
Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL 2013): Category 1

GraphGen for CoRAM: Graph Computation on FPGAs

Gabriel Weisz
Computer Science

Department
Carnegie Mellon University

Pittsburgh, PA, USA
gweisz@cs.cmu.edu

Eriko Nurvitadhi
Intel Science and Technology

Center
Intel Corporation

Pittsburgh, PA, USA
eriko.nurvitadhi@intel.com

James C. Hoe
Electrical & Computer

Engineering Department
Carnegie Mellon University

Pittsburgh, PA, USA
jhoe@ece.cmu.edu

ABSTRACT
This paper presents a system for executing graph computa-
tions on FPGAs. It implements an optimizing FPGA back-
end for the GraphGen graph algorithm compiler [12] and
uses the CoRAM prototype implementation [6] to support
FPGAs from both Xilinx and Altera. High performance in
the generated implementations is achieved through a combi-
nation of data transfer optimizations and utilizing the hard-
ware flexibility available in FPGAs. Evaluation results are
presented for Tree-reweighted Message Passing (TRW-S),
an algorithm for 3d reconstruction, running on the Xilinx
ML605 and Altera DE4 FPGA boards. Our implementa-
tion for the DE4 performs 14.5× faster than our best effort
for a high end CPU, 10.3× faster than our best effort for a
high end GPU, and is only 2.6× slower than a hand made
implementation running on a high end Convey HC-1 FPGA
computing system.

1. INTRODUCTION
Graph computations are the basis of many applications in

machine learning and data mining. Graphs are a powerful
abstraction that allow relationships between data elements
to be easily expressed, allowing the detection of unrelated
computations that may proceed in parallel. Graph computa-
tions often perform the same sequence of operations on many
graph elements, which suggests that they are amenable to
acceleration by parallel hardware, either in a SIMD-like fash-
ion by GPUs, or via custom pipelines in FPGAs or ASICs.

Existing frameworks for executing graph computations are
geared towards general purpose computers or clusters of gen-
eral purpose computers. The literature also includes graph
computations on accelerators: manual implementations that
are not based on reusable frameworks, and a framework for
collecting graph statistics on immutable graphs rather than
updating graph data (see Section 6).

The GraphGen compiler [12] converts graph algorithms,
expressed using a vertex-centric graph specification used by
existing graph frameworks, into an intermediate Graph Ex-
ecution Model (GEM) program suitable for backend realiza-
tion on accelerators. This paper describes a backend that
produces an optimized implementation of the GEM program
for FPGAs. The backend is layered on top of a prototype
implementation of the CoRAM abstraction for FPGA com-
puting [6], which supports several FPGA boards (see Section
2.3). A separate ongoing work focuses on a GEM backend
for GPUs.

The remainder of this paper is organized as follows: Sec-
tion 2 presents background information. Section 3 discusses

(a)

(b) (c)

Figure 1: 3d reconstruction: (a) Left and right images; (b) De-
sired disparity map; (c) Grid graph structure

the implementation of the system and various optimizations
that can be applied. Sections 4 and 5 present experimental
methodology and results. Section 6 discusses related work,
and Section 7 presents conclusions and future work.

2. BACKGROUND

2.1 Graph Computation
This work focuses on computations that have a natural

mapping to a graph structure. Figure 1 illustrates one such
computation: 3d reconstruction [3]. The goal of 3d recon-
struction is to recover the three dimensional structure from
two stereo images (1a) by creating a depth map (1b) - an im-
age showing the depth at every corresponding pair of pixels
in the source images.

This computation can be mapped to a grid graph struc-
ture (1c): each pixel is mapped to a vertex, and an edge
is created between adjacent pixels. Section 5 discusses ex-
periments with a 3d reconstruction algorithm that uses this
mapping. This particular algorithm uses a regular grid struc-
ture, but a regular grid structure is not a general require-
ment for the GraphGen compiler.

2.2 The GraphGen Compiler
The GraphGen compiler allows application designers to

focus on the area of their expertise – graph applications –
rather than the intricacies of a particular hardware plat-

Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL 2013): Category 1

Figure 2: A graph specification

Figure 3: The decoupled GraphGen system architecture

form. The application designer provides a vertex-centric
graph specification, illustrated by Figure 2, that includes:

• The graph structure, consisting of vertices and edges.

