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ABSTRACT 
Recently researchers have shown interest in 
integrating Reconfigurable logic into conventional 
processors as a Reconfigurable Function Unit (RFU). 
A context-full RFU supports holding intermediate 
results inside itself, which eliminates some data 
movement overheads and has some other benefits. 
Most contemporary processors support out-of-order 
execution and speculation. When a context-full RFU 
is integrated into a speculative processor, if a 
speculative RFU instruction has modified the RFU 
context but cannot be committed in the end, the RFU 
context must be recovered. Traditional mechanisms to 
handle speculative execution of instructions cannot 
effectively address this issue. Because of the design 
complexity, previous proposals did not support 
context-full RFUs in speculative processors. In this 
paper, we propose an architecture & mechanism for 
supporting speculative execution of a context-full 
RFU in in-order issue, out-of-order execution 
processors. It does not require too much extra space 
for the RFU context storage and the performance 
penalty shown to be low in practice. 

1. INTRODUCTION 
Reconfigurable Logic (RL) has the capability of 
providing custom operations and has more flexibility 
than fix-function logic. Then compared to 
conventional fixed function ISAs, an ISA augmented 
with RL has the potential to provide much better 
performance for a variety of computations. Since the 
1990s [1], researchers have explored integrating RL 
into conventional processors as a reconfigurable 
function unit (RFU) to get 
both a performance gain 
over  conventional fixed-
function ISAs and faster 
time-to-feature than fixed-
function logic, as is 
illustrated in figure 1. 

Different kinds of RFUs 
can either support the 
notion of context or not. Context is a portion of the 
local states of an RFU that can be observed by the 
components outside the RFU. A simple example of 

context is the accumulated sum inside an RFU when 
the RFU provides a vector sum operation. In our 
definition, an RFU is called context-full RFU if it 
supports such an internal context. 

A context-full RFU has at least three advantages: 1) it 
eliminates some data movement overhead by saving 
intermediate results into the RFU context; 2) it 
enables a way of handling more and/or wider 
inputs/outputs than the standard operands of 
instructions; 3) RFU context can serve as a look-up 
table for various computations, for example, as a 
DFA (Deterministic Finite Automaton) state 
transition table. We believe that the advantages of 
having RFU context can justify the cost of the 
incoming additional storage and architectural 
complexities. 

Many contemporary high-performance processors 
support out-of-order execution and speculation. When 
a context-full RFU is integrated into a speculative 
processor, if an RFU instruction has modified the 
RFU context but was mis-speculated and cannot be 
committed in the end, the RFU context must be 
recovered as if the instruction had not been executed. 

Traditional mechanism to handle speculative 
executions of instructions cannot effectively address 
this issue. As the total size of the architecture 
registers in a processor is fixed and is not very large, 
we can build a reorder buffer or a physical register 
file with reasonable size to save the outputs of the 
speculative executions of the instructions. But in a 
context-full RFU, the size of the RFU context varies 
with different computations and the number of 
speculative updates on the RFU context may be large, 
so in the worst case the total storage for the RFU 
context could be unacceptably large for all the 
speculative updates to be saved inside the RFU before 
they are committed. So considering the cost, we do 
not believe it feasible to track each update to the RFU 
context on a per-RFU-instruction basis. 

It is also not feasible either to save the RFU context 
in the conventional register file at the update on the 
RFU context, both due to the inadequate space in the 
register file and due to the communication overhead 

Figure 1: RFU in processor 
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between the RFU and the register file. Though the 
approach of a shadow register [16] partly addresses 
this issue, it cannot be fully deployed for context-full 
RFUs. 

Because of this complexity, previous approaches 
which integrated RFUs into processors either did not 
support context-full RFUs in speculative processors 
[2, 3, 9], or did not employ speculative processors as 
the base processors [4], or did neither of them [1]. 

In this paper, we propose an architecture and 
mechanism for supporting speculative execution of a 
context-full RFU in an in-order issue, out-of-order 
execution processor. It does not require too much 
extra size for the RFU context storage and the 
performance penalty is low in practice. 

2. RELATED WORK 
The most widely used type of RL is its fine-grain 
representative – FPGA. Some publications proposed 
coarser-grain RL, such as MATRIX [5] and 
PipeRench [6], to achieve higher performance in 
some computations. MATRIX was an array of 8-bit 
function units with configurable network. PipeRench 
consisted of many stripes, each of which had 16 8-bit 
processing elements. These RL systems were not 
designed to be integrated into processors. 

In order to leverage advantages of both processors 
and RL, many researchers have tried to integrate RL 
into processors since the 1990s, for example PRISC 
[1], DISC [7], Garp [4], MorphoSys [8], OneChip [9], 
Amalgam [10], Chimaera [2, 3], AMBER [11]. 

