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ABSTRACT

FPGAs have been used in many applications to achieve
orders-of-magnitude improvement in absolute performance
and energy efficiency relative to conventional microproces-
sors. Despite their newfound potency in both processing
performance and energy efficiency, FPGAs have not gained
widespread acceptance as mainstream computing devices.
A fundamental obstacle to FPGA-based computing can be
traced to the FPGA’s lack of a common, scalable memory
abstraction. When developing for FPGAs today, applica-
tion writers are often directly responsible for crafting the
application-specific infrastructure logic that transports data
to and from the processing kernels. This infrastructure not
only increases design time and effort but will often inflexibly
lock a design to a particular FPGA product line, hindering
scalability and portability. We propose a new FPGA mem-
ory abstraction called Connected RAM (CoRAM) to serve
as a portable bridge between the distributed computation
kernels and the edge memory interfaces. In addition to im-
proving performance and efficiency, the CoRAM architec-
ture provides a virtualized memory environment as seen by
the hardware kernels to simplify application development
and to improve an application’s portability and scalabil-
ity. This CARL workshop research overview summarizes
our published work in FPGA’11 [4].

1. INTRODUCTION

With power becoming a first-class architectural con-
straint, future computing devices will need to look beyond
general-purpose processors. Among the available comput-
ing alternatives today, Field Programmable Gate Arrays
(FPGA) have been used in many applications to achieve
orders-of-magnitude improvement in absolute performance
and energy efficiency relative to conventional microproces-
sors (e.g., [8, 5, 3]). A recent study [5] further showed that
FPGA fabrics can become an effective computing substrate
for floating-point intensive numerical applications, even in
comparison to GPU technologies.

While accumulated VLSI advances have steadily improved
the processing capability of reconfigurable logic, FPGAs
have not gained widespread acceptance as mainstream com-
puting devices. A commonly cited obstacle is the difficulty
in programming FPGAs using low-level hardware develop-
ment flows. Beyond that, a more fundamental obstacle to
FPGA-based computing can be traced to the FPGA’s lack
of a common, scalable memory abstraction as seen by appli-
cation writers. When developing for an FPGA today, a de-
signer has to create from bare fabric not only the application
kernel itself but also the application-specific infrastructure
logic to support and optimize the transfer of data to and

from edge memory interfaces. Very often, creating or using
the infrastructure logic not only increases design time and
effort but will often inflexibly lock a design to a particular
product environment, hindering scalability and portability.
Further, the support mechanisms which users are directly re-
sponsible for will be increasingly difficult to manage in the
future as: (1) embedded SRAMs scale and become more dis-
tributed across the fabric, and (2) long-distance interconnect
delays become more difficult to tolerate as FPGAs begin to
reach unprecedented levels of capacity [13].

The Need for a Common Memory Abstraction. The
root cause of many programmability challenges that affect
FPGAs in computing today can be attributed to the lack
of the most basic standard abstractions that one comes to
expect in a general purpose computer—e.g., an ISA; virtual
memory, word size definitions, memory modes, address/data
formats, etc. From a computing perspective, a common
shared abstraction is a critical ingredient for programma-
bility and portability—beyond that, an effective abstraction
should also be amenable to scalable implementations and
novel optimizations of the underlying hardware.

The abstractions that exist for general-purpose processors
today, however, do not readily apply to FPGAs due to their
vastly different, non-von Neumann computing characteris-
tics. Rather than coarse-grained processing units, modern
FPGAs consist of up to millions of interconnected, fine-
grained distributed lookup tables (LUTSs) and thousands
of embedded SRAMs in a single chip [13]. In serving the
common needs of FPGA applications and users, the central
goal of this work is to create a re-usable, shared computing
abstraction that suits the distributed nature of FPGA-like
fabrics—with the particular emphasis on a proper mem-
ory abstraction. Working under the above premises, the
guiding principles for the desired memory abstraction are:

e The abstraction should present to the user a standard,
virtualized appearance of the FPGA fabric, which encom-
passes reconfigurable logic, its memory interfaces, and the
multitude of SRAMs—while freeing application writers
from details irrelevant to the application itself.

e Quer the course of the computation, the abstraction
should provide a common, easy-to-use mechanism for
controlling the transport of data between memory inter-
faces and the SRAMs used by the application.

o The abstraction should be amenable to scalable FPGA
microarchitectures without affecting the architectural view
presented to existing applications.

