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Let’s Build a Big Machine

 FPGAs seen to provide significant acceleration
in “one’s and two’s”

 What about thousands?
* Big application? — Molecular Dynamics
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How do you think about such a system?

* Not just a hardware circuit with inputs and
outputs

* |t's a purpose-built computing machine

* Desire programmability, scalability, reuse,
maintainability

* Initially all FPGAs, now includes x86 systems

* Needs a programming model — BTW, hardware
designers don’t think this way...



The Typical Accelerator Model

Host

Function Call

FSB, HT,
PCle, etc.

Accelerated Function
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Vendor-
Specific
Interface

—_

OpenFPGA
GenAPl is attempt
to standardize

an APl but still at a
low-level

CARL 2012

Acceleratoris a
slave to software

Host initiates and
controls all
interactions

Does not scale to

more accelerators
easily or efficiently

Communication to
other Accelerated
Functions done via
Host



Many interfacing and communication
issues before even thinking about the
application. Not to forget the
hardware design!
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Requirements for Programming Model

e Unified — same API for all communication

* Usable by application experts, i.e., hide the
heterogeneity — it’s just a collection of processors

* Application portability between platforms
* Application scalability

Leverage existing software programming models
and adapt to heterogeneous environment



Which Programming Model?

 Hardware — chunks of logic with attached local
memory

* Sounds like distributed memory

Message Passing ‘ MP]



Using MPI

 Message Passing Interface

* MPI is a common Application Programming
Interface used for parallel applications on
distributed-memory systems

— Freely available, supporting tools, large knowledge
base

— Lots to leverage from



Version Guide

TMD-MP| <ssm)p ArchES-MPI

Original research Commercialized
project

Will see both names in publications.
Treat as equivalent here.



An “Embedded MPI”

Saldafa, et al., ACM TRETS, Vol. 3, No. 4, November 2010

Lightweight subset of the MPI standard
Tailored to a particular application

No operating system required

Small memory footprint ~8.7KB

Simple protocol

Used as a model for implementing a message-
passing engine in hardware —the MPE

Abstraction isolates software from hardware
changes providing portability



Protocols

TMD-MPI communication protocols

Rank 0

MPI_Send

time

MP1_Recv

Rank 0 Rank 1
MPI_Send MPI_Recv
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: data wqdo
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The Flow

Sequential Program
Step 1 - All-X86

Application
Prototype

Step 2 - All-X86 @ Manual Parallelization

MPI Network

‘ ‘ ‘ - Also a system simulation
Process Process

Step 3 - FPGA-X86 mix Accelerator Modeling

TMD-MPI Network

TTTTT
L1
TTTTTT

Step 4 - FPGA-X86 mix Accelerator Substitution

TMD-MPI Network

|||||||

TMD_MPE j I
Hardware Embedded X86 Processor
Engine Processor
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A Parallel Example

TO is the root task
T3 to Tn are parallel tasks replicated as resources allow

This does not easily map
to the coprocessor model
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Mapping Stage

Tasks are assigned to the available
types of processing elements

(in
Hardware Hardware | ®*®® | Hardware
Xeon Accelerator | | Accelerator Accelerator

N

Micro3laze
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Accelerator Architecture

Software control and dataflow
easily maps to hardware

main () {
MPI_Init()
MPI_Recv()
Compute()
MPI_Send()

MPI_Finalize()
}

Software
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MPI_Finalize()
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Infrastructure

On-chip
Network

&

U

Message Passing Engine (MPE)

Commands I IData

MPI
FSM

&) Compute()

Hardware
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Communication Middleware

F;E

/ol

HW Engine

o

HW Engine

wendne
-

MicroBlaze

Packet Switch

FSB Interface

LVDS interface

MGT Interface

Xilinx FPGA
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Achieving Portability

* Portability is achieved
by using a Middleware
abstraction layer. MPI
natively provides
software portability

