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Abstract—We explore the feasibility of using a coarse-grain
overlay to transparently and dynamically accelerate the execution
of hot segments of code that run on soft processors. The
overlay, referred to as the Virtual Dynamically Reconfigurable
(VDR), is tuned to realize data flow graphs in which nodes
are machine instructions and the edges are inter-instruction
dependences. A VDR consists of an array of functional units
that are interconnected by a set of programmable switches. It
can be rapidly configured by the soft processor at run-time to
implement a given data flow graph. The use of a VDR overcomes
two key challenges with run-time translation of code into circuits:
the prohibitive compile time of standard synthesis tools and
the limited run-time reconfigurability of commodity FPGAs. We
conduct a preliminary evaluation that shows that the execution
of a benchmark can be sped up by up to 9X over a Nios II
processor using a benchmark-specific VDR overlay. The overlay
incurs a 6.4X penalty in resources compared to Nios II. This
work is a resubmission of earlier work that appeared in FCCM
2011 [1].

Keywords-Overlay architectures; dynamic acceleration of soft
processors; just-in-time compilation

I. INTRODUCTION

Recent years have seen an increasing interest in the use of
Field Programmable Gate Array (FPGA) devices as accelera-
tors in heterogeneous computing systems. FPGAs offer mas-
sively parallel resources that if exploited well can deliver raw
computational power that surpasses traditional processors and
even many-core architectures such as GPUs. It is no surprise
that today several commercial systems offer heterogeneous
high-performance computing (HPC) systems that integrate
FPGAs, such as those produced by Convey Computers [2]
and Faster Technology [3].

However, in order to exploit the massive parallel resources
available on FPGAs, it is often necessary to use low-level
hardware description languages (HDL) such as Verilog or
VHDL. Regrettably, these languages result in lower productiv-
ity compared to high-level languages, such as C or Java. They
also typically require extensive knowledge of the low-level
FPGA fabric (e.g., LUTs and routing) and the corresponding
tool chain (i.e., synthesis, place-and-route and timing analy-
sis). The required hardware design expertise limits the poten-
tial of FPGAs to the narrow segment of hardware designers.
The use of high-level programming languages would open
up the FPGAs to a multitude of programmers, engineers and
scientists. While hardware synthesis of high-level languages
has been an active area of research for a couple of decades,
this approach has had limited success [4].

In this paper, we explore raising the level of abstraction of
programming FPGAs through the use of a coarse-grain overlay
that supports the execution of data flow graphs. The overlay
hides all of the intricacies of the FPGA fabric (such as LUTs
and timing) yet it exposes a massively parallel compute fabric.

The overlay can be targeted by either a static compiler or a
dynamic run-time system. The overlay, which we term the
Virtual Dynamically Reconfigurable (VDR) overlay, can be
implemented on any commodity FPGA. It consists of a mesh
of 32-bit functional units (such as adders and multipliers)
interconnected by programmable network of 32-bits wide
switches that is configured at run-time. The overlay facilitates
the implementation of data flow graphs: the nodes of such a
graph (machine instructions) are mapped to VDR’s functional
units and its edges (inter-instruction data flow) are realized by
configuring the VDR’s programmable switches.

In this paper, we explore the feasibility of using the VDR
overlay in the context of a Just-In-Time (JIT) compiler in
order to dynamically translate machine instructions executing
on a soft processor into FPGA circuits. The soft processor
executes machine instructions and monitors the execution to
detect frequently executed (i.e., hot) segments of code. A
circuit that implements the data flow graph of the trace is
realized on the overlay and the sequential code is re-written to
include control transfer to the overlay. Subsequent executions
of the hot code segment are performed on the overlay resulting
in better performance.

The above use of the VDR overlay allows us to overcome
two challenges often associated with run-time generation of
FPGA circuits. The first is prohibitive compile time of syn-
thesis tools to realize the necessary circuits (typically several
minutes, if not hours). The second is that commodity FPGAs
offer limited facilities for dynamic reconfiguration, although
next generation FPGAs, such as Altera’s Stratix V or Xilinx’s
Virtex 7, promise better measures in this respect. Through the
use of an offline pre-synthesized VDR overlay with a radically
faster run-time mapping of data flow graphs onto the overlay
we are able to overcome these challenges.

