
CARL ð June 14, 2015

Tony Brewer

tbrewer@micron.com

Conveyõs Acceleration of the

Memcached and Imagemagick

Applications

Target Platforms

June 14, 2015 2

Wolverine
Xilinx Virtex7 690

ÅWolverine

ïFull size PCIe form factor

ï75W maximum power

ïUp to 4 channels of DDR3 memory

ÅMerlin

ï½ height, ½ length PCIe form factor

ï75W maximum power

ï1 HMC 4GB memory, 2 16-bit channels

Merlin
Altera Arria10 1150

Wolverine Architecture

Å GPU Form Factor and power envelope

Å Single and Dual card versions

June 14, 2015 3

Å Storage is the faster growing piece of IT spend

ï More and more images are being uploaded/stored

ï Images accumulate over time and with growing users

Å Resizing images takes time

ï jpegs must first be expanded

ï Expanded image scaled to desired size and recompressed

Å Common approach has been to store multiple resized version of an image

ï Consumes up to 30% of social network storage

ï Pre-computed òthumbnailsó not always optimal for display at target page of customer/consumer

ÅWhat if I could resize images on the fly?

ï For a small increment to the IT budget

ï Non-accelerated solution requires 48x more image servers $$$$$

ï Dell-Convey solution delivers on all requirements

ï And save 30% on storage

Image Resizing ð 48x speedup

June 14, 2015 4

Social Network Example

Jpeg Resize Implementation

host

main thread

worker thread

worker thread

job queue

input.jpeg

output.jpeg

input.jpeg

output.jpeg

arguments

jobsFile.txt

coprocessor

x86 Host

ï reads arguments and builds queue

of images to be scaled

ï worker threads read input files and

write output files

coprocessor

ï Hardware threads decode, resize,

and encode images

ï data transferred via memory

decode

Huffman

vert.

scaling

hor.

scaling

encode

Huffman

decode

Huffman

vert.

scaling

decode

Huffman

vert.

scaling

hor.

scaling

encode

Huffman

decode

Huffman

vert.

scaling

input

image

queue

result

image

queue

Å
Å
Å
Å
Å
Å

ÅHost objective is to keep the FPGA busy

ÅMultiple simultaneous jobs are required

ï~6 jobs at the FPGA are required, 4 active + 2 to cover

queuing latencies and job overlap

ÅA host thread is used to handle each resize job

ïRead Jpeg image from disk or the network

ïProcess Jpeg header and construct job control structure

ïStart job on FPGA

ïWrite resized image to disk or network

Jpeg Resize Application

June 14, 2015 6

ÅMany host threads are used

ï10-15 host threads are needed to keep 6 jobs
active on the FPGA

ÅApplication uses a client / server model

ïClient library is compiled into an application that
needs resizing capability

ïServer processes jobs submitted to it

ïClient and Server can be on same platform or
across a network with potentially multiple clients

ÅInitial client is the Imagemagick application

Jpeg Resize Application

June 14, 2015 7

Å A Host Thread processes the JPEG image header and creates a job

control structure (up to 200KB in size)

struct JobInfo {

 JobApp m_app; // APP marker info

 JobDec m_dec; // jpeg decode info

 JobHorz m_horz; // horizontal scaling info

 JobVert m_vert; // vertical scaling info

 JobEnc m_enc; // jpeg encode info

 JobCom m_com; // COM marker info

 uint8_t * m_pInPic; // input picture

 uint32_t m_inPicSize;

};

Using Sinc Func as Resize Filter

Jpeg Resize SW/HW Interface

June 14, 2015 8

struct _ALIGNED(64) JobHorz {

 uint64_t m_compCnt : 2;

 uint64_t m_inImageRows : 14;

 uint64_t m_inImageCols : 14;

 uint64_t m_outImageRows : 14;

 uint64_t m_outImageCols : 14;

 uint64_t m_maxBlkColsPerMcu : 2;

 uint64_t m_maxBlkRowsPerMcu : 2;

 uint64_t _ALIGNED(8) m_mcuRows : 11;

 uint64_t m_mcuCols : 11;

 uint64_t m_mcuBlkRowCnt : 3;

 uint64_t m_mcuRowRstInc : 4;

 JobHcp m_hcp[MAX_MCU_COMPONENTS];

 uint16_t m_filterWidth;

 uint16_t m_pntWghtListSize;

 JobPntInfo _ALIGNED(64)

 m_pntInfo[COPROC_MAX_IMAGE_PNTS];

 JobPntWght _ALIGNED(64)

 m_pntWghtList[COPROC_MAX_IMAGE_PNTS];

};

Input

Output

ÅA job is submitted to the FPGA as
ïA pointer to the job control structure

ïThe job control structure has a pointer to both the input and
output image host memory

ÅFPGA performs image resizing
ïOutput is a resized JPEG image without the header

ïOutput is written by the FPGA to host memory

ïFPGA completes the jobs by returning to host

ÅHost completes the jobs by
ïConstructing the JPEG file including a header and the image

data

ïWriting the JPEG file to disk or the network

Jpeg Resize SW/HW Interface

June 14, 2015 9

void JpegResizeHif::SubmitJob(JobInfo * pJobInfo) {

 // multi -threaded job submission routine

 ObtainLock();