• Data types for vertex and edge data.

• The update function definition.

• Scheduling hints, such as an evaluation order.

While the application designer provides the graph struc-
ture to the GraphGen compiler, the GEM program produced
by GraphGen can be utilized by many instances of the same
graph. For example, the 3d reconstruction algorithm used
in Section 5 can be applied to any pair of images that match
the size of the graph specification.

The GraphGen compiler breaks the graph, which gener-
ally is too large to fit in local device memory, into subgraphs.
In doing so, it compiles the application to a Graph Execution
Model (GEM) program. Each subgraph in a GEM program
contains vertices and edges, and a“PE Program,”which con-
sists of an inlined implementation of the update function for
every vertex of the subgraph.

Subgraphs are processed according to scheduling direc-
tives provided by the graph specification and the depen-
dencies present in the graph. The graph in Figure 2 can
be broken into three subgraphs: {v1,v2, e1, e2, e3},
{v3, v4, e2, e4, e5, e6}, and {v5, v6, e5, e6,
e7}. Since there are no edges directly connecting the first
group and the third group, they may be processed in paral-
lel, unless the graph specification indicates otherwise.

The subgraphs within the GEM program are intended
to be processed by a decoupled architecture shown in Fig-
ure 3. Conceptually, this architecture contains a data parti-
tion that provides control flow and manages data transport
between global and local memory, and a compute partition
that includes one or more Processing Elements (PEs).

Each specific implementation of this decoupled architec-
ture is known as as a “template,” and serves as a backend for
the GEM compiler. The backend is analagous to an OpenCL
backend, in that it converts the GEM program into a format
usable by the device, and performs device specific optimiza-

Figure 4: The decoupled CoRAM abstraction

tions in the process. Among the optimizations are transfor-
mations to make the best use of available DRAM bandwidth
by reordering and combining data transfers, and arranging
data transfers in order to overlap computation with commu-
nication. These optimizations need to be run once for any
particular graph specification, and can be used with many
different instances of the graph.

When targeting the FPGA template, an application de-
veloper must also provide an RTL implementation of compu-
tation components (such as f1, f2, and f3 in Figure 2), which
may be produced through any design flow as long as it ad-
heres to a well-defined interface. For example, the PE may
be an existing hardware block, or it may be generated by a
C-to-gates tool such as ROCCC [20]. The PE is combined
with template components to produce an FPGA bitstream.

2.3 The CoRAM Abstraction
The decoupled architecture targeted by the GraphGen is

a natural fit for the CoRAM abstraction. The CoRAM ab-
straction [5] is a decoupled abstraction for FPGA comput-
ing. Figure 4 presents a high level diagram of the CoRAM
abstraction, which provides a portable, easy to use mech-
anism for specifying data transfers that targets multiple
FPGA devices.

The CoRAM abstraction achieves this goal by defining
special memory blocks, called “CoRAM buffers”, that serve
as a portal between application logic and the outside world.
CoRAM buffers are similar to the block memories that exist
in current FPGA devices.

The CoRAM abstraction also defines ”Control Threads,”
which are multithreaded programs written in a C-like lan-
guage. Control threads coordinate data movements between
external memory and CoRAM buffers, and can be executed
by an embedded microcontroller or compiled to state ma-
chines. Since they are meant to express bulk data flows
and not computation, control threads are not on the criti-
cal path for performance. Libraries provide ”personalities”
implementing FIFOs, caches, and other structures.

While the CoRAM abstraction is intended to be sup-
ported natively by future FPGAs, a prototype implemen-
tation implements the CoRAM abstraction in soft logic [6].
The CoRAM prototype currently supports the Xilinx ML605
platform and the Terasic DE4 platform, which contains an
Altera FPGA. The prototype also includes interfaces to trans-
fer data between a host system and device DRAM and hard-
ware counters to capture performance metrics.