PRISC [1] was one of the early attempts of the 
integration. It integrated an RFU into “a mythical 
200MHz MIPS R2000 datapath”. The RFU was 
composed of an array of look-up tables (LUTs) 
evaluating 32-bit binary functions. PRISC claimed 
that on average it could accelerate SPECInt92 by 
22%. It did not provide context support inside the 
RFU nor did it have a speculative processor as its 
main processor. 

Garp [4] integrated an RFU into a simple MIPS II 
processor. The RFU normally composed of 32 rows, 
each of which could support 32-bit operations. Garp 
claimed 2-24x speedups for some applications over an 
UltraSPARC processor. It supported RFU context but 
did not support speculative execution. 

Chimaera [2, 3] integrated an RFU into an aggressive, 
dynamically-scheduled MIPS superscalar processor. 
The RFU was a reconfigurable array containing 

multiple rows. Each row contained multiple LUT-
based reconfigurable blocks and supported up to 32-
bit bit-level operations. Chimaera resulted in 21% 
performance improvements for MediaBench and 
Honeywell [2], speedup of two or more for some 
general-purpose computations, and a potential 
speedup of 160 for some hand-mapped applications 
(e.g. Game of Life) [3]. Though Chimaera employed 
a speculative processor as its base processor, the 
authors indicated that due to the complexity of 
possible speculative updates on the context and some 
other reasons, they did not support RFU context [3]. 

Cong et al. proposed an approach of using shadow 
registers to selectively copy the execution results of 
an RFU in the write-back stage, which could 
efficiently reduce the communication overhead 
between the processor core and the RFU [16]. 
However, they assumed that the required number of 
shadow registers was usually much smaller than the 
register file, which is not the case for a context-full 
RFU. Another constraint in their approach was that a 
shadow register should remain at its proper value 
(without being overwritten by other instructions) 
during the time when the RFU reads that register and 
the time when it completed. A context-full RFU does 
not have such constraint as the RFU context is inside 
the RFU and cannot be written by other instructions. 

3. DESCRIPTION OF THE PROPOSED 
ARCHITECTURE & MECHANISM 
In a processor with a context-full RFU, any RFU 
instruction could read/write the context, so RFU 
instructions themselves should be executed in 
program order. In the proposed architecture and 
mechanism, snapshots of the execution context are 
saved periodically inside the RFU and speculatively 
executed RFU instructions are logged. When an 
incorrect speculation is detected, the execution 
context must be rolled back with a correct snapshot 
and then the logged instructions (except the mis-
speculated instruction) can be replayed to update the 
execution context to a state immediately before the 
execution of the incorrectly executed instruction.   

An elaborate design is required to make this idea 
correct and efficient. In the implementation, we 
propose three kinds of context storage to support this 
idea.  

The Execution Context is the architecturally-visible 
context, which is updated by an RFU instruction. We 
built components to periodically save snapshots of it 
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for potential roll-backs. One important snapshot is 
Committed Context, where all the RFU instructions 
that contributed to this context have already been 
committed.  With this snapshot, we can restore the 
Execution Context to an older but error-free state 
when necessary. The Committed Context has a 
special indicator called Committed Context Owner, 
which indicates the most recently committed RFU 
instruction that has updated the Committed Context.  

In order to replay the necessary RFU instructions 
during the roll-back process, we build a structure 
called Inst Queue. In an in-order issue processor, an 
RFU instruction is inserted into the Inst Queue in-
order when it arrives at the RFU; and it is deleted 
when it is no longer younger than the Committed 
Context Owner or when it is directly or indirectly 
killed. During the roll-back process, the instructions 
in the Inst Queue will be replayed, and their outputs 
are ignored except the updates to the RFU context. 
And in the non-RFU roll-back process, the register 
file outside the RFU can be restored as usual and the 
non-RFU instructions can be replayed outside the 
RFU. 

A first thought for generating the data of the 
Committed Context might be copying the value of the 
Execution Context when an RFU instruction X is 
committed. But this may not be correct, because there 
is some latency between the completion of X’s 
execution and its commitment, the RFU instructions 
younger than X may have updated the Execution 
Context before X is committed; then when X is 
committed, the Execution Context may no longer 
reflect the effect made by X and might be incorrectly 
updated by some incorrectly speculatively executed 
RFU instruction younger than X. 

The solution is to keep another snapshot of the 
Execution Context. This snapshot may reflect the 
effect of a speculatively executed RFU instruction. 
We call this snapshot Speculation Context.  

The Speculation Context is updated periodically 
(after a predefined number K RFU instructions are 
committed; the exact value of K depends on the 
implementation optimization) with the value of the 
Execution Context. It also has a special indicator 
called Speculation Context Owner, which indicates 
the most recent RFU instruction having executed that 
may reflect the update of the Speculation Context. 

