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ABSTRACT context is the accumulated sum inside an RFU when
Recently researchers have shown interest inthe RFU provides a vector sum operation. In our
integrating Reconfigurable logic into conventional definition, an RFU is calleadtontext-full RFUIf it
processors as a Reconfigurable Function URKEL). supports such an internal context.

A contextfull RFU supports holding intermediate A context-full RFU has at least three advantage#: 1

results inside itself, which eliminates some dat?" eliminates some data movement overhead by saving
movement overheads and has some other benefits;

MoSt CONteMDOrary Drocessors support out-of-ordermtermediate results into the RFU context; 2) it
execution andps egufation When apgontext-full RFU enables a way of handling more andfor wider
is integrated ir?to a s éculative rocessor, if ainPUtSIOUtDUtS than the standard operands = of
speculaqtive RFU instruc![[i)on has mopdified thé RFU instructions; 3) RFU context can serve as a look-up
context but cannot be committed in the end, the RFUtable for various computations, for example, as a

context must be recovered. Traditional mechanisms t DFA  (Deterministic ~Finite Automaton) state
X " ) . transition table. We believe that the advantages of
handle speculative execution of instructions cannot

) o . having RFU context can justify the cost of the
effectively address this issue. Because of thegdesi incoming additional storage and architectural

complexity, previous proposals did not support ”
context-full RFUs in speculative processors. Irsthi complexities.
paper, we propose an architecture & mechanism forMany contemporary high-performance processors
supporting speculative execution of a context-full support out-of-order execution and speculation. kiVhe
RFU in in-order issue, out-of-order execution a context-full RFU is integrated into a speculative
processors. It does not require too much extraespacprocessor, if an RFU instruction has modified the
for the RFU context storage and the performanceRFU context but was mis-speculated and cannot be
penalty shown to be low in practice. committed in the end, the RFU context must be
recovered as if the instruction had not been execut

1. INTRODUCTION

Reconfigurable Logic KL) has the capability of
providing custom operations and has more flexipilit
than fix-function logic. Then compared to
conventional fixed function ISAs, an ISA augmented
with RL has the potential to provide much better
performance for a variety of computations. Singe th
1990s [1], researchers have explored integrating RL
into conventional processors as a reconfigurable

Traditional mechanism to handle speculative
executions of instructions cannot effectively addre
this issue. As the total size of the architecture
registers in a processor is fixed and is not vargd,
we can build a reorder buffer or a physical registe
file with reasonable size to save the outputs ef th
speculative executions of the instructions. Butain
context-full RFU, the size of the RFU context varie
with different computations and the number of

Luor}[(r:]n(;n ugr']foﬁﬁé?qég gee:in S iG> | speculative updates on the RFU context may be large
over copnventional fixged— J/ so in the worst case the total storage for the RFU

time-to-feature than fixed- speculative updates to be saved inside the RFUdefo
function logic, as is \ they are co'mmltt(_ad. So considering the cost, we do
illustrated in fig(Jre 1 N\ not believe it feasible t_o track_each update toRR&J

' N context on a per-RFU-instruction basis.
Different kinds of RFUS Figure1: RFU in processor

. | ! context could be unacceptably large for all the
function ISAs and faster 3 = prably ‘arg

can  either subport the It is also not feasible either to save the RFU ernt
notion of contex?gr not. Context is a portion of the in the conventional register file at the updatetoa
: P RFU context, both due to the inadequate spaceein th

local states of an RFU that can b? observed by theregister file and due to the communication overhead
components outside the RFU. A simple example of
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between the RFU and the register file. Though themultiple rows. Each row contained multiple LUT-
approach of a shadow register [16] partly addressedased reconfigurable blocks and supported up to 32-
this issue, it cannot be fully deployed for contfst bit bit-level operations. Chimaera resulted in 21%
RFUs. performance improvements for MediaBench and
Honeywell [2], speedup of two or more for some
general-purpose computations, and a potential
speedup of 160 for some hand-mapped applications
(e.g. Game of Life) [3]. Though Chimaera employed

a speculative processor as its base processor, the
authors indicated that due to the complexity of
In this paper, we propose an architecture andpossible speculative updates on the context ane som
mechanism for supporting speculative execution of aother reasons, they did not support RFU context [3]
context-full RFU in an in-order issue, out-of-order
execution processor. It does not require too much
extra size for the RFU context storage and the
performance penalty is low in practice.