3. DESIGN AND IMPLEMENTATION
A GraphGen template must provide everything necessary

to map a GEM program to an accelerator. For an FPGA
template, this includes files necessary to produce a device
bitstream (given a PE as described in Section 2.2), and a
way to perform the computation and retrieve results. The

Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL 2013): Category 1

Figure 5: Double buffered template

GraphGen template for FPGAs is comprised of three main
components:

1. The Hardware Template instantiates CoRAM buffers,
a PE, and logic to connect them. This implements the com-
pute partition of the GraphGen template.

2. The Control Thread coordinates execution, synchro-
nization, and data transfers. This implements the data par-
tition of the GraphGen template.

3. The Preprocessing Script converts a GEM program into
a format suitable for use with the template, and performs
various optimizations.

3.1 The Hardware template
The Hardware Template instantiates CoRAM buffers that

enable data transport, the PE, and logic to connect them
and sequence computation. There are several ways that data
management can be implemented:

1. Separate CoRAM buffers can each store vertex, edge,
or PE program data.

2. CoRAM buffers configured as FIFOs can stream input
and output data, and populate memories that serve the PE.

The hardware template uses the second option, which sim-
plifies the hardware design by replacing generic data steer-
ing hardware used by CoRAM with a custom datapath, and
simplifies the implementation of the optimizations described
in Section 3.4.

3.2 The Control Thread
The Control Thread manages overall execution and coor-

dinates data transfers. It iterates through the set of sub-
graphs specified by the memory image, sending each sub-
graph from DRAM to the hardware template. Once data
has been sent to the hardware template, the control thread
sends a signal to the hardware template indicating that com-
putation can begin. When computation has completed, the
control thread writes modified data back to DRAM.

3.3 The Preprocessing Script
The Preprocessing Script converts the subgraph data pro-

duced by the GraphGen compiler into an appropriate for-
mat for the FPGA, and performs optimizations on the data
stream to effectively utilize DRAM bandwidth.

3.4 Optimizations
Several optimizations can be applied in order to increase

performance. Two optimizations, discussed in Sections 3.4.1
and 3.4.2, exist solely within the template, requiring only
changes to the hardware template, the control thread, and
the preprocessing script. These optimizations are concerned
with making data transfers as efficient as possible in order

(a) Original subgraph (b) Sorted subgraph

(c) Sorted and filled subgraph

Figure 6: Sorting and filling enhancements to coalescing

to fully utilize the PE. Other optimizations, described in
Sections 3.4.3 and 3.4.4, change the instruction stream to
reduce the number of compute cycles. These optimizations
also require the support of the PE, the GraphGen compiler,
and the GEM programming model.

3.4.1 Double Buffering
One strategy for maximizing computational throughput

is overlapping communication with computation, which pre-
vents the PE from stalling while data is being transferred.
Double Buffering - instantiating a second set of buffers to
hold new data while computation uses data in the first buffer
- is commonly used to achieve this goal.

Figure 5 shows how double buffering is implemented. In
the diagram, “V” blocks store vertex data, “E” blocks store
edge data, and “I” blocks store the PE program. Since the
computation is modifying data, it is important to detect
read-after-write hazards - situations in which data is written
by one phase of execution and read by a subsequent phase
- in order to ensure that the calculation is correct. The
static data flow in a GEM program removes the need for
hazard detection hardware, as hazards can be detected at
prepreprocessing time.

3.4.2 Coalescing
Coalescing is the practice of combining multiple transfers

of small items into fewer large transfers, which allows the
fixed cost of data transfers to be amortized. Reducing the
total number of data transfers is especially important as
indirect transfers are required to support writeable data that
exists in multiple subgraphs.

Coalescing requires embedding a token within the data
stream to indicate coalesced data. However, otherwise un-
used space in the vertex and edge list is used to indicate run
lengths, making coalescing free in terms of storage overhead.
This change requires minimal changes to the control thread.
Several coalescing variations are supported:

1. Coalescing requests for items that happen to be adja-
cent in the vertex or edge list.

2. Sorting items and then coalescing adjacent items.

3. Filling in small gaps in the vertex and edge lists prior
to sorting and coalescing.

Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL 2013): Category 1

The second and third coalescing mechanisms move data
within the vertex and edge buffers, which can only be done
correctly if the preprocessing script has access to the instruc-
tion stream. The preprocessing script detects which vertices
and edges are moved, and rewrites the instruction stream.