2. CORAM ARCHITECTURE

Overview and assumptions. The CoRAM architecture
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Figure 1: The CoRAM Memory Abstraction.

presents an abstraction that enforces a separation of con-
cerns between computation, data marshalling, and con-
trol sequencing within reconfigurable logic. Figure 1 shows
the programmer’s view of how applications are decomposed
when targeting reconfigurable logic with CoRAM support.
Beginning from Figure 1(a), applications are first mapped
into reconfigurable logic resources available to the user. The
CoRAM architecture assumes that reconfigurable logic re-
sources will exist either as stand-alone programmable de-
vices on a multiprocessor memory bus or integrated into a
single-chip heterogeneous multicore. Regardless of the con-
figuration, it is assumed that memory interfaces for load-
ing from and storing to a linear address space will exist
at the external boundaries of the reconfigurable logic (see
Figure 1(d)). These interfaces are implementation-specific
and do not affect or alter the CoRAM abstraction—however,
they are likely to be supported by conventional memory hier-
archy designs, which could include not only dedicated mem-
ory controllers but also caches and even full-fledged virtual
memory management.

Connected RAM. A key requirement of the CoORAM ab-
straction is that FPGA applications hosted within reconfig-
urable logic are not permitted to access physical memory or
I/0O interfaces directly (or be aware of their details). Ap-
plications within reconfigurable logic are instead logically
confined by a collection of embedded SRAMs (referred to
as CoRAMs) that provide distributed, on-chip storage for
application data (see Figure 1(b)). Much like the memory
architectures of conventional FPGA fabrics, CoORAMs pos-
sess the desirable traits of fabric-embedded SRAM [11]—
they have a simple SRAM interface with deterministic access
times, are spatially distributed, and can provide high aggre-
gate on-chip bandwidth; they also support composition and
flexible aspect ratios. CoRAMs, however, deviate drastically
from conventional embedded SRAMs in the sense that the
contents of individual CoRAMs are actively managed by a
specialized set of programmable logical finite state machines
called “control threads” as shown in Figure 1(c).

Control threads. Control threads allow the user to explic-
itly control data movements between the edge memory ad-
dress space and the locally-addressed CoRAMs distributed
throughout the fabric. Within the CoRAM abstraction, all
memory accesses from the application to the external en-
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Figure 2: Example Usage of CoRAM.

vironment (e.g., main memory, I/O, etc.) are restricted
through the use of CoRAMs, each of which are bound to
an associated control thread (a single control thread could,
however, manage multiple CoORAMs). The simple example
shown in Figure 2 illustrates how an FPGA user would (1)
instantiate a CORAM in their RTL design (left), and (2) pro-
gram a corresponding control thread to read a single data
word from edge memory into the CoORAM (right). The con-
trol thread program shown in Figure 2 (right) first acquires a
handle to the single instantiated CoORAM (get_coram(“c0”))
and second, executes coram_write, which is an operation that
performs a 4-byte memory transfer from the edge memory
address space to the local CoRAM. To inform the applica-
tion when the data is ready to be accessed for computation,
the control thread sends a token to the FPGA application
through an available asynchronous FIFO.

Discussion. As the simple example shows, control threads
are high level descriptions of an application’s memory ac-
cess pattern and are programmed using a portable, C-based
language abstraction. The use of a high level language for
control threads affords an application developer not only
simpler but also more natural expressions of control flow
and memory pointer manipulations; control threads can also
maintain local state to assist in thread activities. Con-
trol threads communicate to reconfigurable logic applica-
tions through minimal channels as shown in Figure 1(e).
If necessary, control threads can also communicate with
other threads through a simple message-passing interface
(although no global shared memory is allowed). Control
threads also cannot perform dynamic memory allocation
such as malloc.