We describe data flow graphs (DFGs) and traces and their
advantages as units for realizing circuits. We also present
our VDR overlay and describe how trace data flow graphs
can be efficiently mapped onto it to exploit parallelism.
We use an EEMBC benchmark to evaluate and demonstrate
the feasibility of our approach: compared to soft processor
execution, up to 9X performance improvement is achievable
using an application-tailored overlay, while incurring only
6.4X resource overhead.

The remainder of the paper is organized as follows. Sec-
tion II describes data flow graphs and traces. Section III
describes the VDR overlay. Section IV describes our model
of application acceleration via DFG-to-VDR mapping. Sec-
tion V presents our experimental evaluation. Related work is
described in Section VI. Finally, Section VII gives concluding
remarks.

The work presented in this paper re-presents our earlier
work that appeared in FCCM 2011 [1].
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Figure 1. (a) Building blocks of the VDR Overlay architecture, (b) The
architecture of several VDR units

II. DATA FLOW GRAPHS AND TRACES

A data flow graph (DFG) is a graph that expresses data
dependencies between a set of operations or instructions.
The data dependencies are explicit and represent only true
dependences, there are no false dependences. The nodes in
the DFG represent instructions (such as arithmetic or logic
operations) and edges represent the flow and data dependences
between instructions. The data flow graph execution model is
data-driven, a node can execute as soon as its input nodes are
ready. We believe that such abstraction is a natural choice
for exploiting massive FPGA parallelism. The data-driven
execution can be implemented in a distributed and localized
fashion, both are key design techniques for achieving high-
performance circuits in FPGA fabric.

Traces are straight-line segments of code and can be
modeled as directed acyclic data flow graphs. Traces have
appealing properties [5] that motivate us to use them as units
for the run-time mapping to the overlay. There is a large
number of traces in a program, which allows high utilization
of large commodity FPGAs. Traces are short, a few dozens
instructions on average, which makes them a good starting
point for overlay mapping. Furthermore, since traces represent
only hot paths of execution they omit infrequently executed
code, which results in more resource-efficient circuits. Finally,
traces execute frequently, which indicates that there will be
repeated execution of traces as circuits and therefore high
potential for performance improvement. Nonetheless, traces
do have drawbacks. In particular, it is possible for execution
to leave a trace before the end of the trace (early exits). This
necessitates a mechanism that falls back to soft processor
execution.

III. THE VDR OVERLAY

The VDR overlay architecture lends itself to easy mapping
of data flow graphs of various topologies. Its building blocks,
shown in Figure 1(a), are VDR blocks and unidirectional VDR
switches. A VDR block consists of multiple VDR units, each a
32-bit functional unit (FU) that performs the operation of one
(or several) instruction(s) of the soft processor’s instruction
set. The overlay is synchronous and all VDR units use the
same clock. The units within the VDR block are not connected
and can operate in parallel. Different blocks may contain
different numbers of units, and the units within a block may
or may not be the same. A VDR switch connects two VDR
blocks, allowing any unit in one block can be connected to
any unit in the other block. Each VDR block can be connected
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Figure 2. The AddSub unit with 2 in and 2 out edges

to a single block or multiple blocks, which makes it possible
to arrange VDR blocks in various topologies, both regular and
irregular.

A. VDR Units

The architecture of several VDR units is shown in Fig-
ure 1(b). Each VDR unit has a reconfiguration interface to
configure it to a desired functionality at run-time. An example
unit is a VDR AddSub unit, which can implement all addition
and subtraction instructions (add, addi, sub, subi, etc. in Nios
II). VDR Load and Store units have a special memory interface
which is connected to a memory scheduler, which in turn
accesses the memory subsystem.

Each VDR unit that produces a result has a 32-bit register
to store the result. The VDR Reg unit contains only a 32-
bit register and an initialization interface which serves to
communicate register values between the processor and VDR
overlay. The maximum number of input/output edges of a
unit is determined during offline synthesis. The latency of
VDR units is matched to the latency of the processor’s
instructions they realize. This allows VDR units to have the
same maximum operating frequency (Fmax) as the functional
units in the processor.

