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Abstract—It is clear that Exascale computing will require
alternative computing substrates such as FPGAs as an
adjunct to traditional processors to stay within power
consumption constraints. Executing applications, or parts
of applications, using specialized, fine-grained computing
structures configured into FPGAs can achieve a large
increase in both performance and energy-efficiency for
many important applications. Unfortunately, the process
of designing and implementing these specialized hardware
structures is tedious and requires expertise in hardware
design. The lack of programming models and associated
compilers for configurable computing has impeded progress
in the use of FPGAs in large-scale computing platforms.
This paper describes a parallel programming model and
compilation strategy that we are exploring as a way to
describe large-scale applications using familiar concepts
and abstractions, but which can be implemented using
large-scale, fine-grained parallel computing structures. We
first outline this model and show how it can be used to
develop a scalable parallel solution for the genomic short-
read reassembly problem.'

INTRODUCTION

Our goal is to enable programmers to write parallel ap-
plications for large-scale computing systems that include
a substantial amount of computing power in the form of
FPGA accelerators. What we have in mind as an eventual
target are platforms with 10’s to 100’s of processors and
100’s to 1000’s of FPGAs. Our approach is to adopt
and adapt a set of techniques and concepts that have
been developed for programming parallel and distributed
computers to solving the problem of implementing large
scale algorithms using hardware-accelerated computing
platforms. This includes providing a computation model
that enables algorithms to be described at a relatively
high level of abstraction and then mapped across a large
number of computation nodes that include processors,
FPGAs, and possibly other accelerators like GPUs. This
will allow applications to be partitioned and mapped to
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a combination of software and hardware resources using
a single, consistent programming model.

There have been many efforts to compile high-level
languages like C to hardware and these are now becom-
ing widely available. By contrast, our work is focused
more on the system level; in fact we implicitly assume
the existence of “module compilers” that efficiently map
small C programs to hardware. Our model is similar in
spirit to several other models that address the system
level, particularly TDM-MPI[1] and IBM’s Lime[2],
but differs in the use of higher-level abstractions for
describing parallelism.

PROGRAMMING MODEL

Our model is based on an object model: A system is
comprised of objects, each containing data and methods
that implement the functionality of the object. As will be
seen, these hardware objects are different from objects
used in object-oriented programming. However, we have
chosen to call them objects instead of, for example,
components, to highlight that they are more similar to
software objects than they are to hardware components.
Since our goal is to provide a programming model for
describing applications that are compiled into hardware,
this paper focuses on the model as it relates to hardware.
However, it should be clear that compiling programs
using this model to software is fairly straightforward.
Thus a system can be built using a combination of
hardware and software, and functionality can be moved
between hardware and software by specifying whether
an object is implemented in software or hardware.

An object comprises a set of methods that implement
the functionality of the object, along with the data owned
by the object, which may be in registers or memory
arrays. In hardware objects, methods are implemented
as hardware threads that run continuously. Methods wait
to be called and then execute some function using the
parameters passed with the method call. Upon comple-
tion, the method then waits for another method call.



Although methods can be thought of as executing one
call at a time, method execution may be pipelined if
data dependencies allow it so that several calls are active
concurrently.

Methods interact by calling the methods of other
objects. Method calls are by default asynchronous: there
is no return value, and the caller continues execution
immediately after the call in style similar to active
messages[3]. Synchronous calls, with optional return
values, are also supported when synchronization is re-
quired. An object can thus be viewed as a component
that contains multiple concurrent threads that interact
synchronously with each other, and share the data owned
by the object. Variables can be declared shared and
protected using arbiters, or methods can be declared to
be exclusive to avoid data races within an object.

All hardware objects in a system are statically allo-
cated, meaning they are created and connected together
at compile time. Object constructors are executed at
compile-time to construct the system as a hierarchical set
of objects that are compiled into hardware components.
When the system is started, all the object method threads
are activated and all main methods are called: these may
simply perform some initialization, or they may also
begin the concurrent execution of the application.