When the Speculation Context Owner is committed, 
the Committed Context can be updated with the value 

of the Speculation Context. As the Speculation 
Context Owner is the youngest instruction that may 
update the Speculation Context and it has already 
been committed at that time, the Committed Context 
is guaranteed to have a version of context where all 
the RFU instructions having updated it have 
committed. 

When the roll-back process is triggered by an 
incorrect speculation, the Execution Context will be 
recovered with the value of the Committed Context, 
and then the logged instructions in the Inst Queue can 
be replayed to update the Execution Context to a state 
immediately before the execution of the incorrectly 
speculatively executed RFU instruction. 

Figure 2 shows a 
high-level diagram 
on the relationship 
among those three 
RFU context 
components. 

Note that at any 
time, the 
architecturally-
visible context is always the Execution Context. The 
Speculation Context and the Committed Context take 
effect only in the roll-back process. 

Figure 3 shows all the architecture components for 
supporting speculative execution of RFU instructions. 
An RFU instruction contains a tag, operation (op), 
source operands values (src) and return destination 
(dest) fields. An RFU COMMIT message is sent by 
the ReOrder Buffer to the RFU when an RFU 
instruction is committed. It contains the tag of an 
RFU instruction. The Counter is inside the RFU and 
is increased by one every time the RFU receives an 
RFUCOMMIT message. When it reaches a 
predefined number K, the Speculation Context is 
updated with the value of the Execution Context, and 
then it will be reset to 0. It will also be reset to 0 
when an RFU instruction is killed. 

There might be three kinds of penalties introduced by 
the proposed architecture & mechanism. The first one 
is the storage penalty. It is mainly from the cost for 
the Speculation Context and the Committed Context, 
so the total additional space requirement is two times 
that of the Execution Context, which is within a 
reasonable scope. 

The second kind of penalty is the performance 
penalty by the additional logic for handling the 

Figure 2: High-level diagram on the 
relationship among the three contexts. 
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copying of the contexts. Since this logic is within the 
RFU and is invisible to the components outside the 
RFU, we can hide the latency of this logic, so this 
kind of penalty should be negligible. 

The third kind of penalty is the performance penalty 
which comes from the roll-back process. Since in 
contemporary speculative processors the speculation 
error rate is very low, for example normally less than 
5% in branch predictions [12], this kind of penalty is 
effectively low in practice. 

4. EVALUATION 
In order to get a credible result in the performance 
evaluation, we employed a cycle-accurate simulation 
methodology to evaluate workloads on the proposed 
architecture and mechanism. 

ASIM is a cycle-accurate system-level simulation 
framework/system [13]. In ASIM, we used a 
processor core module reflecting the most recent Intel 
processor Core i7 with a slight difference. The 
frequency was 2.4 GHz. The system memory size was 
16GB, and the operating system was Linux 2.6.5. For 
simulating the RFU, we wrote an RFU sub-module 
into the processor core module. The RFU was located 
between the reservation station and the reorder buffer 
and it acted like a normal function unit. It worked in a 
fixed frequency which would divide exactly into the 
frequency of the processor. 

The performance was measured in CPU cycles. New 
RFU instructions were added and we normalized the 
RFU cycles to the CPU cycles considering the 
difference between the CPU frequency and the RFU 
frequency. We modified the C source code for the 
workloads into C codes with embedded assembly 
language codes using RFU instructions. In the 
simulation, an RFU instruction was dispatched into 

the RFU for execution. In the experiment, the value of 
K was set to 5.  

We had three sets of data in the evaluation: 1) the 
data for the workloads on an architecture without 
handling any incorrect RFU context update by the 
speculative execution of the RFU instructions 
(labeled as SPEC_INCO). In this case, the workloads 
might have incorrect result; 2) the data for the 
workloads on architecture without the speculative 
execution of the RFU instructions (labeled as 
NONE_SPEC). In this case, the workloads would 
have correct result but would run slower; 3) the data 
for the workloads on the proposed architecture and 
mechanism (labeled as PROPOSED). In this case, the 
workloads would generate correct results and we will 
see that the performance penalty is negligible, 
especially when the speculation error rate is low. 

The first workload was a toy program. It conditionally 
incremented the RFU context by 1 using an RFU 
instruction. In the evaluation, we adjusted the 
speculation error rate to be: 0%, 1%, 3%, 5%, 7% and 
10%. The iteration count was set to 10,000. 

