IBM Research - Zurich

Accelerating Text Analytics Queries
on Reconfigurable Platforms

Kubilay Atasu, Raphael Polig, Christoph Hagleitner, H. Peter Hofstee 4

Laura Chiticariu, Frederick Reiss, Huaiyu Zhu, Cesar Berrospi

7

June 14, 2015 @ CARL Workshop

© 2015 IBM Corporation

Outline

" Introduction

* Text analytics use cases

» SystemT text analytics software
* HW-accelerated SystemT

= HW-accelerated regex matching

= Conclusions

© 2015 IBM Corporation

The importance of performance

INY scconesBLMEET

= COLLECTION

TOOLS TRASFER ANALYSIS

oin SHARING caprure
ﬁST[]HAGEBN,

HIEH IHSIW LOGS TTPES
S TRIBGER o o . .
| =2 ERHANCED "HE"S 0T DENSITY — Social Media Data

== GnLIiEs OSCOVERY PF"E:EMHHMHIS MAKIG
B e BUSINESS SOFTWARE .. AT

oy & e PAOCESS N

* 1+ TB Twitter data per day
* 400+ TB per year

S TRE LM
TAKE

Ao GENDMICS LuSFEEI] == EEESS il = g (URATE
[]PHMIZATI[iN=mnes»—E I FEE -
WAGENENT PROCESSNG = PETABYTES AMOUNT = = =
|:H;1_£LEHB|5|SFHEULTﬂz TR = =2 RELATIONAL o & g STATISTICS Ezmmm
= EIPLORE g 2 = VULUME o ="
EPEU'EHELSE‘: % lijmﬁm a SOURCES = e MANAEE
= SHARCH SYSTEMSSE
WSUALIZATION
— Financial Data -
* Regulatory filings can be in tens of millions ?’
and several TBs Q z

— Machine data
* 1GB of app server logs per day
* A medium-size data center has tens of thousands
of servers - Tens of Terabytes of system logs per
day

Source: UCSC Lecture on Information Extraction by F. Reiss, L. Chiticariu, Y. Li, 2014
Big Data image by Camelia Boban; Social Media image by Yoel Ben-Avraham

© 2015 IBM Corporation

Spectrum of throughput

Dictionary Matching
(~ 20MB/sec/core)

Named Entity
(1MB/sec/core)

Throughput

Deep parsing
(< 25 KB/sec/core)

Y

Text analytics complexity

* The more complex the task, the slower the runtime performance
= But the higher the information accuracy

Source: UCSC Lecture on Information Extraction by F. Reiss, L. Chiticariu, Y. Li, 2014
© 2015 IBM Corporation

POWERS & CAPI

Coherent Accelerator Processor Interface (CAPI)

. . POWERS
Virtual Addressing

* Accelerator can work with same memory addresses that the processors use 228

* Pointers de-referenced same as the host application
* Removes OS & device driver overhead

Hardware Managed Cache Coherence
* Enables the accelerator to participate in “Locks” as a normal thread
* Lowers Latency over IO communication model

PCle Gen 3
Transport for encapsulated messages
Custom
Hardware
Application

FPGA or ASIC

Processor Service Layer (PSL)
Customizable Hardware (F;:cfelsegt robusl,t, qtur/able Jltntetr]facesctoAsgpllcatlons
Application Accelerator oad complexity /-content from

* Specific system SW, middleware, or user application
* Written to durable interface provided by PSL

© 2014 OpenPOWER Foundation

Hardware-accelerated text analytics IEx

IBM InfoSphere Biglnsights IBM InfoSphere Streams

SystemT Text Analytics
Compiler & Runtime

POWERS m FPGA

© 2015 IBM Corporation

Outline

" Introduction

" Text analytics use cases

» SystemT text analytics software
* HW-accelerated SystemT

= HW-accelerated regex matching

= Conclusions

© 2015 IBM Corporation

Text analytics - Example

For years, Microsoft Corporation CEO Bill Gates
was against open source. But today he appears
to have changed his mind. “We can be open
source. We love the concept of shared source,”
said Bill Veghte, a Microsoft VP. “That is a
super-important shift for us in terms of code
access.”

Richard Stallman, founder of the Free Software

Foundation, countered saying ...

Source: Example by Cohen, 2003

8

© 2015 IBM Corporation

Text analytics - Example

For years, Microsoft Corporation CEO

was against open source. But today he appears
to have changed his mind. “We can be open
source. We love the concept of shared source,”
said . a Microsoft VP. “That is a
super-important shift for us in terms of code
access.”