— Host '« ArchES MPI provides a
Hardware Middleware
- to enable hardware

‘ portability. The MPE
— provides the portable
hardware interface to
_ EPGA be used by a hardware
accelerator

Software Heterogeneous
Environment Environment

Hardware Hardware

Host-specific ‘ Host-specific
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Achieving Scalability

Direct
module
to
module
link

Adding FPGAs \/

Adding modules

Adding hosts

* MPI naturally enables scalability

* Making use of additional processing capability can be as easy as changing
a configuration file

* Scaling at the different levels (FPGAs, modules, hosts) is transparent to the
application
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BUILDING A LARGE HPC
APPLICATION



Molecular Dynamics

Simulate motion of molecules at atomic level
Highly compute-intensive

Understand protein folding

Computer-aided drug design



The TMD Machine

The Toronto Molecular Dynamics Machine

Use multi-FPGA system to accelerate MD
Principal algorithm developer: Chris Madlill,

Ph.D. candidate (now donel!) in Biochemistry
— Writes C++ using MPI, not Verilog/VHDL

Have used three platforms — portability



Platform Evolution

FPGA portability and design abstraction facilitated ongoing migration.

Network of Five V2Pro PCI Cards (2006)

Network of BEE2 Multi-FPGA Boards (2007)

* First to integrate hardware acceleration
* Simple LJ fluids only

* Added electrostatic terms
* Added bonded terms



2010 — Xilinx/Nallatech ACP

EX ¥ . V y '=:,§"§t‘t:ll":t i
A i o5y ') S

Stack of 5 large Virtex-5
FPGAs + 1 FPGA for FSB
PHY interface

Quad socket Xeon Server
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Origin of Computational Complexity
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Typical MD Simulator

Processi

Bonded

CARL 2012
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TMD Machine Architecture

Visualizer

June 10, 2012

Atom
Manager

/ MPI::Send(&msg, size, dest ...);

Bond
Engine

Short range

Nonbond
Engine

Long range

Electrostatics
Engine
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Target Platform for MD

. ) 12 short range nonbond FPGAs
Initial Breakdown of CPU Time 2-3 pipelines/NBE FPGA; Each runs 15-30x CPU
NBE 360-1080x

2 PME FPGAs with fast memory and fibre optic interconnects
PME 420x

e Bonds on quad-core Xeon server

Short range  Long range Bonds
Nonbonded  Electrostatic Bonds 1X

72.5 GB/s

June 10, 2012 8.5 GB/s @ 1066 MHzR| 2012 27



Performance

Modeling

Problem :

Difficult to mathematically predict
the expected speedup a priori due
to the contentious nature of many-
to-many communications.

Solution:

Measuring the non-deterministic
behaviour using Jumpshot on the
software version and back-annotate
the deterministic behaviour.

Make use of existing tools!
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Single Timestep Profile
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Performance

Significant overlap between all
force calculations. L

108.02 ms is equivalent to
between 80 and 88 Infiniband- o8I
connected cores at U of T's
supercomputer, SciNet.

160-176 hyperthreaded cores

Can we do better?

— 140 with hardware bond
engines — change engine from
SW to HW, no architectural

Seconds/Step
o
o

T

o
~
1

0.2

Change 0 20 40 60 80 100 120 140 160

— More with QPI systems CPU Core Count
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Final Performance Equivalent for MD

FPGA/CPU Supercomputer Scaling Factor

Space 5U 17.5*2U

Cooling N/A Share of 735-ton
chiller

Capital Cost $15000* $120000

Annual Electricity Cost | $241 S6758
(Assuming SOOW)

Performance (Core 140 Cores 1*140 Cores
Equivalent)

*Current system is a prototype. Cost is based on projections for next-generation system.



TMD Perspective

Still comparing apples to oranges.

Individually, hardware engines are able to sustain
calculations hundreds of times faster than traditional
CPUs.

Communication costs degrade overall performance.