Figure 6 provides an illustration of this process. Subfig-
ure 6a contains a portion of the original subgraph. Note
that vertex and edge addresses within the buffer are relative
to the local buffer rather than global vertex and edge lists.
Subfigure 6b shows the subgraph after sorting and rewrit-
ing instructions. Finally, Subfigure 6c shows the subgraph
after sorting, filling in the gap, and rewriting. Note that the
actual preprocessing script only rewrites instructions once,
after both sorting and filling in gaps.

3.4.3 Pipeline Parallelism
Achieving high clock rates in an FPGA requires pipelining

the PE - dividing the execution of the computation into
multiple clock cycles - in order to reduce the number of
operations that occur within each cycle.

The GraphGen compiler can take advantage of a pipelined
PE by scheduling computation so that independent instruc-
tions are active simultaneously within the pipeline. This op-
timization can reduce compute time by increasing pipeline
occupancy.

When implementing pipeline parallelism, it is important
that the execution schedule and PE ensure that no read-
after-write data hazards occur - a situation in which an in-
struction reads a value that has not yet been written by an
in-flight instruction. This requires either including bypass
logic within the pipeline, or by scheduling instructions to
avoid data hazards.

The GraphGen compiler is able create such an execution
schedule. This allows the PE to omit bypass logic, which
simplifies the PE, but requires that each subgraph contain
sufficient independent instruction streams in order maximize
performance.

3.4.4 Multiple Read Ports
Graph computations may use multiple data items for each

computation. If the PE programming model only allows
one vertex and edge to be specified per instruction, then
it contains an inherent inefficiency that will reduce system
performance.

The PE programming model has been extended to allow
multiple edge reads per cycle in order to alleviate this is-
sue, and associated updates have been made to the Graph-
Gen compiler. The programming model may be extended
to support multiple vertex reads in the future.

4. EVALUATION METHODOLOGY
Experiments were performed on two hardware platforms

- the Xilinx ML605, containing a Xilinx Virtex-6 FPGA,
and the Terasic DE4, which contains an Altera Stratix-IV
FPGA. The relevant parameters of each hardware system
are described in Table 1. The bitstreams for the Xilinx board
used 55% of slices, and 87% of block memory, while the Al-
tera bitstreams had 69% logic utilization (29% of ALUTS),
and 48% of block memory. Approximately 20% of the uti-
lization was due to the CoRAM abstraction. An implemen-
tation that did not use the CoRAM abstraction would also
incur non-trivial overhead for DRAM interfaces and data
transfer coordination.

Platform Xilinx ML605 Terasic DE4

FPGA
Xilinx Virtex-6

LX240T [22]
Altera Stratix IV
EP4SGX530[21]

Logic Cells 241,152 531,200
Block Memory 14,976 Kbit 27,376 Kbit
DSPs 768 1,024
DRAM Bandwidth 6.4 GB/s 2 × 6.4 GB/s
DRAM Capacity 512 MB 2 GB

Table 1: Parameters for test platforms.

In these experiments, the chief performance differentiator
is the inclusion of an additional DRAM channel on the Al-
tera board, allowing twice the peak DRAM bandwidth. The
DE4 also contains sufficient reconfigurable logic that it may
be possible to instantiate multiple processing engines on it
in the future.

All experiments were performed by programming the de-
vice, loading data into DRAM on the board, performing the
computation, reading data back from the board, and vali-
dating the results against reference results. Experiments run
the reconfigurable fabric at 100 MHz except where otherwise
indicated.

Hardware counters capture the number of cycles taken by
the computation as a whole, including data transfers, and
the number of cycles in which the processing engine was
active. Run times are reported in wall clock time, start-
ing from when initialization data is in device memory, and
ending when output data has been written.

As the GraphGen compiler and associated FPGA tem-
plate are still under development, experimental results are
presented for a single workload. Other workloads execute
successfully, but are not yet processed optimally.

5. EXPERIMENTAL RESULTS
3d reconstruction experiments were performed using the

Tree Reweighted message passing (TRW-S) [16] algorithm
on the ”Tsukuba” images of the Middlebury benchmark[14],
which is shown in Figure 1.