, founder of the Free Software

Foundation, countered saying ...
\ /

Name Title Organizatio
n
CEO Microsoft
Sowrce: Example by Cohen, 2003 VP Microsoft

9 © 2015 IBM Corporation

Foiinder Frea

Text analytics in IBM Crystal+: news search services

Relevant

> >

oo

Document
search query

> <>

10

[News Search Engine]

4)

News search

O\
docs query

News search User Interface

Watson Content Analytics
(Document Processor)

_ Intel Blade .

query
Web Application Server < |
Intel Blade Annotated
docs
Annotated
docs
4 2

Crawlers

AN
[$821N0S g9\]

_ Intel Blade)

© 2015 IBM Corporation

Acceleration of Crystal+ news search services

> >

— >0

11

[News Search Engine]

Relevant News search
Docs query
(Web Application Server\

_

[Document Processor

N\

User Interface

News search
< query

)

J

AN

Annotated

POWER)8

Relevant
Docs

TR

Annotated
Docs

Docs

Produce results in real time!

© 2015 IBM Corporation

Outline

" Introduction

* Text analytics use cases

= SystemT text analytics software
* HW-accelerated SystemT

= HW-accelerated regex matching

= Conclusions

12

© 2015 IBM Corporation

SystemT overview f ==

T annotated
document

stream
——
|
compiled
AQL systemT operator
optimizer graph
\/—

/L

input
d t
rule language with Chggse 2l _ Sﬁgg:}en
familiar SQL-like syntax efficient highly scalable,
_ execution plan embeddable Java
Spaely EnnelEielr that implements runtime -
semantics declaratively the semantics

13 © 2015 IBM Corporation

Basic data structures

The CARL workshop is really awesome!
OO =TTl «— Tokens

| I— | — | —
> Spans
| —

I
-

I

I

' -
I

14 © 2015 IBM Corporation

A simple SystemT information extraction rule

* Find the names (regex) that are at most 20 chars after a title (dict.)

? Founder.............. Bill Gates
— — — Y —
Follows dict. regex
’ 1 match match
% % A% %
Regex Dictionary start offset end offset start offset end offset

+ +)

| at most 20 chars
Text

N N
start offset end offset

Text \ Y J

result

15 © 2015 IBM Corporation

Annotation Operator Graph (AOG)

... Tomorrow, we will meet Mark Scott, Howard Smith, ...

! !

Dictionary Dictionary
IERYEN. <First> <Last>

16 © 2015 IBM Corporation

AOG of a real-life SystemT IE query =
e e e G i

R ook ES1 R BRI ER A

17

© 2015 IBM Corporation

Outline

" Introduction

* Text analytics use cases

= SystemT text analytics software
* HW-accelerated SystemT

= HW-accelerated regex matching

= Conclusions

18

© 2015 IBM Corporation

2 2 I
o S o)
- N o © c
S| systemT J S, HW/SW || 31 _,| hardware | | | |systemT| | <
3 optimizer o part. 7 compiler 2 runtime 5
I Q) O = -g'
c @) @) T 3
< < <
lll -lllllllllljlllllllllllll-llllllllllllllllllllllll.
v v \ 4 \ 4 \ 4
o token- char- o relational
dictionary consolidation
: based based : algebra
compiler operations i
regXs regXs operations
““ ...‘ .‘-""‘-“"'.i * ;
DFA NFA containment, intersection
sequencer . sequencer
compiler compiler overlap union, join

19 © 2015 IBM Corporation

SystemT acceleration: Partitioned system

POWER System FPGA
processor memory

| Document
| buffer

| Result
| buffer A

__l Result
/ buffer B

Job
Control

20 © 2015 IBM Corporation

Multithreaded communication scheme

Wait for results

Wait for results

SUBMIT N
(via MMIO write) POLL
(status in memory)
v
I .
A

v
Results and status

HW scheduler . are written to memory
dispatches jobs to l

any free stream

21 © 2015 IBM Corporation

Elastic hardware interface

Producer
s g 3 =
3 9 J| ¢
\\
Consumer
Schema
A
- D
Span 1 Span 2 Span 3
/A ~
Start End Start | End
offset offset tok. | tok.
32b 32b 16b | 16b

22 © 2015 IBM Corporation

IEEE MICRO paper: Software profiling results (no acceleration)

100%
|
g% —— NN Others 18
80% |] B HashJoin 16
. — m ApplyFunc 14
70% SortMergeJoin 12
60% Difference 10 —T1
50% W Project ?3 o —_—T2
o — Select = T3
40% m Consolidate 6 —T4
30% . = Union 4 —T5
20% AdjacentJoin 2
H Dictionaries
10% . 0
® RegularExpression O 8 16 24 32 40 48 56 64
0,
0% - ™ T T4 - # of software threads

* Measurements on a two socket POWERY server with 8 cores per CPU @3.55GHz

R. Polig, K. Atasu, C. Hagleitner, L. Chiticariu, F. R. Reiss, H. Zhu, H. P. Hofstee: Giving text analytics a boost. IEEE MICRO Special Issue on Big Data, 2014.