FPGA platform is using older CPUs and older
communication links than SciNet.

Migrating the FPGA portion to a SciNet compatible
platform will further increase the relative
performance and provide a more accurate CPU/
FPGA comparison.



BUILDING AN EMBEDDED
APPLICATION



Restricted Boltzmann Machine

FPGAO FPGA3
NSC - - - NSC
- PowerPC}
@ | T @
(R4) R19 Ly, Saldafia, Chow, FPT 2009
EAC RBMC RBMC EAC
R3 \R2 R1 R16 R17)R18
N\ =
R7 AR8 R12JR13
Legend
EAC R6 R1 EAC 111
- C p
@ RBMC RBMC @ 1 _F rocessor
@ @ Compute Engine
NSC NSC O MPI Hardware
FPGAl FPGA2
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Class Il: Processor-based Optimizations

Direct Memory Access MPI Engine
MPI_Send(...)

1. Processor writes 4 words
* destination rank
e address of data buffer
* message size
* message tag
" PowerpPC | nterrupt 2. PLB_MPE decodes message header
3. PLB_MPE transfers data from memory

Memory —{.)

— DMA Core [ Legend
[ tx_queue L, MPE »- transmit link @ Slave
| Core i i
.:I N < receive link @ Master-Slave
rx_queue
N - M| Master

PLB PLB_MPE
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SW/HW Optimization

Processor I/O
e lteration n J teration ntd
B 85,200ns T
idle message processing .L idle
Processor 1711,320ns 73,880ns T
. busy idle busy
HW Englnes ............................. 73’880ns + 11'320ns :II:..
DMA with blocking messages
B iteration n iteration n+1
e T T M
idle message processing P idle
Processor e s D 2 .33x
. busy idle busy
HW Englnes ............................. 25'24ons + 11'320ns :II:
DMA with non-interrupting, non-blocking msgs
iteration n P iteration n+1
T 6d0ms T
message processing _| message processing
Processor - 200 pocesing RS PN 3.94x

. e g ey )
HW Engines 10,320ns 11,320ns

DMA with MPI_Coalesce()

iteration n iteration n+1

16,000ns

msg processing msg processing
Processor 16.000ms

. busy idle busy
HW Engines '|<—+—+4.7us 11.320ms CARL 2012 June 10, 2012

5.32x
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Messages vs

Class Ill: HW/HW Optimization streams
Case Study: Vector Addition

\ MPE
/ Rank? Processor
.aﬂ Memory
Time 0 10 20 30
MPE-Rank2 FHHTHHHHHHHHHHHHHHHHHH TR
recvO recvl send0 sendli

Processor HHHHHHHHHHHHHHHHHHHHHH -
| :

vector element: VO vl v2 v3

Total Time: 32 cyclesi
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Scalable Video Processor (SoC)

MPMC

AN

ﬁNPI

Memory
Writer
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Streaming Codec

SDRAM

MPM

ﬁNPI

; To
Micro
Blaze eMAC (< > other
boards
@ PLB || i i
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Frame Processing

SDRAM

MPMC

PI

Men ory
Wr' er

1

) To
M
BE;S EMAC <. > other
boards
@ PLB || i i
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June 10, 2012

Multi-Card System

Application is
agnostic to the
number of cards

9

CARL 2012

42



SUPPORTING PARTIAL
RECONFIGURATION



Template-based bitstreams

A library of pre-built bitstreams for FPGAs ...