 // obtain job ID

 while (m_jobIdQue.empty()) {

 ReleaseLock(); usleep(1); ObtainLock();

 }

 uint8_t jobId = m_jobIdQue.front();

 m_jobIdQue.pop();

 // clear job finished flag

 m_bJobDoneVec[jobId] = false;

 m_bJobBusyVec[jobId] = true;

 // send job to coproc

 while (!m_pUnit->SendCall_htmain(jobId, (uint64_t)pJobInfo)) {

 ReleaseLock(); usleep(1); ObtainLock();

 }

 // wait for job to finish

 while (m_bJobDoneVec[jobId] == false) {

 uint8_t recvJobId;

 if (m_pUnit->RecvReturn_htmain(recvJobId)) {

 m_bJobDoneVec[recvJobId] = true;

 } else {

 ReleaseLock(); usleep(1); ObtainLock();

 }

 }

 // free jobId

 m_bJobBusyVec[jobId] = false;

 m_jobIdQue.push(jobId);

 ReleaseLock();

}

HT Host Interface Code

June 14, 2015 10

ÅSubmitJob routine
handles interface to
coprocessor
ĬMulti-threaded, one thread

per resizing job

ĬUp to eight resize jobs are
active in coprocessor

ĬSendCall_htmain()
performs a remote
procedure call (RPC) to
start job

ĬRecvReturn_htmain() is
used to poll on completed
jobs

Detailed Diagram of Personality

June 14, 2015 11

Jpeg Resize Performance

June 14, 2015 12

Dell-Convey Accelerated Image Resizing Solution

ÅCharacterization of Resize App.

ïSweep across

ïResize %

ïImage Size

ïSweet spot is in the

25-75% resize range

with increased

performance as the

image gets larger

Total Cost of Ownership

June 14, 2015 13

Dell-Convey Accelerated Image Resizing Solution

P
E

R
F

 r720 + Wolverine 690 å 48x vs. One Socket, 4-core 3.3 GHz

P
O

W
E

R

Power Requirements[1]

50 racks (1000 nodes) Dell-Convey 2,190 MW-h/yr

850 racks (34000 nodes) x86 59,568 MW-h/yr

1 Year Electricity costs (@ 0.08 /kWh) [2]

Dell-Convey Accelerated Server 315 K$/yr

x86 8,578 K$/yr

S
IT

E

1 Year Infrastructure costs[3]

Dell-Convey 52 K$/yr

X86 2,098 K$/yr

T
C

O

3-Year TCO[4]

Dell-Convey 11,073 $K
TCO

Multiplier

X86 63,106 $K 5.7

$0

$10,000

$20,000

$30,000

$40,000

$50,000

$60,000

$70,000

Dell-Convey

Solution

Commodity

Server

T
C

O
 (

K
$

)

3-Year Cost of Ownership

3 yr UPS+Floorspace

Costs (K$)

3 yr Datacenter

power costs (K$)

System cost (K$)

Memcached Appliance
Key / Value Cache Solution

Who uses memcached?

85% of top 20 web sites

50% of top 5,000 sites

Up to 30% of data center space

June 14, 2015 14

Why Is Performance Important?

How many accesses are required

to create this page? ~100

Modern web services must

operate at RAM speeds to retrieve

the amount of data needed with

acceptable responsiveness

June 14, 2015 15

memcached threads

Achieving Performance

s
e

n
d

re

p
ly

s
e

n
d

re

p
ly

n
e
tw

o
rk

 s
ta

c
k

host threads

hash

table
object store

execute

command(s)

re
c
v

p
a

c
k
e

t
s
e

n
d

 r
e

p
ly

parse

request

hash

key(s)

coprocessor

hardware threads

parse

request

hash key(s)

memcached_set(òfoo:keyó,data)

memcached_get(òfoo:key)

Client connections are

assigned to threads

Host executes commands and

generates replies

Coprocessor offloads

parsing of commands and

key hashing

Cnymemcached based on memcached 1.4.15

16 June 14, 2015

ÅDrop in replacement for original application

ïDoes not support vendor specific commands

ÅAll key / value pairs are stored in host memory

ïMemcached servers require large amounts of memory

ïHost memory is typically lower cost than PCIe card memory

ÅSupports TCP and UDP network protocols

ÅSupport ASCII and binary commands

ÅLarge amounts of host code was modified or replaced

ïRestructured for FPGA acceleration

ïOriginal code did not support binary mode aggregation of out
bound responses to same destination

Memcached Application

17 June 14, 2015

ÅLinux network stack is used without modification

ïStandard network stack has limited packet receive / send
rate that limited application performance

ïAdded out bound packet aggregation prior to calling send
system call

ïExperimented with Solarflare NIC cards. Cards reduced
latency and improved throughput but not enough for extra
cost for system

ÅPackets are read into host memory

ïA pointer to the packet, the packets length and port number
is passed to FPGA in a host memory FIFO

Memcached HW/SW Interface

June 14, 2015 18