In table 1, we show the RFU roll-back times in 
PROPOSED, the count of replayed RFU instructions 
in PROPOSED, the execution cycle numbers on 
different architectures, and the speedup of 
PROPOSED over NONE_SPEC. Note that with 
different speculation error rates, the RFU instructions 
were executed different numbers of times. In 
SPEC_INCO the program may execute incorrectly 
with a wrong instruction flow, so the execution cycle 
numbers in PROPOSED were sometimes less than 
those in SPEC_INCO while at other times they were 
greater, and sometimes they happened to be equal. 
From the performance point of view, we can see that 
PROPOSED got significant speedups over 
NONE_SPEC. 
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Figure 3: Architecture components for supporting speculative execution of RFU instructions. 
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Table 1. The evaluation data for the toy program 

Speculation error rate 0% 1% 3% 5% 7% 10% 
RFU roll-back times in PROPOSED 0 106 321 494 683 1038 
Replayed RFU instructions count in PROPOSED 0 204 659 1004 1311 2045 

Execution cycle number 
for the evaluated codes 

NONE_SPEC 1329920 1323378 1311253 1300505 1290137 1270778 
PROPOSED 999918 1002962 1010540 1015220 1022463 1036141 
SPEC_INCO 999918 1002962 1010550 1015220 1022463 1036131 

Speedup of PROPOSED over NONE_SPEC 1.33 1.32 1.30 1.28 1.26 1.23 
 

The second workload in the evaluation was the kernel 
part of a real application: Perl Compatible Regular 
Expression (PCRE), which is a regular expression C 
library [14]. We implemented an RFU version of 
PCRE, in which a part of a pattern (pattern unit) is 
fed into the RFU, and then the RFU performs the 
matching by comparing the pattern against the text. 
This was done by an RFU instruction RFU_pcre. 
Because a pattern is used to match a very long text, 
the RFU context can be employed to store the current 
pattern unit to avoid repeatedly sending it into the 
RFU. An RFU instruction RFU_putcontext is used to 
put various pattern units into RFU context. After the 
execution of one RFU_pcre instance, the RFU might 
either require a new pattern unit or not; the 
executions of RFU_putcontext are determined by the 
results of RFU_pcre. Then in a speculative processor, 
RFU_putcontext can be speculatively executed and 
speculatively update the RFU context with new 
pattern units. 

Table 2 shows the evaluation data for PCRE. The 
data set used was the LLDOS 1.0 - Scenario One in 

dataset 2000 of the DARPA Instruction Detection 
Data Sets [15], with 120MB network data in total. We 
tried to compare all the data against all the 2223 
distinct regular expression patterns that appeared in 
the 9108 regular expression rules in Snort of the 
2008-04-22 version. And there were only 38 patterns 
that were compared against in practice. We could not 
get the SPEC_INCO result for eight patterns as the 
program went nowhere with incorrect speculation for 
these patterns. Because of the space limitation, in 
table 2 we only show the data for three patterns with 
the highest speedups, three patterns with the lowest 
speedups, and the aggregate results for all the 30 
patterns where we could get the SPEC_INCO results. 

There were many patterns to be matched. In some 
cases there were many dependencies between the 
condition instructions and the RFU instructions but in 
some other cases there were not (where the proposed 
mechanism had few chance to show its advantages). 
So we can see that the speedups of PROPOSED in 
different patterns varied. Overall, PROPOSED still 
got satisfying speedups in this complex workload. 

 

Table 2. The evaluation data for PCRE 

Patterns With the highest speedup With the lowest speedup 
Aggregate 

#4 #5 #16 #25 #37 #38 
RFU roll-back times in PROPOSED 80 67 13 1088 0 0 61519 
Replayed RFU instructions count in PROPOSED 145 100 11 544 0 0 102075 

Execution cycle number 
for the evaluated codes 

NONE_SPEC 128513 62458 9632 2221667 840655 840655 102651567 
PROPOSED 115119 56970 8567 2220477 839930 839930 97837327 
SPEC_INCO 115119 56970 8567 2220477 839930 839930 97358394 

Speedup of PROPOSED over NONE_SPEC 1.12 1.10 1.12 1.00 1.00 1.00 1.05 
 

From the evaluation, we can see in all the evaluation 
data the execution cycle number of PROPOSED was 
very close to SPEC_INCO. Since there was no 
performance penalty in SPEC_INCO (though the 
result might be incorrect), we can infer that the 
performance penalty in the proposed architecture & 
mechanism was low in practice.  

5. CONCLUSION 
RL can provide much better performance than 
conventional processors for some workloads and has 
much more flexibility than fix-function logic. 
Recently researchers have interest in integrating RL 
into processors as RFUs. A context-full RFU can 
eliminate some unnecessary data movement 
overheads and has some other benefits. However, due 



6 

 

to the design complexity, previous approaches did not 
support context-full RFUs in speculative processors. 

We proposed an architecture and mechanism for 
supporting speculative execution of a context-full 
RFU. With an elaborate design, it does not require too 
much extra size for the RFU context storage. The 
evaluation data showed that the performance penalty 
would be low in practice. 
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