Each control thread must be reducible to an equivalent
finite-state machine (FSM) but in practice may be com-
piled either to FSMs implemented in reconfigurable logic
itself or to software executables hosted on hardwired mi-
crocontrollers if available as part of dedicated mechanisms
for CoORAMs. Overall, the inefficiencies of a high-level pro-
gramming language would not directly impede the overall
computation throughput because the control threads do not
“compute” in the usual sense but are used only to generate
requests to memory. Details about possible implementation
methods will be covered later in Section 3.



/*** CoRAM handle definition **x*/
struct {int n_corams; int width;
int depth; void *addr; ...} coh;

/*** Handle acquisition *x*/
coh get_coram(instance_name, ...);
coh append_coram(coh coram, bool interleave, ...);

/**x Singleton control actions **x/

void coram_read(coh coram, void *offset,
void *memaddr, int bytes);

tag coram_read_nb(coh coram, ...);

void coram_write(coh coram, void *offset,
void *memaddr, int bytes);

tag coram_write_nb(coh coram, ...);

void coram_copy(coh src, coh dst, void *srcoffset,
void *dstoffset, int bytes);

tag coram_copy_nb(coh src, coh dst, void *srcoffset,
void *dstoffset, int bytes);

bool check_coram_done(coh coram, tag);

/*x* Collective control actions **x/

collective_write(coh coram, void *offset,
void *memaddr, int bytes);

collective_read(coh coram, void *offset,
void *memaddr, int bytes);

/**x Channel control actions **x/
fifo_write(coh coram, Data din);
Data fifo_read(coh coram);

ioreg_write(coh coram, Data din);
Data ioreg_read(coh coram);

Figure 3: Control action definitions.

2.1 A Portable Memory Abstraction

Control actions. To facilitate a portable memory abstrac-
tion, control threads can only employ a predefined set of
memory and communication primitives called control ac-
tions. Figure 3 illustrates an initial set of control actions
defined in [4]. The various memory transfer control ac-
tions (e.g., coram_write) perform sequential accesses to and
from the edge memory address space and can be block-
ing or non-blocking, depending on user preference. Non-
blocking control actions return a tag that must be moni-
tored using check_coram_done. The control actions also al-
low for CoORAM-to-CoRAM data transfers, which are useful
for composing advanced memory structures (e.g., multi-level
scratchpad or cache hierarchies). Figure 3 (bottom) describe
control actions for communicating between a control thread
and the application using asynchronous FIFOs and registers.
As long as future FPGA-based computing devices preserve
the existing set of control actions (and offer as much recon-
figurable logic resources needed by the original application),
application portability can be preserved without modifica-
tion to the source code.

Advanced control actions. Beyond the simple control
actions shown, a collective form of read and write control ac-
tions is also supported. In the collective form, append_handle
is a helper function that can be used at compile-time to com-
pose a static list of CoRAMs. The newly returned handle
can then be used to perform transfers to the aggregated
CoRAMs as a single logical unit. When operating upon the
composed handle, sequential data arriving from memory can
either be striped across the CoRAMSs’ local addresses in a
concatenated or word-interleaved pattern. Such features al-
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Figure 4: Input Stream FIFO Personality.

low the user to customize the partitioning of application
data across the multiple distributed CoRAMs within the re-
configurable logic.

Based on the examples shown in Figure 3, it is not dif-
ficult to imagine that many variants of the above control
actions could be added to the memory abstraction to sup-
port more sophisticated patterns (e.g., broadcast from one
CoRAM to many). In a commercial production setting, con-
trol actions—Ilike instructions in an ISA—must be carefully
defined and preserved to achieve the value of portability and
compatibility.