Method calls can be viewed abstractly as remote pro-
cedure calls[4], [5] that are delivered automatically to the
receiving object. The hardware compiler can implement
this communication more or less efficiently depending
on the location of the caller and callee objects. If the
callee is known at compile time and is “close” to the
caller, then a simple direct-wired connection suffices.
More generally, a protocol like MPI can be used to
transfer method calls to the destination. However, in
most systems the network can be partitioned into smaller
networks based on the static call graph.

Thus far our proposed model is rather modest and
while it allows the programmer to partition the appli-
cation into concurrent objects, it does not address the
problem of large-scale parallel implementations. This is
done in our model using “dynamic” and “distributed”
objects.

Dynamic Objects

Dynamic objects provide the illusion of dynamically
allocated hardware objects, which provide a convenient
mechanism for managing a large number of parallel
objects. Dynamic objects are implemented as a pool of
statically instantiated hardware objects that are allocated
and deallocated automatically by a dynamic object man-
ager.

Dynamic objects are differentiated using an object
ID, which must be a parameter to each of the object’s
methods. All method calls to a dynamic object are
delivered to the dynamic object manager, which forwards
it to the right object. The first time that an object method
is called with a new object ID, an object is automatically
allocated by the manager, and its initialization code, if
any, is executed. Thereafter all method calls that map to
the same ID are delivered by the object manager to this
object. When the object has completed, it deallocates
itself by calling the deallocate method of the object
manager. We have found that reference counting works
well for automatic object deallocation.

Distributed Objects

In most cases, an application can be described using
a relatively small number of concurrent objects. Gen-
erating a parallel implementation involves partitioning
the data and computation and distributing these across
a large number concurrent objects. We borrow the idea
of “distributions” from parallel programming languages
like ZPL[6], Chapel[7] and X10[8] to describe how
objects in our model are duplicated and distributed
to achieve large parallel implementations. Distributions
allow the partitioning and parallelization of an imple-
mentation across a large number of nodes to be described
concisely and implemented automatically.

Objects are often distributed in conjunction with the
partitioning of a memory array. A distribution map
function is used to describe how the array is partitioned
across multiple “locales” by mapping the array indices
to locales. A locale can be a specific FPGA, or perhaps
even a part of an FPGA. A distribution causes the
original object to be duplicated on each locale and the
memory to be partitioned across the locales. Calls to
methods of the object that include the distribution param-
eters (array indices) are automatically sent to the locale
with the corresponding memory partition, while calls to
methods without the distribution parameters are sent to
all the objects using a broadcast call. Array accesses
are automatically checked and remapped to access the
local memory partition. Although objects are typically
distributed by partitioning memory as described, any
object can be duplicated by providing a distribution
parameter and a distribution map function.

The programmer describes a parallel implementation
simply by defining the distribution map functions and
the compiler then automatically partitions the memory,
duplicates the objects, turns method calls into point-to-
point wires, bus transactions or network packets that
route each call to the appropriate object. A parallel



implementation can then be tuned by redefining the
distributions and recompiling.

To achieve even greater parallelism, memory objects
can be replicated. For example, in a very large system,
access to memory that is widely distributed may cause
the network to be a bottleneck. This can be avoided
by replicating the memory in addition to distributing
it. Method calls are then routed to the nearest replica,
reducing the network traffic.

In highly concurrent systems, almost all objects are
distributed. Designing a distributed parallel system re-
quires understanding the implications of a particular
distribution on memory and communication bandwidth.
Object distributions should be “aligned”, that is, dis-
tributed so that most communication between the dis-
tributed objects is local, ensuring that the only non-local
communication used is that which is essential to the
computation. With our model, the programmer can focus
on describing the functionality of a system in terms of
individual object classes separate from describing how
those objects are partitioned and duplicated to create
a parallel system. The system can be remapped very
quickly using a different distribution since the resulting
changes are automatically generated along with all the
communication, including the allocation of method call
invocation to local wires or the general network. In
the next section, we present an example of using this
model to implement a parallel solution to the short read
reassembly problem from genomics.

EXAMPLE: GENOME REASSEMBLY

Next generation sequencing technologies have ap-
peared in recent years that are completely changing
the way genome sequencing is done. New platforms
like the Solexa/Illumina and SOLiD can sequence one
billion base pairs in the matter of days. However, the
computational cost of accurately re-assembling the data
produced by these new sequencing machines into a
complete genome is high and threatens to overwhelm the
cost of generating the data[9]. Providing a low-cost, low-
power, high-performance solution to the re-sequencing
problem has the potential to make the sequencing of
individual genomes routine[10].