23 © 2015 IBM Corporation

FPL 2014 paper: Measured throughput rates

800
700
600
500
400
300
200
100

Throughput [MB/s]

FPGA 4 streams
- - - - 4 Ay SW 64 threads
A A A A A A SW 1thread

Query A Query B Query C Query D Query E Query F

mSW 1thread mSW 64threads m FPGA 4 streams

* The evaluated queries are completely offloaded to FPGA logic (no partitioning)

R. Polig, K. Atasu, H. Giefers, L.Chiticariu: Compiling Text Analytics Queries to FPGAs. FPL 2014

24

© 2015 IBM Corporation

FPL 2014 paper: Measured power consumption

240

230

220

210

200

190

180

Power [W]

SW 1thread SW 64 threads FPGA (A-D) FPGA (E-F)

W Base (Idle) mFPGA (Idle) mSW (active) m FPGA (active)

* The evaluated queries are completely offloaded to FPGA logic (no partitioning)

R. Polig, K. Atasu, H. Giefers, L.Chiticariu: Compiling Text Analytics Queries to FPGAs. FPL 2014

25

© 2015 IBM Corporation

FPGA resource utilization: Effect of reducing the offset width

» Basic data structures: spans and schemas

70%

[- N I = |
o o
#: &

Resource Utilization
=)
&

20%
10%
0%

.
News /
Twitter /

A /‘ /

. i..----—'l— == UTs
x"'/'

=== Regs
el
8 16 20 24 28 32
Offset Width

26

- Scalability is limited by
BRAM & register usage

- 4 pipelines: 4 bytes/cycle

- 200 MHz — 800 MB/s

© 2015 IBM Corporation

Live demo of Crystal+ acceleration on POWERS

(° Higher SW performance A
* CAPI system
* Virtual addressing from user FPGA

’ Multiple cards per CPU y

[Stratix V GX A7]

27

Operating System

POWER 8]

© 2015 IBM Corporation

Outline

" Introduction

* Text analytics use cases

= SystemT text analytics software

* Hardware-accelerated SystemT

* HW-accelerated regex matching

= Conclusions

28

© 2015 IBM Corporation

Regex matching: Background

* Consider the regex .*(al|blaalaba) = Can be transformed into NFA/DFA

| |
NFA DFA
Traditional architectures do not support start offset reporting & leftmost matching:

= Reconfigurable NFAs (Sidhu FCCM 2001, Bispo FPT 2006 , Yang ANCS 2008)
* Programmable DFAs (Smith SIGCOMM 2008, Van Lunteren MICRO 2012)

29 © 2015 IBM Corporation

Finding leftmost regular expression matches

= Assume that we are searching for the regex .*(alaalaaaa) in the input string “aaaa”

* Find the regex match with the smallest start offset value at each end offset position

" The leftmost maches are marked using solid lines

0 1 2 3
'a’ ‘a’ ‘a’ ‘a’
N L - S - -
00 @@L (22 (33
0) (12 @3)
S~ —_—— ——

30

0.3)

matches found for 'a’

matches found for 'aa’

matches found for 'aaaa’

© 2015 IBM Corporation

Contributions of this work

1. Extending Sidhu and Prasanna’s NFA architecture to support start offset reporting
2. A graph coloring based register clustering method to minimize the register usage

3. An efficient leftmost match computation method without using offset comparisons

active[0] _l—» active{1] — activel3] activef4]
=D ‘
i J
g™
input_| b _::
char And
~a >] activel?]
e a— "o 4
And e
Match

Sidhu and Prasanna’s NFA
Architecture

Kubilay Atasu: Resource-efficient reqular expression matching architecture for text analytics. ASAP 2014.

31 © 2015 IBM Corporation

Extending Sidhu & Prasanna’s architecture

* Add a start offset register to each NFA state
= offset_reg[0] = value of current offset position
* DRAWBACK: redundant start offset registers

offset_reg [0] offset_reg [1] offset reg [3] offset _reg [4]

active[0] _|—> active[1] — active[3] active[4]

— ™\
; f
S Y
And —-
> a <D
And ™

>1)
input__._ b _:: e
char And
\ = :
L, a|b—>—|+) -»_.'O?"_"’ active(?] _h
And offset_reg[2] S

Match

Baseline Architecture

32 © 2015 IBM Corporation

Clustering offset registers

» Build a conflict graph and apply graph coloring

= States with the same color can share registers

33 © 2015 IBM Corporation

Leftmost match computation

34

offset_reg [0]

offset_reg [1]

offset_reg [3]

Assume that state 0 and state 1 are active and the current input is “a”

We have to compute offset _reg[2] = MIN(offset_reg[0], offset_reg[1])

offset_reg [4]

active[0] _l—» active[1] —> aclive[3] active[4]
=)
ol)
a S
input_| b _::
char And
Ly >)) activel?]
> "o h
offset_reg [2] o
Match