2.2 CoRAMs in Usage

An extended version of this paper [4] gives a detailed dis-
cussion of how CoRAMs and control threads were used to
simplify the memory access mechanisms of various compu-
tational kernels such as Black-Scholes, Matrix Matrix Mul-
tiplication, and Sparse Matrix Vector Multiplication. In our
case studies, CoRAMs and control actions were instantiated
and wrapped within reconfigurable logic libraries to form
portable, re-usable “memory personalities” crafted for a par-
ticular application’s memory access pattern.

For example, to support the sequential memory accesses
needed by the Black-Scholes kernel, a stream FIFO person-
ality was developed in [4] that presents a simple FIFO in-
terface from edge memory to the application. Figure 4 illus-
trates how the functionality of the stream FIFO personality
is partitioned across reconfigurable logic, a single CoORAM,
and an associated control thread. As Figure 4 shows, the
control thread (1) initializes a memory pointer to the ap-
plication’s data, (2) queries the internal state of the FIFO
to determine available occupancy (fifo_read), (3) performs
a transfer of the data using a control action (coram_write),
and (4) updates the stream FIFO’s head register using a
communication control action (fifo_write).

It is not difficult to imagine that other variants of the
stream FIFO personality could be conceived, where the
stream access pattern is not sequential but strided; or, the
stream data itself could be sourced from another set of in-
stantiated CoRAMs reserved as a backing on-chip storage.
Such changes could be trivially made with few lines of code
(e.g., replacing coram_write with coram_copy). Our paper in
[4] also examined other memory personalities such as vector
scratchpads and caches. It is conceived that in the future,
soft libraries consisting of many types of memory person-
alities could be developed and re-used across many recon-
figurable logic devices that support the CoRAM memory
abstraction.
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Figure 5: Conceptual Microarchitecture of Recon-
figurable Logic with CoRAM Support.

3. IMPLEMENTATION METHODS

Like a general-purpose ISA, the CoRAM abstraction
permits different microarchitectural implementations while
maintaining a standard architectural view to applications.
Ideally, a robust implementation of CoRAM should provide
good memory subsystem performance across a wide variety
of general applications without tuning or customization re-
quired by the user.

CoRAM Microarchitecture. Any implementation of the
CoRAM abstraction naturally lends itself to three required
mechanisms: (1) Control Units used to host the execution of
control programs, (2) a Data Transport Engine to perform
movement of data between CoRAMs and edge memory in-
terfaces, and (3) the CoORAM storage resource itself used to
present the data to the application. Figure 5 conceptually
illustrates how the three required mechanisms could be im-
plemented and physically arranged in a modern FPGA with
CoRAM support.

CoRAMs, like embedded SRAMs in conventional FP-
GAs, are arranged into vertical columns. In Figure 5, the
CoRAMs are further organized into discrete clusters at-
tached to a Control Unit, which is a physical host responsi-
ble for executing the control programs that run within the
cluster. A Control Unit can be realized by directly synthe-
sizing a control program into a finite state machine within
reconfigurable logic (e.g., using high-level synthesis flows) or
can be implemented in hard logic as multithreaded micro-
controllers that execute control programs directly. A control
thread that manages more CoRAMs than available within a
cluster could be replicated across multiple clusters.

The Data Transport Engine on the other hand is responsi-
ble for sending memory address requests on behalf of Control
Units and delivering data responses from the edge memory
interfaces (or from other CoRAMs). In cases where multi-
ple CoORAMs are operated upon as logical units (e.g., collec-
tive_write), the Data Transport Engine must also break large
data transfers into words and steer them accordingly to the
constituent CoRAMs (based on the data partitioning a user
desires). At the macroscale level, the Data Transport En-
gine is supported by a hierarchically-organized network-on-
chip (NoC), where each NoC node is concentrated to service

multiple aggregated CoRAMs (and to amortize the cost of
each NoC router). The specific microarchitecture shown in
Figure 5 illustrates each cluster serviced by a single network-
on-chip router. The routers are laid out in a 2D mesh and
provide global connectivity to and from the memory inter-
faces.