To simplify somewhat, a DNA sample of the target
genome is prepared by slicing several copies of the
genome at random into many small subsequences which
are 30-70 base-pairs (ACTG) in length. Next generation
sequencing machines then “read” the base-pair string for
each of these subsequences, called “reads”. These new
sequencing machines can perform these reads in parallel
to generate hundreds of millions of reads in a matter
of days. This is done on several copies of the DNA

sequence resulting in many overlapping reads, which
guarantees coverage of the entire reference sequence and
allows a consensus to be achieved in the presence of
errors in the reading process.

Genome mapping is done using a reference genome
as a guide. The location of each read in the reference
genome is first determined, called “alignment,” and then
all the aligned reads are “spliced” together to gener-
ate the target genome. This works since genomes are
extremely similar, differing in perhaps 1 in 1000 base-
pairs. While many reads will match exactly to a location
in the reference genome, many do not, either because
there was a read error or a difference between the
reference and target genome at that location We next
describe a parallel hardware implementation of a short
read alignment algorithm using our programming model.

Short Read Alignment Algorithm

Our alignment algorithm finds the best positioning
for each read, and is based on the algorithm used by
BFAST[11]. The alignment is found in two steps. In
the first step, a set of “candidate alignment locations”
(CALs) is collected for the read using an index of
the reference genome. In the second step, the read
is compared to the genome at each of the candidate
locations and the location that has the best match to the
read is reported. It is important both when finding the set
of CALs, and when evaluating the match for each CAL,
that the algorithm handle multiple mismatches caused by
single nucleotide polymorphisms (SNPs) and read errors,
as well as insertions and deletions (indels). Although
these occur infrequently, it is these cases that are the
most biologically interesting and thus most important to
identify.

The first step uses an index of the reference genome,
called the Reference Index Table (RIT), which can be
constructed offline. This index is a hash table that maps
all subsequences of the genome of length N to the set of
locations where that sequence occurs[12]. N is typically
chosen to be between 18 and 22 base pairs so that
statistically most subsequences occur just once in the
genome. To find a candidate location for a read, we take
a subsequence of length N in the read, called a seed,
and look it up in the index. If this subsequence of the
read has no mismatches or indels, then this will return
the locations in the genome where that part of the read
occurs. The set of CALSs is formed by doing this lookup
for all subsequences of length N in the read. If at least
one of these seeds is free of mismatches and indels then
the set of CALs will contain the location of the actual
alignment.



In the second step, a full Smith-Waterman[13] style
algorithm is used to compare the read to the refer-
ence at each candidate location, with the best location
reported for that read. The Smith-Waterman algorithm
is a dynamic programming algorithm for performing
approximate string-matching which can be mapped very
efficiently to a systolic array implementation in hard-
ware.

A typical short read alignment problem for the human
genome involves aligning 200 million short reads, about
10-20 TB of data, to a genome of 3 billion base pairs.
The size of the index table is about 20GB, and the size
of the reference genome is 1-4 GB depending on the
data representation. Performing an alignment in software
using a computing cluster takes about 6 hours.

Figure 1 shows this algorithm mapped to objects using
our model. The operation of each of the objects is
described below.

a) Reads: The Reads object runs on the Host.
It reads the short reads from bulk storage and calls
Seeds:nextRead() with each short read.

b) Seeds: The nextRead() method takes the short
read, passed as a parameter, extracts all the seeds one
at a time, calling the RIT:nextSeed() method with each
seed. Before it does this, it calls Filter:nextRead() with
the read and the number of seeds to expect. This is
a synchronous call, so the Seeds:nextRead() method
blocks until the Filter object is ready for the next read.
This synchronization is required because Filter must
complete processing of the previous read before we can
proceed with the next read. This reduces the amount of
parallelism that is achieved at this point in the pipeline,
but we assume that this does not affect the overall
performance as the bottleneck is in the Smith-Waterman
step, which occurs later in the process.