Saldana, Patel, Liu, Chow, ReconFig 2010, IJRC 2012

U

NoC
° NoC NoC

/ Reconfigurable

Module (RM)

Dynamic Region

DDR Interface Static Region



MPE and the Dynamic Region

Static Region

Network-on-Chip Network-on-Chip Dynamic Region
MPE MPE
v v v ¥
Cmd E E E EData Cmd E E Data
Fifo Fifo Fifo Fifo
u * 4 A PR Flag

Wrapper Wrapper T_IFF

Ctrl | Main Ctrl | Main SRL

FSM 7r Compute FSM 7# Compute «lyl11l <[*— gRst

j Pipeline j Pipeline [[

Status and Status and
Control signals (Reset, busy, done, enable) Control signals (Reset, busy, done, enable)

Wrapper-contained Self-contained
(Application-specific template bitstreams) (Generic template bitstreams)



PR Synchronization, Data Store and Restore

Configuration
Controller ~----x--""-""-"m--m-----5 - 2
X86 Partial .
Cfgx’ OK_to_Cfg/ Reconfiguration Cfg-Done  Processor-Initiated
RM A /R N PR
Process
RM B oot TommmmR e
Configuration
Controller
X86 Partial
Reg-to-Cfg Reconfiguration RM-Initiated
RM_ A oA PR
Process
RM_B

Time

v



PR User code

MPI_Init(); // <--- Template bitstream configuration (where possible) )
MPI_Send ( ..., dest, CFG_TAG,...);

MPI_Recv ( status_data_RM_A, ..., dest, OK_TO_CFG_TAG, ...); .. Processor-initiated
PR

ARCHES_MPI_Reconfig ( RM_B.bit, board _num, fpga_num );

MPI_Send ( status_data_RM_B, ..., dest, CFG_DONE_TAG);

_
—
i\./.IPI_Recv ( status_data_ RM_A, ..., dest, REQ_TO _CFG_TAG, ...);
RM-initiated
ARCHES_MPI_Reconfig ( RM_B.bit, board_num, fpga_num ); ~ PR
MPI_Send ( status_data_RM_B, ..., dest, CFG_DONE_TAG);



HARDWARE SUPPORT FOR
BROADCAST AND REDUCE



Experimental Platform

Peng, Saldana, Chow, FPL2011

= 24-MicroBlaze System implemented on a BEES3 platform

MDB 4_2 %;'__)_! MB
it \ |
S Iéll &

Partial reductions

M [T [me f
=

—2
FPGA3| ~ B FPGA4

| [ B KPGA2
2

FPGAL

MB
|! MD et
MB| 27

f MB|Microblaze & Net!f | B |Bridge




MB

Changes to the NoC

—>
= Broadcast block diagram
TX Logic
dest |Routing ST, .
table | — C‘)hanm,l., “1Channel, -
IF'rom host o Channel, L
e X : ™ Channel,
Channele, 1 ] N >
S~ o——/{ <
.:\Channelch m,m_f
| i
’_/]'J G?i
DEST=0XFF Broadcast flag Write
Broadcast state array Control

—|PT=Envelope

TX FSM




Changes to the NoC

= Reduce block diagram

RX Logic
ch | PT=Envelope —
‘hannel, ~uy |
(LU= Yy RX FSM
T Channel, | |
Packet type
) Data type | |
(fhannelch_num» | Op_‘rype

INTEGER | SR

~

IPIPELINE | ™, -~ to host

— -

Ilter =
reduce state ==} |

array |

| 1 ADD E'f
- |Channel . | educe result
'  EP ACC }_—_‘




DEBUGGING AND PROFILING



53

Debugging: Multi-FPGA
System-Level Simulation

ACP1 ACPO

MPI Messages

Intel
Quad-core
Xeon

Stdout

CARL 2012

Test SW and HW
ranks all at once

No need to
resynthesize

Full visibility into
the FPGA

Good for modeling
application-defined
protocols at initial
stages of development
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Profiling: Jumpshot

Nunes, Saldana, Chow, FPT 2008
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Well-known tool

Extracts MPI protocol
states from the MPE

Profile just like
in Software

Works only for

embedded processors
and hardware engines
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ADDING HIGH-LEVEL SYNTHESIS