Soft versus hard logic. The most cost-effective approach
to implementing CoORAM in the near term would be to layer
all the required mechanisms on top of conventional FPGAs.
In the long term, FPGA fabrics developed in mind with
dedicated CoRAM architectural support can become more
economical if certain features become popularly used. From
the perspective of a fabric designed to support computing,
we contend that a hardwired network-on-chip (NoC) offers
significant advantages, especially if it reduces or eliminates
the need for long-distance routing tracks in today’s fabrics.
Under the CoRAM architectural paradigm, global bulk com-
munications are restricted to between CoRAM-to-CoRAM
or CoRAM-to-edge. Such a usage model would be better
served by the high performance (bandwidth and latency)
and the reduced power and energy from a dedicated hard-
wired NoC that connects the CoRAMs and the edge mem-
ory interfaces. With a hardwired NoC, it is also more cost-
effective (in area and energy cost) to over-provision perfor-
mance to deliver robust performance across many different
applications. Similarly, the control units used to host con-
trol threads could also support “hardened” control actions
that are commonly used by developers.

3.1 Simulated Case Studies and Evaluation

The microarchitecture shown in Figure 5 was the subject
of various case studies and a quantitative evaluation in [4].
To model a CoRAM-enabled FPGA, a detailed, cycle-level
software simulator was developed using Bluespec System
Verilog [2] to simulate the required CoRAM mechanisms.
Pthreads were used to functionally host the execution of con-
trol threads and carefully throttled with synchronizations
to model the notion of timing. For the three applications
we examined in [4] (Black-Scholes, Matrix matrix multipli-
cation, Sparse matrix-vector multiplication), the compute
portions of the designs were written in synthesizable Blue-
spec and placed-and-routed on a Virtex-6 LX760 FPGA to
determine the peak fabric processing throughput. Qualita-
tively, programming FPGA applications using the CoRAM
abstraction substantially reduced the overall development
efforts needed to bring functioning designs online. The re-
sults from our evaluation in [4] also showed that hardened,
general-purpose CoRAM mechanisms can significantly out-
perform soft logic implementations for memory-intensive ap-
plications and that such mechanisms can be introduced in
future reconfigurable logic designs with negligible overheads
in area or power.

4. RELATED WORK

The CoRAM abstraction introduces the notion of memory
management as an asynchronous control thread decoupled
from the computation. The idea of separation of concerns for
processing and memory is not new and has been examined
extensively in the context of general-purpose processors [12,
6]. The MAP-200 machine, for example, employed an asyn-
chronous integer address unit that was decoupled from the
floating-point arithmetic pipeline [6].



An existing body of work has examined the design of soft
memory hierarchies for FPGAs (e.g., [14, 7, 9, 10]). The
most closely related work to CoRAM is the LEAP frame-
work [1], which shares the objective of providing a stan-
dardized, platform-independent abstraction to FPGA pro-
grammers. LEAP abstracts away the details of memory
management by exporting to the application a set of timing-
insensitive, request-response interfaces to local client address
spaces. CoRAM differs from LEAP by providing explicit
user control over data movement between off-chip memory
interfaces and the on-chip embedded SRAMs. The CoRAM
abstraction could itself be used to facilitate the on-die cache
mechanisms employed in an implementation of the LEAP
memory abstraction.

5. CONCLUSIONS

Processing and memory are inseparable aspects of any
real-world computing problems. A proper memory archi-
tecture is a critical requirement for FPGAs to succeed as a
computing technology. This paper investigated a new mem-
ory architecture to provide deliberate support for memory
accesses from within the fabric of future reconfigurable logic
devices engineered for computing. This paper presented the
CoRAM memory abstraction designed to match the require-
ments of highly concurrent, spatially distributed process-
ing kernels that consume and produce memory data from
within the fabric. In addition to improving performance
and efficiency, the CoRAM architecture provides a virtual-
ized memory environment as seen by the hardware kernels
to simplify application development and to improve an ap-
plication’s portability and scalability.
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