c) RIT: The RIT object owns the index table.
When the nextSeed() method is invoked with a seed,
it looks up the seed in the index table, which contains
the list of CALs for that seed. For each seed it calls
Filter:numCALs() with the number of CALs that will be
sent for the seed, and Filter:addCAL() with each of the
CALs.

d) Filter: The purpose of the Filter object is to
collect all the CALs for a short read, and pass along the
unique CALs for comparison by the Smith-Waterman
units. The nextRead() method is called by Seeds with
each new short read. This is a synchronous method call
which waits until the previous read has been completely
processed. It then initializes the Filter object for the
new read, calls SWDispatch:nextRead() with this new
read, and then returns, allowing the Seeds:nextRead()
method to start generating the seeds for the read. This
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Fig. 1. This call graph shows the short read alignment algorithm
mapped into objects in our model. Each block is an object, with the
memory and methods indicated in the block. The arrows indicate the
calls made by each object, with synchronous method calls shown with
a double arrow.

synchronization is required since Filter can only process
a single short read at a time.

Each call to addCAL() inserts a CAL into the hash
table. If the CAL is not already in the hash table, a
call is made to SWDispatch:nextCAL() with the CAL.
In this way, all unique CAL values are forwarded to the
SWhDispatch object. The Filter object knows when the
last addCAL() method call has been received for a read
by counting the number of seeds (numCALs() method
calls) and the number of CALs per seed (total count in
the numCALSs() method calls).

e) SWDispatch: The SWDispatch object organizes
the use of the Smith-Waterman (S-W) dynamic ob-



jects. Each call to nextCAL() causes one call to
SW:nextRead(), passing the short read to the S-W object,
and one call to Reference:nextCAL() which requests the
Reference object to forward the reference string at the
given CAL to the S-W object.

f) Reference: This object contains the reference
genome data. When given a candidate location by the
nextCAL() call, it reads the section of the reference at
that location and calls SW:nextRef() to send it to the
S-W object.

g) SW: The S-W object is a dynamic object, indi-
cated by the multiple boxes in the figure, which means
there are many static instances of the object that are
managed by an object manager. Both the nextRead()
and nextRef() methods use the (read ID,CAL) pair as
the dynamic object ID. Using a dynamic object for
the Smith-Waterman unit allows many comparisons,
which take a relatively long time, to proceed in parallel.
An S-W unit is allocated automatically by the first
method that arrives with a new object ID, and when
the comparison is finished and the score reported via
the SWCollect:SWScore() method, it deallocates itself
by calling the deallocate method of the object manager.
S-W uses a deeply pipelined dynamic programming
algorithm, which means that it can deallocate itself when
it is ready to start performing a new comparison, which
is before it has completed the current comparison. The
new comparison is then overlapped with the previous
comparison.

h) SWCollect: This object collects the scores re-
ported for all the different CALs for a short read. This
is also a dynamic object which is keyed by the readID
parameter. By making this object dynamic, the Smith-
Waterman units can be working on more than one short
read at a time. The SWCollect object keeps track of
the best scores reported, and when all scores have been
reported, it calls Host:SWResult() with the best results
and deallocates itself. SWCollect uses reference counting
for deallocation: numCALs() is called with the number
of scores to expect.

Synchronization

It is worth noting that there are two types of syn-
chronization used in this example. First, there is an
explicit barrier synchronization used in the first part of
the pipeline, where the Seeds object must wait for the
previous read to be completely processed by the Filter
object before it starts processing the next read. This
ensures that the short reads pass through the objects
in order: All method calls associated with one read are
made before method calls for the next read are made.
This of course reduces parallelism. The second type

of synchronization is enabled by dynamic objects and
reference counting. These objects are allocated implicitly
and method calls can be interleaved arbitrarily since
they are automatically directed to the appropriate object.
Reference counting allows objects to automatically deal-
locate themselves when all expected method calls have
been received.

Parallel Implementation

There is already substantial parallelism in the imple-
mentation as described, particularly with the many con-
current, pipelined Smith-Waterman units implemented
using dynamic objects. To increase the performance of
this implementation, we need to consider where the
bottlenecks occur. If we assume that we can always make
the pool of S-W objects larger, then the bottleneck occurs
at the RIT and Filter objects. For each read, Seeds makes
a large number of calls to RIT:nextSeed(), each of which
is a random access into the index table which must be
stored in DRAM. We can increase the performance of
the RIT by partitioning and distributing it across multiple
nodes so that multiple accesses can proceed in parallel.

