing elements
(PE). The PEs share access to the processor cache but only
through a centralized access queue at the boundary of the
reconfigurable logic. Tiled architectures (e.g., Tilera [23])
consist of a large array of simple von Neumann processors
instead of fine-grained lookup tables. The memory accesses
by the cores are supported through per-core private caches



interconnected by an on-chip network. Smart Memories [14]
on the other hand employs reconfigurable memory tiles that
selectively act as caches, scratchpad memory, or FIFOs.

The idea of decoupling memory management from compu-
tation in CoRAM has been explored previously for general-
purpose processors [19, 7]. Existing work has also examined
soft memory hierarchies for FPGAs (e.g., [25, 10, 13, 15]).
The most closely related work to CORAM is LEAP [2], which
shares the objective of providing a standard abstraction.
LEAP abstracts away the details of memory management by
exporting a set of timing-insensitive, request-response inter-
faces to local client address spaces. Underlying details such
as multi-level caching and data movement are hidden from
the user. The CoRAM architecture differs from LEAP by
allowing explicit user control over the lower-level details of
data movement between global memory interfaces and the
on-die embedded SRAMs; the CoRAM architecture could
itself be used to support the data movement operations re-
quired in a LEAP abstraction.

7. CONCLUSIONS

Processing and memory are inseparable aspects of any
real-world computing problems. A proper memory archi-
tecture is a critical requirement for FPGAs to succeed as
a computing technology. In this paper, we investigated a
new, portable memory architecture called CoRAM to pro-
vide deliberate support for memory accesses from within
the fabric of a future FPGA engineered to be a computing
device. CoRAM is designed to match the requirements of
highly concurrent, spatially distributed processing kernels
that consume and produce memory data from within the
fabric. The paper demonstrated the ease-of-use in managing
the memory access requirements of three non-trivial appli-
cations, while allowing the designers to focus exclusively on
application development without sacrificing portability or
performance. This paper also suggested a possible microar-
chitecture space for supporting the CoRAM architecture in
future reconfigurable fabrics. An investigation of the trade-
offs between performance, power, and area suggests that
adding support for the CoRAM architecture in future de-
vices only requires a modest overhead in power and area
relative to the reconfigurable fabric.
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