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The importance of performance
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— Financial Data -
* Regulatory filings can be in tens of millions ?’
and several TBs Q z

— Machine data
* 1GB of app server logs per day
* A medium-size data center has tens of thousands
of servers - Tens of Terabytes of system logs per
day

Source: UCSC Lecture on Information Extraction by F. Reiss, L. Chiticariu, Y. Li, 2014
Big Data image by Camelia Boban; Social Media image by Yoel Ben-Avraham
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Spectrum of throughput

Dictionary Matching
(~ 20MB/sec/core)

Named Entity
(1MB/sec/core)

Throughput

Deep parsing
(< 25 KB/sec/core)

Y

Text analytics complexity

* The more complex the task, the slower the runtime performance
= But the higher the information accuracy

Source: UCSC Lecture on Information Extraction by F. Reiss, L. Chiticariu, Y. Li, 2014
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POWERS & CAPI

Coherent Accelerator Processor Interface (CAPI)

. . POWERS
Virtual Addressing

* Accelerator can work with same memory addresses that the processors use 228

* Pointers de-referenced same as the host application
* Removes OS & device driver overhead

Hardware Managed Cache Coherence
* Enables the accelerator to participate in “Locks” as a normal thread
* Lowers Latency over IO communication model

PCle Gen 3
Transport for encapsulated messages
Custom
Hardware
Application

FPGA or ASIC

Processor Service Layer (PSL)
Customizable Hardware (F;:cfelsegt robusl,t, qtur/able Jltntetr]facesctoAsgpllcatlons
Application Accelerator oad complexity /-content from

* Specific system SW, middleware, or user application
* Written to durable interface provided by PSL
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Hardware-accelerated text analytics IEx

IBM InfoSphere Biglnsights IBM InfoSphere Streams

SystemT Text Analytics
Compiler & Runtime

POWERS m FPGA
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Text analytics - Example

For years, Microsoft Corporation CEO Bill Gates
was against open source. But today he appears
to have changed his mind. “We can be open
source. We love the concept of shared source,”
said Bill Veghte, a Microsoft VP. “That is a
super-important shift for us in terms of code
access.”

Richard Stallman, founder of the Free Software

Foundation, countered saying ...

Source: Example by Cohen, 2003
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Text analytics - Example

For years, Microsoft Corporation CEO

was against open source. But today he appears
to have changed his mind. “We can be open
source. We love the concept of shared source,”
said . a Microsoft VP. “That is a
super-important shift for us in terms of code
access.”

, founder of the Free Software

Foundation, countered saying ...
\ /

Name Title Organizatio
n
CEO Microsoft
Sowrce: Example by Cohen, 2003 VP Microsoft
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Text analytics in IBM Crystal+: news search services
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Acceleration of Crystal+ news search services
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Produce results in real time!
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SystemT overview f ==
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Basic data structures

The CARL workshop is really awesome!
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A simple SystemT information extraction rule

* Find the names (regex) that are at most 20 chars after a title (dict.)

? Founder.............. Bill Gates
— — — Y —
Follows dict. regex
’ 1 match match
% % A% %
Regex Dictionary  start offset end offset start offset end offset

+ + )

| at most 20 chars
Text

N N
start offset end offset

Text \ Y J

result
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Annotation Operator Graph (AOG)

... Tomorrow, we will meet Mark Scott, Howard Smith, ...

! !

Dictionary Dictionary
IERYEN.  <First> <Last>
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AOG of a real-life SystemT IE query =
e e e G i

R ook ES1 R BRI ER A
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SystemT acceleration: Partitioned system

POWER System FPGA
processor memory

| Document
| buffer

| Result
| buffer A

__l Result
/ buffer B

Job
Control
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Multithreaded communication scheme

Wait for results

Wait for results

SUBMIT N
(via MMIO write) POLL
(status in memory)
v
I .
A

v
Results and status

HW scheduler . are written to memory
dispatches jobs to l

any free stream
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Elastic hardware interface
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IEEE MICRO paper: Software profiling results (no acceleration)
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* Measurements on a two socket POWERY server with 8 cores per CPU @3.55GHz

R. Polig, K. Atasu, C. Hagleitner, L. Chiticariu, F. R. Reiss, H. Zhu, H. P. Hofstee: Giving text analytics a boost. IEEE MICRO Special Issue on Big Data, 2014.
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FPL 2014 paper: Measured throughput rates
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A A A A A A SW 1thread
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mSW 1thread mSW 64threads m FPGA 4 streams

* The evaluated queries are completely offloaded to FPGA logic (no partitioning)

R. Polig, K. Atasu, H. Giefers, L.Chiticariu: Compiling Text Analytics Queries to FPGAs. FPL 2014
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FPL 2014 paper: Measured power consumption
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* The evaluated queries are completely offloaded to FPGA logic (no partitioning)