B. Inter-unit Communication and Synchronization

Our VDR overlay uses data-driven execution of VDR units
through the use of a synchronous handshake protocol among
the units. This eliminates the need for a centralized finite-state
machine, global communication or broadcasting. Each VDR
unit has a small control circuit for synchronization with its
producer and consumer units using (1) a data bus, (2) a data
ready request signal (req) and (3) data received acknowledge
signal (ack). Figure 2 shows the control circuit for the VDR
AddSub unit with 2 input edges and 2 output edges. The
protocol allows pipelined execution with the throughput of
1 data element per clock cycle, and stalling for a variable
number of cycles by keeping ack low. The progress of VDR
units in a pipeline is synchronized by back-propagating ack
in the same clock cycle.

An issue with the back-propagation of ack arises in deep
pipelines of units and a circular pipeline of units. The first
leads to a long combinational path of the ack signal, and
the second leads to a combinational loop. Depending on the
topology of the VDR overlay, a long combinational path of
synchronization signals can negatively impact the overlay’s
Fmax. In order to address this issue, we introduce a VDR
SyncBreak which can be inserted into the data flow between
units. The SyncBreak unit breaks the combinational path of
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Figure 3. VDR switches among three VDR blocks

ack signals, into two combinational paths by registering the
ack signal. Since this delays the ack signal by one cycle,
the SyncBreak does not know whether the data is received
by the consumer and hence buffers the current data in a 32-
bit register. In the event that the consumer has stalled (ack
is low) the data will not be lost. The VDR SyncBreak unit
presents a trade-off: additional resources are invested in order
to localize synchronization, achieve higher overlay Fmax and
allow throughput of 1 data/clock cycle.

C. VDR Switches

A VDR switch provides many-to-many connectivity among
VDR units in two connected VDR blocks. Switches employ
only combinational circuits they do not add latency in terms
of clock cycles. Figure 3 shows an example of a switch design
for the VB3 block that is connected to two blocks, VB1 and
VB2 with two switches. Both switches consist of six 3-to-1
multiplexers. We assign a mux to the first (second) incoming
edge of a node in VB3, and connect the mux inputs to all
outgoing edges of VB1 (VB2).

Each mux requires a reconfiguration register with
⌈lg(mux size)⌉ bits. The VDR has a reconfiguration inter-
face that facilitates the configuration of the muxes in the
overlay. The interface is a chain of reconfiguration registers
realized as an N deep M -bit shift register (N is the number
of registers, and M is the size of the largest register).

IV. APPLICATION ACCELERATION THROUGH DATA FLOW

GRAPH EXECUTION

We exploit parallelism at three levels: instruction-level,
pipelined and DFG-level parallelism, as illustrated by the
example shown in Figure 4.

A soft-processor can execute up to one instruction per
cycle (IPC) because it has one FU. In contrast, the VDR
overlay contains many FUs that execute in data-driven fashion.
Within a single DFG, we exploit instruction level parallelism
(Figure 4(c)). A DFG (generated from a trace in this case)
often represents a loop body and it may be possible to
pipeline the consecutive execution of multiple trace instances
on the same overlay-mapped DFG (Figure 4(d)). At steady
state, most units of the overlay DFG are utilized, exploiting
pipelined parallelism. Finally, there may exist parallelism
among traces [6] and it is possible to exploit this trace-level
(or DFG-level) parallelism by replicating the DFGs on the
overlay (Figure 4(e)).

The trace-to-VDR mapping algorithm first creates the DFG
of the trace and breaks false dependences among instructions.
Next, the DFG is augmented with VDR Reg nodes that corre-
spond live-upon-entry registers and in-code constants. Edges

Figure 4. Exploiting different levels of DFG parallelism on the VDR overlay

that represent dependences among instructions in consecutive
traces are added to enable the pipelined execution of traces on
the same overlay-mapped DFG. The DFG is then partitioned
to match the blocks that exist in the overlay. The DFG nodes
are then mapped to the overlay. If a node cannot be mapped,
the algorithm backtracks. Finally, the VDR reconfiguration
bitstream is then loaded into the overlay.

V. EXPERIMENTAL EVALUATION

We explore the feasibility of our approach by building an
experimental system on an Altera Stratix III FPGA platform.
It consists of a Nios II/f soft processor, two VDR overlay
replicas, and a VDR control interface that allows Nios II to
reconfigure the overlay. Each overlay instance is connected
to a 2-port on-chip memory through a memory scheduler.
In order to assess the Fmax and resource impact of the
reconfigurable switches of the overlay, we also design a
hardwired version of the overlay in which the switches are
replaced by direct wires.