Because of this complexity, previous approaches
which integrated RFUs into processors either did no
support context-full RFUs in speculative processors
[2, 3, 9], or did not employ speculative processass
the base processors [4], or did neither of them [1]

Cong et al. proposed an approach of using shadow
registers to selectively copy the execution resofts

an RFU in the write-back stage, which could
efficiently reduce the communication overhead
2 RELATED WORK between the processor core and the RFU [16].
However, they assumed that the required number of
hadow registers was usually much smaller than the
register file, which is not the case for a contiekt-
RFU. Another constraint in their approach was that
shadow register should remain at its proper value
(without being overwritten by other instructions)

The most widely used type of RL is its fine-grain
representative — FPGA. Some publications propose
coarser-grain  RL, such as MATRIX [5] and

PipeRench [6], to achieve higher performance in
some computations. MATRIX was an array of 8-bit

function units with configurable network. PipeRench . i .

consisted of many stripes, each of which had 1@ 8-b durlr!g the tlme. when the RFU reads that register an
: he time when it completed. A context-full RFU does

processing elements. These RL systems were nOEnot have such constraint as the RFU context islénsi

designed to be integrated into processors. the RFU and cannot be written by other instructions

In order to leverage advantages of both processors

and RL, many researchers have tried to integrate RL3. DESCRIPTION OF THE PROPOSED

into processors since the 1990s, for example PRISCARCHITECTURE & MECHANISM

[1], DISC [7], Garp [4], MorphoSys [8], OneChip [9] In a processor with a context-full RFU, any RFU

Amalgam [10], Chimaera [2, 3], AMBER [11]. instruction could read/write the context, so RFU

PRISC [1] was one of the early attempts of the instructions themselves should be executed in
integration. It integrated an RFU into “a mythical Program order. In the proposed architecture and

200MHz MIPS R2000 datapath”. The RFU was mechanism, snapshots of the execution context are
composed of an array of look-up tables (LUTS) saved periodically inside the RFU and speculatively
evaluating 32-bit binary functions. PRISC claimed €xeécuted RFU instructions are logged. When an

that on average it could accelerate SPECInt92 byincorrect speculation is detected, the execution
22%. It did not provide context support inside the context must be rolled back with a correct snapshot

RFU nor did it have a speculative processor as its2Nd then the logged instructions (except the mis-
main processor. speculated instruction) can be replayed to updae t
execution context to a state immediately before the

Garp [4] integrated an RFU into a simple MIPS Il execution of the incorrectly executed instruction.
processor. The RFU normally composed of 32 rows,

each of which could support 32-bit operations. GarpAn €laborate design is required to make this idea
claimed 2-24x speedups for some applications aver a COITect and efficient. In the implementation, we
UltraSPARC processor. It supported RFU context butPropose three kinds of context storage to supjpest t
did not support speculative execution. Iaea.

Chimaera [2, 3] integrated an RFU into an aggressiv | ne Execution Contexis the architecturally-visible
dynamically-scheduled MIPS superscalar processorONtext, which is updated by an RFU instruction. We
The RFU was a reconfigurable array containing Puilt components to periodically save snapshoti of
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for potential roll-backs. One important snapshot is of the Speculation Context. As the Speculation

Committed Contextwhere all the RFU instructions Context Owner is the youngest instruction that may
that contributed to this context have already beenupdate the Speculation Context and it has already
committed. With this snapshot, we can restore thebeen committed at that time, the Committed Context
Execution Context to an older but error-free stateis guaranteed to have a version of context whdre al
when necessary. The Committed Context has athe RFU instructions having updated it have

special indicator calledCommitted Context Owner committed.

which indicates the most recently committed RFU

instruction that has updated the Committed Context. When the roll-back  process is triggered by an

incorrect speculation, the Execution Context wil b
In order to replay the necessary RFU instructionsrecovered with the value of the Committed Context,
during the roll-back process, we build a structure and then the logged instructions in the Inst Queare
called Inst QueueIn an in-order issue processor, an be replayed to update the Execution Context tat st
RFU instruction is inserted into the Inst Queue in- immediately before the execution of the incorrectly
order when it arrives at the RFU; and it is deleted speculatively executed RFU instruction.

when it is no longer younger than the Committed
Context Owner or when it is directly or indirectly
killed. During the roll-back process, the instroot

in th_e Inst Queue will be replayed, and their otgpu among those three Contos Sopy after e text
are ignored except the updates to the RFU contextRFU context Owner is commitied
And in the non-RFU roll-back process, the register components Copy when & ot
file outside the RFU can be restored as usual aed t P ' Do Sommitad Lt Owner
non-RFU instructions can be replayed outside theNote that at any Figure2: High-level diagram on the
RFU. time, the reationship amona thethree contexts.
architecturally-

visible context is always the Execution ContexteTh
Speculation Context and the Committed Context take
effect only in the roll-back process.