TRW-S seeks to convert two stereo images (1a) into a
depth map (1b) - an image containing the depth at each
corresponding pair of pixels in the source images. Images
map to a grid graph in which pixels are vertices and adjacent
pixels are connected by edges (1c). The reference images
contain approximately 100,000 vertices and 200,000 edges.

Vertex and edge data is represented by a set of 16 labels,
which are each 32 bit fixed point values. Subgraphs are sized
at 12×64 vertices in order to maximize pipeline parallelism.
Experimental results are shown in Figure 7.

The vertical axis shows the running time of the algorithm
in milliseconds (lower is better), and the horizontal axis
shows three sets of experiments: using one read port for
edges, using two read ports for edges, and using four read
ports for edges.

The gray line shows the optimal run time of the computa-
tion for a 100 MHz system. Optimal is defined as incurring
no overhead for data transfers, and was measured by count-
ing the number of cycles that the PE was active.

The red dashed line shows an implementation on either
the ML605 or DE4 using one memory controller, running
the PE at 100 MHz. Both platforms were measured to dif-
fer only slightly in performance with one memory controller.
Optimal performance is achieved with one read port, but ex-
periments with two and four read ports are limited by avail-

Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL 2013): Category 1

Figure 7: TRW-S results

able DRAM bandwidth. The performance level achieved is
consistent with 85% of peak DRAM bandwidth. Since not
all data transfers are coalesced - there are still some non-
sequential accesses - it is unlikely that a higher data transfer
rate could be achieved. Experiments have shown that both
platforms can achieve 93-95% of peak DRAM bandwidth
using strictly sequential data transfers.

The blue dotted line shows the performance achieved us-
ing two memory controllers on the DE4, and running the PE
at 100 MHz. Optimal performance is achieved for all exper-
iments, indicating that the performance is compute bound.

Since the DE4 with two memory controllers is compute
bound at 100 MHz, experiments were performed on the DE4
with a 150 MHz clock rate for the PE. The light blue line
shows the optimal performance numbers for this scenario.

Run times for the DE4 with two memory channels and a
150 MHz PE are shown by the purple line, and which indi-
cates a significant performance improvement over earlier ex-
periments. Optimal performance is achieved with two read
ports, but performance barely increases when moving to four
read ports. As performance is 1.85× the best achieved with a
single memory channel, and the DE4 achieves 79% of peak
DRAM bandwidth (comparable to the 85% achieved with
a single channel), it is reasonable to conclude that perfor-
mance is bandwidth limited.

The DE4 performed extremely well as compared to in-
house implementations of TRW-S on a high end CPU and
GPU: it is about 14.5× faster than a single threaded pro-
gram on an Intel Core i7, which performed the computation
in 120 ms, and 10.3× faster than an NVidia GTX 780, which
completed the computation in at 85 ms. GPU performance
is limited by the small amount of available local memory,
and by difficulty in mapping the diagonal parallelism pat-
tern of the computation to its SIMD engines, which results
in significant thread divergence.

The highest performing version of TRW-S that in the lit-
erature is in the work of Choi and Rutenbar[4]. They imple-
mented TRW-S on a Convey HC-1 system [1], and achieved
approximately 2.65× better performance than the DE4 at
150 MHz, and 4.8× the performance of the ML605.

Some of the performance difference is due to the fact that
GraphGen for CoRAM uses a generic framework with an
instruction-based PE, rather than a completely custom PE.
The Convey implementation read one vertex and four edges
every cycle, and wrote two edges per cycle, whereas the
GraphGen implementation could only read one vertex or
four edges per cycle, or write one edge per cycle.

Performing a cost-to-performance (The Convey HC-1 costs
$50k vs $8k for the DE4 and $2k for the ML605) or band-
width based (The HC-1 has 100 GB/s vs. of bandwidth
12.8 GB/s on the DE4 or 6.4 GB/s for the ML605) reflect
favorably on the GraphGen for CoRAM results. It would be

possible to implement a GraphGen template for the Convey
HC-1, which could fully utilize available DRAM bandwidth
and implement multiple PEs on the multiple FPGAs in the
Convey HC-1. While some technical challenges would exist
to such an implementation, such as hazard avoidance across
PEs, these challenges would not be insurmountable.