We use a benchmark from the consumer category of the
EEMBC suite and extract the sole trace that exists in it. We
then design a tailored VDR overlay that is able to realize
(i.e. fit) the DFG of that trace. This avoids the challenge
of designing a generic overlay in this early stage of our
evaluation.

We characterize the impact of the switches and of the
memory subsystem utilization. We present the speedup of the
execution of the benchmark with the overlay over its execution
on Nios II, We also measure the overhead of reconfiguration
and show that it is minimal.

A. The RGB2YIQ Benchmark

The benchmark consists of a loop that iterates over all the
pixels in the image; each iteration converts a 3-byte RGB-
encoded pixel into a 3-byte YIQ-encoded pixel. The assembly
code of the loop is obtained by compiling the source code with
gcc -O2. The loop contains one trace that corresponds to the
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VDR # of Latency Avg. Avg. Avg.
unit units (cc) ALUTs FFs DSPs

AddSub 16 1 70.7 33.3 0
Mul 9 3 8 3 9
Load 3 2+ 74.7 35 0
Store 3 1+ 65 0 0
Shift 3 3 131 105 0

Compare 1 1 32 2 0
Reg 15 1 34 33 0

SyncBreak 6 1 110 68 0

Table I
PROPERTIES OF VDR UNITS

System Nios II VDR overlay Hardwired data flow

Fmax 290 172 286
ALUTs 1483 4753 2978

Logic FFs 1340 2065 1824
DSP Blocks 4 36 36

Table II
Fmax AND RESOURCE USAGE COMPARISON

entire loop body, has 35 instructions and no internal control
flow. We use a 640×480 image as input.

B. VDR Overlay

The designed overlay contains 56 units, 31 blocks and 41
switches. The blocks range in size from 1 unit to 3 units per
block. The overlay switches are built of 148 muxes. There
is a total of 200 edges, which is more than twice the 74
edges in the trace data flow graph. This is because, although
the VDR overlay is application-tailored in terms of its units,
the switches allow creation of a number of data flow graph
topologies to provide a measure of flexibility. Table I lists the
VDR units comprising the VDR overlay. Load and store units
can execute for variable number of cycles depending on the
contention and throughput of the memory subsystem.

There are 148 2-bit reconfiguration registers in the VDR
reconfiguration bitstream. The Nios II reconfigures the over-
lay by sending this bitstream to the overlay. Also, it sends
seventeen 32-bit initial register values and constants.

C. Overlay Fmax and Resource Usage

Table II compares the Fmax and FPGA resource usage of
Nios II, the VDR overlay and the hardwired data flow. The
overlay usage reflects all the resources needed to implement
the overlay including the VDR units, the switches and the
reconfiguration registers. It shows that the hardwired data flow
effectively matches the operating frequency of the processor.
Once the switches are added, the maximum frequency drops
to about 60% of the hardwired version.

One overlay instance consumes 3.2X the ALUT resources
of Nios II. Further, the VDR overlay incurs overhead in terms
of additional ALUTs and flip-flops (FFs) compared to the
hardwired data flow, which accounts for the switches and their
reconfiguration registers. We believe that this is an acceptable
resource overhead to gain flexibility in the overlay, particularly
given that FPGAs will soon have in excess of a million LUTs.

Version data flow Ports/Mem Time (ms) Speedup
name replicas (total Ports)

Nios II – – 38.31 1

VDR-1 1 1 (1) 11.57 3.31
VDR-2 1 2 (2) 7.91 4.85

VDR-2x2 2 2 (4) 4.34 8.82

HDW-1 1 1 (1) 6.53 5.87
HDW-2 1 2 (2) 4.32 8.87

Table III
BENCHMARK SPEEDUP FOR DIFFERENT SYSTEM VERSIONS

D. Performance

We measure speedup, defined as the ratio of the execution
time of the benchmark running only on Nios II to its execution
time running on both Nios II and the overlay. In the latter
case, the execution time includes: (1) the initial execution of
40 iterations on Nios II to detect the trace, (2) trace-to-VDR
mapping, (3) overlay reconfiguration, (4) initialization of live-
upon-entry registers, and (5) overlay execution. In this initial
evaluation, the time to form the trace is not included since
the trace is known a priori. However, this time is typically
small [5], [6]. Therefore, our speedups are a tight upper bound
on what is achievable.