R. Polig, K. Atasu, H. Giefers, L.Chiticariu: Compiling Text Analytics Queries to FPGAs. FPL 2014
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FPGA resource utilization: Effect of reducing the offset width

» Basic data structures: spans and schemas
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- Scalability is limited by
BRAM & register usage

- 4 pipelines: 4 bytes/cycle

- 200 MHz — 800 MB/s
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Live demo of Crystal+ acceleration on POWERS

(° Higher SW performance A
* CAPI system
* Virtual addressing from user FPGA

’ Multiple cards per CPU y

[ Stratix V GX A7 ]

27

Operating System

POWER 8 ]
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Regex matching: Background

* Consider the regex .*(al|blaalaba) = Can be transformed into NFA/DFA

| |
NFA DFA
Traditional architectures do not support start offset reporting & leftmost matching:

= Reconfigurable NFAs (Sidhu FCCM 2001, Bispo FPT 2006 , Yang ANCS 2008)
* Programmable DFAs (Smith SIGCOMM 2008, Van Lunteren MICRO 2012)
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Finding leftmost regular expression matches

= Assume that we are searching for the regex .*(alaalaaaa) in the input string “aaaa”

* Find the regex match with the smallest start offset value at each end offset position

" The leftmost maches are marked using solid lines

0 1 2 3
'a’ ‘a’ ‘a’ ‘a’
N L - S - -
00 @@L (22 (33
0) (12 @3)
S~ —_—— ——

30

0.3)

matches found for 'a’

matches found for 'aa’

matches found for 'aaaa’
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Contributions of this work

1. Extending Sidhu and Prasanna’s NFA architecture to support start offset reporting
2. A graph coloring based register clustering method to minimize the register usage

3. An efficient leftmost match computation method without using offset comparisons

active[0] _l—» active{1] — activel3] activef4]
=D ‘
i J
g™
input_| b _::
char And
~a > ] activel?]
e a— "o 4
And e
Match

Sidhu and Prasanna’s NFA
Architecture

Kubilay Atasu: Resource-efficient reqular expression matching architecture for text analytics. ASAP 2014.
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Extending Sidhu & Prasanna’s architecture

* Add a start offset register to each NFA state
= offset_reg[0] = value of current offset position
* DRAWBACK: redundant start offset registers

offset_reg [0]  offset_reg [1] offset reg [3]  offset _reg [4]

active[0] _|—> active[1] — active[3] active[4]

— ™\
; f
S Y
And —-
> a <D
And ™

>1)
input__._ b _:: e
char And
\ = :
L, a|b—>—|+ ) -»_.'O?"_"’ active(?] _h
And offset_reg[2] S

Match

Baseline Architecture
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Clustering offset registers

» Build a conflict graph and apply graph coloring

= States with the same color can share registers
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Leftmost match computation

34

offset_reg [0]

offset_reg [1]

offset_reg [3]

Assume that state 0 and state 1 are active and the current input is “a”

We have to compute offset _reg[2] = MIN(offset_reg[0], offset_reg[1])

offset_reg [4]

active[0] _l—» active[1] —> aclive[3] active[4]
=)
ol )
a S
input_| b _::
char And
Ly > ) ) activel?]
> "o h
offset_reg [2] o
Match

Baseline Architecture
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Experiments (L7 filter regexs)

= Altera Stratix IV GX530KH40C2, Altera Quartus Il V11 tools
= 32-bit start offset registers, 250 MHz target clock frequency
= NFA representation: Follow Automata with character classes

= Scalability: 1000 regexs with start offset reporting on FPGAs

——Atasu et al. [2] -Optimized ——Atasu et al. [2] -+Optimized
14000 5000
4500
12000
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10000 -| 3500
8000 i ESS
2 3
-} 9 2500
o 2
Be0 o 2000
4000 1500
1000
2000 -
500
0
2 envemonnEao e s o g e n T wan e e o N YR ERARITRES
Regexs

Kubilay Atasu: Resource-efficient reqular expression matching architecture for text analytics. ASAP 2014.
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Conclusions EES

= A prototype system that accelerates execution of text analytics queries by
—utilizing POWER processors and an Altera Stratix FPGAs
—defining a flexible HW/SW interface with multi-threading support
—automating generation of query-specific hardware accelerators

= Up to 79x higher document processing throughput vs multi-threaded SW
—up to 85x better system energy efficiency vs. POWER 7 processor

* Scalable regular expression accelerator that supports advanced features
* Live demonstration of Crystal+ news search acceleration on POWERS

* Ongoing work: programmable overlay architectures to avoid re-synthesis
—enables support for interactive and complex user queries
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