Figure 2 ShOWS aCopy when  roll-back ;
C d
high-level diagram "**** "<t Context

. . Owner
on the relatlonShlp Execution ﬁCopyaﬂerthe

A first thought for generating the data of the
Committed Context might be copying the value of the
Execution Context when an RFU instructioh is
committed. But this may not be correct, becauseethe
is some latency between the completion of X's Figure 3 shows all the architecture components for
execution and its commitment, the RFU instructions supporting speculative execution of RFU instrucdion
younger than X may have updated the ExecutionAn RFU instruction contains a tag, operation (op),
Context before X is committed; then when X is source operands values (src) and return destination
committed, the Execution Context may no longer (dest) fields. An RFU COMMIT message is sent by
reflect the effect made by X and might be incofsect the ReOrder Buffer to the RFU when an RFU
updated by some incorrectly speculatively executedinstruction is committed. It contains the tag of an
RFU instruction younger than X. RFU instruction. The Counter is inside the RFU and
is increased by one every time the RFU receives an
RFUCOMMIT message. When it reaches a
predefined numbelK, the Speculation Context is
updated with the value of the Execution Context] an
then it will be reset to 0. It will also be reset @

The Speculation Context is updated periodically when an RFU instruction is killed.

(after a predefined numbd¢ RFU instructions are
committed; the exact value of K depends on the
implementation optimization) with the value of the
Execution Context. It also has a special indicator
called Speculation Context Ownewhich indicates
the most recent RFU instruction having executed tha
may reflect the update of the Speculation Context.

The solution is to keep another snapshot of the
Execution Context. This snhapshot may reflect the
effect of a speculatively executed RFU instruction.
We call this snapsh@peculation Context

There might be three kinds of penalties introduogd
the proposed architecture & mechanism. The first on
is the storage penalty. It is mainly from the cfust
the Speculation Context and the Committed Context,
so the total additional space requirement is twes
that of the Execution Context, which is within a
reasonable scope.

When the Speculation Context Owner is commltted,The second kind of penalty is the performance

the Committed Context can be updated with the vaIuepenalty by the additional logic for handiing the
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Figure 3: Architecture componentsfor supporting speculative execution of RFU instructions.

copying of the contexts. Since this logic is withire the RFU for execution. In the experiment, the valfie
RFU and is invisible to the components outside theK was set to 5.
RFU, we can hide the latency of this logic, so this

kind of penalty should be negligible. We had three sets of data in the evaluation: 1) the

data for the workloads on an architecture without
The third kind of penalty is the performance pgnalt handling any incorrect RFU context update by the
which comes from the roll-back process. Since in speculative execution of the RFU instructions
contemporary speculative processors the speculatiorflabeled asSPEC_INCQ. In this case, the workloads

error rate is very low, for example normally leban might have incorrect result; 2) the data for the
5% in branch predictions [12], this kind of penaky = workloads on architecture without the speculative

effectively low in practice. execution of the RFU instructions (labeled as
NONE_SPEQE In this case, the workloads would
4, EVALUATION have correct result but would run slower; 3) théada

In order to get a credible result in the perforneanc for the workloads on the proposed architecture and
evaluation, we employed a cycle-accurate simulationmechanism (labeled #ROPOSED In this case, the

methodology to evaluate workloads on the proposedworkloads would generate correct results and we wil
architecture and mechanism. see that the performance penalty is negligible,

ASIM is a cycle-accurate system-level simulation especially when the speculation error rate is low.

framework/system [13]. In ASIM, we used a The first workload was a toy program. It condititya
processor core module reflecting the most recdnt In  incremented the RFU context by 1 using an RFU
processor Core i7 with a slight difference. The instruction. In the evaluation, we adjusted the
frequency was 2.4 GHz. The system memory size waspeculation error rate to be: 0%, 1%, 3%, 5%, 7% an
16GB, and the operating system was Linux 2.6.5. Forl0%. The iteration count was set to 10,000.
simulating the RFU, we wrote an RFU sub-module
into the processor core module. The RFU was locate
between the reservation station and the reordéebuf
and it acted like a normal function unit. It workieda
fixed frequency which would divide exactly into the
frequency of the processor.

n table 1, we show the RFU roll-back times in
ROPOSED, the count of replayed RFU instructions
in PROPOSED, the execution cycle numbers on
different architectures, and the speedup of
PROPOSED over NONE_SPEC. Note that with
different speculation error rates, the RFU insinr
The performance was measured in CPU cycles. Newwere executed different numbers of times. In
RFU instructions were added and we normalized theSPEC_INCO the program may execute incorrectly
RFU cycles to the CPU cycles considering the with a wrong instruction flow, so the execution leyc
difference between the CPU frequency and the RFUnumbers in PROPOSED were sometimes less than
frequency. We modified the C source code for thethose in SPEC_INCO while at other times they were
workloads into C codes with embedded assemblygreater, and sometimes they happened to be equal.
language codes using RFU instructions. In the From the performance point of view, we can see that
simulation, an RFU instruction was dispatched into PROPOSED got significant speedups over
NONE_SPEC.