This now moves the bottleneck to the Filter object,
which now gets multiple simultaneous addCAL() method
calls from the concurrent RIT objects. We can remove
this bottleneck by duplicating the Seeds, Filter and
SWDispatch objects using an “aligned” distribution. In
other words, we duplicate and distribute these objects
so that each Seeds object communicates with one Filter
object, which communicates with one SWDispatch ob-
ject, all of which are handling the same read. Assuming
that reads are processed in order by readID, using the
low-order bits of the readID to do the distribution uses
these objects in round-robin order.

At this point, the Reference object becomes the
bottleneck, as several SWDispatch objects call Refer-
ence:nextCAL() concurrently. This can be solved by par-
titioning and distributing the Reference memory. Assum-
ing that the CALs are spread out more-or-less uniformly,
this enables multiple accesses to proceed concurrently. In
the limit, we can reach the point where the Reads object
becomes the bottleneck and we can process short reads
as fast as we can send them to the FPGA accelerator.

Of course, we have described this implementation
using an idealized view of the hardware platform. In
practice, there will be only a small number of large
memories connected to an FPGA, and thus partitioning
the RIT and the Reference into many memories for
concurrent access can only be done by spreading the
implementation across a large number of FPGA nodes.
One option is to duplicate and distribute the “main”
objects (all except for RIT and Reference) across the



FPGA nodes using an aligned distribution based on
readID. This keeps the method calls between them local
to an FPGA. However, the method calls to the RIT
and Reference are non-local because neither of them
can be partitioned by readID. Beyond some degree of
parallelism, the communication implied by these calls
will become the bottleneck since it is all-to-all commu-
nication.

An alternative way to distribute the objects is to use
a distribution based on CALs. This partitions the Refer-
ence and the RIT, but it means that the remaining “main”
objects are replicated instead of distributed. That is, each
short read is processed by all of the replicated objects,
so that the Seeds:nextRead() method call is broadcast to
all the replicated copies of Seeds and remaining method
calls are made on the local object copy.

Distributing/replicating by CAL means that each RIT
object only has the CALs assigned to its partition,
and thus the objects only handle a subset of all the
CALs. This means that all of the communication be-
tween objects is local, and so there is no inter-FPGA
communication except for the initial broadcast. However,
this partitioning has consequences both on the algorithm
and the performance. First, since each Filter object sees
only a subset of the CALs, it cannot filter CALs based
on information about all the CALSs for a read, and so we
may have to process more CALSs than necessary. Second,
if we partition the objects too finely, then many partitions
may have no CALs at all for a read, and the objects will
spend a lot of time doing nothing. So, for example, if
there are an average of 32 CALs per read, we will start
to lose efficiency if we partition much beyond a factor
of 8.

We can, however, easily combine replication with
partitioning and distribution. For example, we could
partition and replicate by 8 first, and then within each
partition distribute objects by another factor of 8. This
partitions each RIT and Reference (by readID) by only a
factor of 8, and the resulting communication bandwidth
should not overwhelm the network.

CONCLUSION

This paper has outlined our vision of a new pro-
gramming model that will allow programmers to quickly
design new applications targeting large-scale reconfig-
urable computing systems. We have tried to describe,
by means of a real example, how this model can be
used to explore and implement many different parallel
implementations. We see no real barrier to compiling
objects in this model to software, which would allow
implementations to be prototyped in software and then
moved to hardware once the design has been refined.

This also facilitates co-design since both software and
hardware objects would have the same abstract interface.

There is a substantial amount of work left to do to
make this a usable model. This includes formalizing the
language, understanding what other features are needed,
developing a compiler that can map objects to hardware
using our dynamic and distributed object model in com-
bination with state of the art “C-to-Hardware” compilers,
and compiling method calls efficiently using a variety of
different communication mechanisms. We hope that our
research will take a large step towards enabling large-
scale reconfigurable computing.
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