6. RELATED WORK
Numerous graph-centric paradigms have been investigated,

including GraphLab [10] [19], GraphChi[8], Pregel[11], and
GreenMarl [7], which all support a vertex-centric abstrac-
tion. These systems focus on CPU-based systems or cloud
based systems, rather than accelerators such as FPGAs, but
they do provide a rich set of techniques for processing graph
applications, including machinisms for partitioning graphs
into subgraphs, and scheduling subgraph computations.

Most of the works that implement graph centric algo-
rithms on accelerators do so in an ad-hoc manor ([4] [9]
[15] [17] [18] [13]), which results in very good performance,
but are not part of a platform that can easily be applied to
multiple applications.

Betkaoui et. al propose a framework for FPGA acceler-
ation of large graph problems [2]. Their work is intended
for use with large graphs, similar to GraphGen for CoRAM,
but focuses on parallel computation of statistics on an im-
mutable graph structure. Both frameworks do assume that
the graph structure does not change, but GraphGen for
CoRAM is designed for algorithms that modify data associ-
ated with graph vertices or edges.

7. CONCLUSIONS AND FUTURE WORK
This paper has presented an optimizing FPGA back-end

for the GraphGen graph compiler. The primary conclusion
that can be drawn from this work is that the data model
used by the GraphGen compiler enables a number of op-
timizations. These optimizations allow FPGAs to perform
better than CPUs and GPUs, in spite of running at a much
lower clock rate. GraphGen for CoRAM also allows cost
effective performance: a $2,000 Xilinx ML605 is only 4.8×
slower than a $50,000 Convey HC-1, which is also only 2.6×
faster than an $8,000 Altera DE4.

Future enhancements to this project will support better
performance and more applications, including:

• Support for multiple PEs.

• Updates to the GraphGen compiler for more control
over graph traversal, which will enable better performance
on more applications.

• Support more hardware platforms, such as the Convey
HC-1.

This work is supported, in part, by the National Science
Foundation CCF-1320725 and by the Intel Science and Tech-
nology Center in Embedded Computing. We would like to
thank Altera, Xilinx, and Bluespec for their generous dona-
tion of hardware and tools.

8. REFERENCES
[1] J.D. Bakos. High-Performance Heterogeneous

Computing with the Convey HC-1. Computing in
Science Engineering, 12(6):80 –87, nov.-dec. 2010.

[2] B. Betkaoui, D.B. Thomas, W. Luk, and N. Przulj. A
framework for fpga acceleration of large graph

Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL 2013): Category 1

problems: Graphlet counting case study. In
Field-Programmable Technology (FPT), 2011
International Conference on, pages 1–8, 2011.

[3] Chao-Chung Cheng, Chung-Te Li, Chia-Kai Liang,
Yen-Chieh Lai, and Liang-Gee Chen. Architecture
design of stereo matching using belief propagation. In
Circuits and Systems (ISCAS), Proceedings of 2010
IEEE International Symposium on, pages 4109–4112,
2010.

[4] Jungwook Choi and R.A. Rutenbar. Hardware
implementation of mrf map inference on an fpga
platform. In Field Programmable Logic and
Applications (FPL), 2012 22nd International
Conference on, pages 209–216, 2012.

[5] Eric S. Chung, James C. Hoe, and Ken Mai. CoRAM:
An In-Fabric Memory Architecture for FPGA-Based
Computing. In Proceedings of the 19th ACM/SIGDA
International Symposium on Field Programmable Gate
Arrays, FPGA ’11, pages 97–106, New York, NY,
USA, 2011. ACM.

[6] Eric S. Chung, Michael K. Papamichael, Gabriel
Weisz, James C. Hoe, and Ken Mai. Prototype and
evaluation of the CoRAM Memory Architecture for
FPGA-Based Computing. In Proceedings of the
ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, FPGA ’12, pages
139–142, New York, NY, USA, 2012. ACM.

[7] Sungpack Hong, Hassan Chafi, Edic Sedlar, and Kunle
Olukotun. Green-marl: a dsl for easy and efficient
graph analysis. In Proceedings of the seventeenth
international conference on Architectural Support for
Programming Languages and Operating Systems,
ASPLOS XVII, pages 349–362, New York, NY, USA,
2012. ACM.