Table 1. The evaluation data for the toy program

Speculation error rate 0% 1% 3% 5% 7% 10%

RFU roll-back timesin PROPOSED 0 10€ 321 494 682 103¢

Replayed RFU instructions count in PROPOSED 0 204 659 1004 1311 2045

Execution cyde number NONE_SPEC 132992 132337:, 131125: 130050! 129013 | 127077

for the evaluated codes PROPOSED 999918 1002962 1010540 1015220 1022463 1036141
SPEC_INCO 99991¢ 1002962 101055( 101522 102246: | 103613:

Speedup of PROPOSED over NONE_SPEC 1.33 1.32 1.30 1.28 1.26 1.23

The second workload in the evaluation was the kerne dataset 2000 of the DARPA Instruction Detection
part of a real application: Perl Compatible Regular Data Sets [15], with 120MB network data in totale W
Expression PCRB, which is a regular expression C tried to compare all the data against all the 2223
library [14]. We implemented an RFU version of distinct regular expression patterns that appeared
PCRE, in which a part of a pattern (pattern urdt) i the 9108 regular expression rules in Snort of the
fed into the RFU, and then the RFU performs the 2008-04-22 version. And there were only 38 patterns
matching by comparing the pattern against the text.that were compared against in practice. We coutd no
This was done by an RFU instructid®FU_pcre get the SPEC_INCO result for eight patterns as the
Because a pattern is used to match a very long textprogram went nowhere with incorrect speculation for
the RFU context can be employed to store the currenthese patterns. Because of the space limitation, in
pattern unit to avoid repeatedly sending it inte th table 2 we only show the data for three patterrth wi
RFU. An RFU instructiorRFU_putcontexis used to  the highest speedups, three patterns with the towes
put various pattern units into RFU context. Afteket speedups, and the aggregate results for all the 30
execution of one RFU_pcre instance, the RFU mightpatterns where we could get the SPEC_INCO results.

either require a new pattern unit or not, the There were many patterns to be matched. In some

(:exseclltjst'g?;ELRFgrgpl_:_tﬁsgtixgzreegeltaetr.memer% bé;?)ecases there were many dependencies between the
u _pcre. : peculative proge condition instructions and the RFU instructions inut

RFU_putcontext can be speculatively executed and
— . some other cases there were not (where the proposed
speculatively update the RFU context with new ( brop

) mechanism had few chance to show its advantages).
pattern units. So we can see that the speedups of PROPOSED in
Table 2 shows the evaluation data for PCRE. Thedifferent patterns varied. Overall, PROPOSED still
data set used was the LLDOS 1.0 - Scenario One irgot satisfying speedups in this complex workload.

Table 2. The evaluation data for PCRE

With the highest speedu With the lowest speedu

Patterns #4 : 45 > 516 425 #?7 : 43g | Agoregate
RFU roll-back timesin PROPOSED 80 67 13 1088 0 i 61510
Replayed RFU instructions count in PROPOSED 14F 10C 11 544 0 0 10207¢

. NONE_SPEC 128513 62458 9632 2221667 840665 840655 102651567
E)’;etc#;g‘ a“fyat‘;f C(r;g;nsber PROPOSED 11511¢| 5697C | 8567 | 222047 | 83993(| 83993(| 9783732

SPEC INCO 115119] 56970 8567 2220477 839930 839930 97358394

Speedup of PROPOSED over NONE_SPEC 1.12 1.10 112 1.00 1.00 1.00 1.05

From the evaluation, we can see in all the evalnati
data the execution cycle number of PROPOSED Wasg' CONCLUS.ION
L can provide much better performance than

very close to SPEC_INCO. Since there was noconventional rocessors for some workloads and has
performance penalty in SPEC_INCO (though the process . : .
much more flexibility than fix-function logic.

result might be incorrect), we can infer that the Recently researchers have interest in integratibg R
performance penalty in the proposed architecture &. y 9 9
mechanism was low in practice into processors as RFUs. A context-full RFU can

' eliminate some unnecessary data movement

overheads and has some other benefits. However, due



to the design complexity, previous approaches did n Symposium on FPGAs for Custom Computing

support context-full RFUs in speculative processors Machines April, 1995, pp. 99-107.

We proposed an architecture and mechanism forf8] G.Lu, H. Singh, M-h. Lee, N. Bagherzadeh, and
supporting speculative execution of a context-full  F. Kurdahi. “The MorphoSys Parallel

RFU. With an elaborate design, it does not regigice Reconfigurable System”. iRroc. the 5th

much extra size for the RFU context storage. The  International Euro-Par Conference on Parallel
evaluation data showed that the performance penalty =~ ProcessingAug.-Sept. 1999, pp. 727-734.

would be low in practice. [9] J.E. Carrillo and P. Chow. “The effect of
reconfigurable units in superscalar processors”. in
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