We use three overlay versions and two hardwired ver-
sions. VDR-1 and VDR-2 use one and two ports to access
memory, respectively. VDR-2x2 uses two replicas of VDR-
2, each processing half of the image. HDW-1 and HDW-2
are hardwired versions of VDR-1 and VDR-2, respectively.
Table III shows the speedups of these versions. The speedup of
VDR-1 compared to HDW-1 shows the impact of the switches.
Although both VDR-1 and HDW-1 execute the same number
of clock cycles, VDR-1 is clocked at a lower frequency, and
includes the overheads of trace-to-VDR mapping and VDR
reconfiguration, resulting in lower speedup. Thus, it is critical
that the number and layout of VDR switches on an FPGA be
selected to minimize their impact.

Memory scheduler analysis for VDR-1 reveals the single
memory port is close to full utilization and presents a bottle-
neck. Two ports in VDR-2 improve speedup by over 45%, and
the utilization of each memory port is 74%. Finally, overlay
replication in VDR-2x2 doubles the performance indicating
the potential for DFG-level parallelism.

The execution time breakdown reflects that the overheads
of using the overlay are negligible. In the case of VDR-2,
the reconfiguration time accounts for 0.01%, while register
initialization represents another 0.01%. The initial execution
of the 40 loop iterations represents 0.06%. In contrast, the
trace-to-VDR mapping represents 9.19%. This indicates the
importance of making the mapping step more efficient.

VI. RELATED WORK

Improving the performance of soft processors has been
attempted through: application-specific pipeline customization
[7], VLIW [8], vector extensions [9] multi-threading or mul-
tiple processors [10], [11], [12]. These approaches require
either user effort, a specialized compiler flow or generate
non-standard binaries. Our approach works with standard soft-
processor binaries and transparently improves performance.
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Lysecky et al. [13] propose the warp processor to dynam-
ically accelerate program binaries on a special-purpose LUT-
based FPGA using leaner CAD tools. Bergeron et al. [14]
propose JIT-compilation of Scheme programs to commodity
FPGAs using user annotations and standard CAD tools. In
contrast, we circumvent the run-time use of CAD tools via a
pre-synthesized overlay.

Shukla et al. [15] propose QUKU, which uses a systolic
array of general-purpose ALUs targeted by a static compiler.
In contrast, our overlay uses heterogeneous FUs with a flexible
interconnect that is suitable for run-time mapping of data flow
graphs. Kapre et al. [16] and Lucas et al. [17] explore overlay
networks of larger processing elements (CPUs), whereas we
focus on smaller functional units. Coole et al. [18] propose a
coarse-grain overlay which features 16-bit functional units, an
FPGA-like interconnect (routing channels and switch boxes)
and a global control unit. In contrast, our approach uses a flex-
ible nearest-neighbor interconnect and a data-driven execution
with all control logic embedded in the VDR units. Grant et
al. [19] propose an FPGA device which contains both coarse-
and fine-grained elements. Although their approach reduces
synthesis time it requires Verilog and low-level hardware
knowledge. In contrast, our approach uses an overlay for
commodity FPGAs which hides all low-level FPGA details.

VII. CONCLUSION AND FUTURE WORK

We explored the feasibility of user-transparent soft pro-
cessor acceleration through the use of traces and a pre-
synthesized overlay. Our approach eliminates the run-time use
of computationally expensive CAD tools by reducing code-to-
circuit synthesis to a much simpler trace-to-overlay mapping.
Our preliminary evaluation using a benchmark, an overlay
tailored to this benchmark and a Nios II processor shows that
up to 9X improvement in performance over the soft processor
can be achieved. This leads us to conclude that our approach
is feasible.

Our long term goal is to design and build a complete
system (called Kitsune) for user-transparent acceleration of
soft processors, shown in Figure 5. It consists of a soft
processor, a generic application-independent VDR overlay,
a trace collection system (TCS), a trace cache, a trace-to-
VDR mapping module, a VDR bitstream cache and a trace
dispatcher. The TCS collects traces and deposits them in the
trace cache. These traces are mapped onto the VDR using
the trace mapper and the bitstreams are stored in the VDR
bitstream cache. The trace dispatcher loads multiple bitstreams
to the VDR configuring it for the appropriate traces.
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