Baseline Architecture

© 2015 IBM Corporation

Experiments (L7 filter regexs)

= Altera Stratix IV GX530KH40C2, Altera Quartus Il V11 tools
= 32-bit start offset registers, 250 MHz target clock frequency
= NFA representation: Follow Automata with character classes

= Scalability: 1000 regexs with start offset reporting on FPGAs

——Atasu et al. [2] -Optimized ——Atasu et al. [2] -+Optimized
14000 5000
4500
12000
4000
10000 -| 3500
8000 i ESS
2 3
-} 9 2500
o 2
Be0 o 2000
4000 1500
1000
2000 -
500
0
2 envemonnEao e s o g e n T wan e e o N YR ERARITRES
Regexs

Kubilay Atasu: Resource-efficient reqular expression matching architecture for text analytics. ASAP 2014.

35 © 2015 IBM Corporation

Outline

" Introduction

* Text analytics use cases

= SystemT text analytics software
* Hardware-accelerated SystemT
= HW-accelerated regex matching

= Conclusions

36

© 2015 IBM Corporation

Conclusions EES

= A prototype system that accelerates execution of text analytics queries by
—utilizing POWER processors and an Altera Stratix FPGAs
—defining a flexible HW/SW interface with multi-threading support
—automating generation of query-specific hardware accelerators

= Up to 79x higher document processing throughput vs multi-threaded SW
—up to 85x better system energy efficiency vs. POWER 7 processor

* Scalable regular expression accelerator that supports advanced features
* Live demonstration of Crystal+ news search acceleration on POWERS

* Ongoing work: programmable overlay architectures to avoid re-synthesis
—enables support for interactive and complex user queries

37 © 2015 IBM Corporation

QUESTIONS?

Related Publications

* Architecture & Hardware Compiler:
— R. Polig, K. Atasu, C. Hagleitner, L. Chiticariu, F. R. Reiss, H. Zhu, H. P. Hofstee: Hardware-
accelerated text analytics. Hot Chips 2014.
— R. Polig, K. Atasu, C. Hagleitner, L. Chiticariu, F. R. Reiss, H. Zhu, H. P. Hofstee: Giving text
analytics a boost. IEEE MICRO Special Issue on Big Data, 2014.
— R. Polig, K. Atasu, H. Giefers, L.Chiticariu: Compiling Text Analytics Queries to FPGAs. FPL 2014.

* Regular Expression Matching:
— Kubilay Atasu: Resource-efficient regular expression matching architecture for text analytics. ASAP
2014.
— Kubilay Atasu, Raphael Polig, Christoph Hagleitner, Frederick R. Reiss: Hardware-accelerated
regular expression matching for high-throughput text analytics. FPL 2013.
— Kubilay Atasu, Raphael Polig, Jonathan Rohrer, Christoph Hagleitner: Exploring the design space of
programmable regular expression matching accelerators, Journal of Systems Architecture, 2013.

= Dictionary Matching:
— Raphael Polig, Kubilay Atasu, Christoph Hagleitner: Token-based dictionary pattern matching for text
analytics. FPL 2013.
— Kanak Agarwal, Raphael Polig: A high-speed and large-scale dictionary matching engine for
Information Extraction systems. ASAP 2013.

38 © 2015 IBM Corporation

	Accelerating Text Analytics Queries on Reconfigurable Platforms Kubilay Atasu, Raphael Polig, Christoph Hagleitner, H. Peter Hofstee Laura Chiticariu, Frederick Reiss, Huaiyu Zhu, Cesar Berrospi June 14, 2015 @ CARL Workshop
	Outline
	The importance of performance
	Spectrum of throughput
	POWER8 & CAPI
	Hardware-accelerated text analytics
	Slide 7
	Text analytics - Example
	Slide 9
	Text analytics in IBM Crystal+: news search services
	Acceleration of Crystal+ news search services
	Slide 12
	Slide 13
	Basic data structures
	A simple SystemT information extraction rule
	Annotation Operator Graph (AOG)
	AOG of a real-life SystemT IE query
	Slide 18
	Slide 19
	SystemT acceleration: Partitioned system
	Multithreaded communication scheme
	Elastic hardware interface
	IEEE MICRO paper: Software profiling results (no acceleration)
	FPL 2014 paper: Measured throughput rates
	FPL 2014 paper: Measured power consumption
	FPGA resource utilization: Effect of reducing the offset width
	Live demo of Crystal+ acceleration on POWER8
	Slide 28
	Regex matching: Background
	Finding leftmost regular expression matches
	Contributions of this work
	Extending Sidhu & Prasanna’s architecture
	Clustering offset registers
	Leftmost match computation
	Experiments (L7 filter regexs)
	Slide 36
	Conclusions
	Slide 38