[8] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin.
Graphchi: Large-scale graph computation on just a
pc. In Proceedings of the 10th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
’12), Hollywood, October 2012.

[9] Chia-Kai Liang, Chao-Chung Cheng, Yen-Chieh Lai,
Liang-Gee Chen, and H.H. Chen. Hardware-efficient
belief propagation. Circuits and Systems for Video
Technology, IEEE Transactions on, 21(5):525–537,
2011.

[10] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny
Bickson, Carlos Guestrin, and Joseph M. Hellerstein.
Graphlab: A new parallel framework for machine
learning. In Conference on Uncertainty in Artificial
Intelligence (UAI), Catalina Island, California, July
2010.

[11] Grzegorz Malewicz, Matthew H. Austern, Aart J.C
Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and
Grzegorz Czajkowski. Pregel: a system for large-scale
graph processing. In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of
data, SIGMOD ’10, pages 135–146, New York, NY,
USA, 2010. ACM.

[12] Eriko Nurvitadhi, James C. Weisz, Gabriel Hoe, and
Carlos Guestrin. Graphgen: Design compiler for graph
computation. SHAW-4 Workshop, February 2013.

[13] Sungchan Park, Chao Chen, and Hong Jeong. Vlsi
architecture for mrf based stereo matching. In
Proceedings of the 7th international conference on
Embedded computer systems: architectures, modeling,
and simulation, SAMOS’07, pages 55–64, Berlin,
Heidelberg, 2007. Springer-Verlag.

[14] Daniel Scharstein and Richard Szeliski. A taxonomy
and evaluation of dense two-frame stereo
correspondence algorithms. International Journal of
Computer Vision, 47:7–42, 2002.

[15] D. Strigl, K. Kofler, and S. Podlipnig. Performance
and scalability of gpu-based convolutional neural
networks. In Parallel, Distributed and Network-Based
Processing (PDP), 2010 18th Euromicro International
Conference on, pages 317–324, 2010.

[16] Jian Sun, Nan-Ning Zheng, and Heung-Yeung Shum.
Stereo matching using belief propagation. IEEE Trans.
Pattern Anal. Mach. Intell., 25(7):787–800, July 2003.

[17] Xueqin Xiang, Mingmin Zhang, Guangxia Li, Yuyong
He, and Zhigeng Pan. Real-time stereo matching
based on fast belief propagation. Mach. Vis. Appl.,
23(6):1219–1227, 2012.

[18] Q. Yang, L. Wang, R. Yang, S. Wang, M. Liao, and
D. Nistér. Real-time global stereo matching using
hierarchical belief propagation. In BMVC, pages
989–998. British Machine Vision Association, 2006.

[19] Aapo Kyrola Danny Bickson Carlos Guestrin
Yucheng Low, Joseph Gonzalez and Joseph M.
Hellerstein. Distributed GraphLab: A Framework for
Machine Learning and Data Mining in the Cloud.
PVLDB, 2012.

[20] Riverside optimizing compiler for configurable
computing. www.jacquardcomputing.com/roccc/.

[21] Stratix iv device handbook.
http://www.altera.com/literature/hb/
stratix-iv/stratix4_handbook.pdff.

[22] Virtex-6 family overview. www.xilinx.com/support/
documentation/data_sheets/ds150.pdf.

www.jacquardcomputing.com/roccc/
http://www.altera.com/literature/hb/stratix-iv/stratix4_handbook.pdff
http://www.altera.com/literature/hb/stratix-iv/stratix4_handbook.pdff
www.xilinx.com/support/documentation/data_sheets/ds150.pdf
www.xilinx.com/support/documentation/data_sheets/ds150.pdf

	Introduction
	Background
	Graph Computation
	The GraphGen Compiler
	The CoRAM Abstraction

	Design and Implementation
	The Hardware template
	The Control Thread
	The Preprocessing Script
	Optimizations
	Double Buffering
	Coalescing
	Pipeline Parallelism
	Multiple Read Ports

	Evaluation Methodology
	Experimental Results
	Related Work
	Conclusions and Future Work
	References