The Flow

Sequential Program

Step 1 - All-X86
Application
Prototype

Step 2 - All-X86 \ﬂ/ Manual Parallelization

MPI Network

‘ ‘ ‘ - Also a system simulation
Process Process

Step 3 - FPGA-X86 mix Accelerator Modeling

TMD-MPI Network

Step 4 - FPGA-X86 mix Accelerator Substitution

HLS
AutoESL

TMD-MPI Network

TMD_MPE 1 i %

lllllll

Hardware Embedded X86 Processor
Engine Processor

7
(=)
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Benefits of Using MPI for HLS

* High-level data and control flow defined at
MPI message level

* Not synthesizing the entire system

— HLS focus is on kernels of computation

* |Interfaces are well-defined
— Easier hand-off to HLS tool (or human)



SOME NUMBERS



Configurations for Performance
Testing

X86

MEM

III MEM

|

FPGA

Xeon-Xeon

Send round-trip messages between two MPI tasks (black squares)

-

FPGA

Xeon-HW

X86 MEM

FPGA

Intra-FPGA HW-HW

X86

MEM

J

~

FPGA

Inter-FPGA HW-HW

FPGA

X86 has Xeon cores using software MPI, FPGA has hardware engines (HW) using the MPE

At = round_trip_time/(2*num_samples)
Latency = At for a small message size
BW = message_size/At

Measurements here are done using only FSB-Base modules. We can do this also with

the FSB-Compute and FSB-Expansion Modules by moving the location of the HW




Preliminary Performance Numbers

On-chip network using 32-bit channels and clocked at 133 MHz
MPI using Rendezvous Protocol

HW-HW HW-HW

Xeon-Xeon  Xeon-HW  (inira.FPGA)  (inter-FPGA)

Latency [ps]
(64-byte transfer) It 2.78 0.39 3.5
Bandwidth [MB/s] 1000 410 531 400

o Xilinx driver performance numbers
o Latency = 0.5 us (64 byte transfer)
o Bandwidth =2 GB/s

« MPI Ready Protocol achieves about 1/3 of the Rendezvous latency. For Xeon-HW
it is 1us (only 2X slower than Xilinx driver transfer latency)

o 128-bit on-chip channels will quadruple the HW bandwidth (to approx. 2GB/s)
and also reduce latency
«Other performance enhancements possible



Latency

(delta = n*2)
Point-to-point with Rendezvous Protocol

100000

Time [us]

10000

1000
e=@=FSB
100 e=p==x8-Gen1-
PCle
10 1Gb Eth
- UDP

0 8 32 128 512 2048 8192 32768 131072 524288 2097152

Message Size [Bytes]
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Bandwidth

Point-to-point with Rendezvous Protocol

800
: gv Ve ) o a

700 —=r—e—re

600
w
m,

500
= e=l==FSB
5
2100
g’ *XS_
-2300 Gen1-
= PCle

18b Eth
200 - UDP
100
0= = = —
0 8 32 128 512 2048 8192 32768 131072 524288 2097152

Message Size [Bytes]
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Conclusions |

* Raising the level of abstraction important

— scalability, portability, flexibility, reusability,
maintainability

— productivity, accessible to application experts
* Adapting an existing programming model

brings an ecosystem that can be leveraged

— Debugging

— Profiling

— Knowledge and experience

June 10, 2012 CARL 2012
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Conclusions Il

 Adapting MPI works well

— Well-known programming model for parallel
processing

— Significant ecosystem for heterogeneous systems
possible

— Provides for incremental and iterative design
* MPI can be easily extended/adapted for a
heterogeneous environment
— Messages vs streaming
— Coalescing
— Partial reconfiguration

June 10, 2012 CARL 2012
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Conclusions Il

 Computational architecture may change with
awareness of heterogeneous computing
elements
— MD — heterogeneous versus homogeneous
partitioning
— Messages used to carry instructions to engines
 Must do more top-down thinking about how to
use/incorporate FPGAs into the computing
world
— Mostly bottom-up (hardware) thinking so far

— OpenCL looks to be a popular path today
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