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Abstract—Heating, ventilation, and air conditioning (HVAC)
ducts in buildings are typically hollow metal pipes which can
be used as waveguides to carry signals and provide the network
access to offices. Knowledge of channel properties is crucial to
designing such a communication system. This paper presents
a propagation model for a straight HVAC duct terminated at
both ends. At high frequencies this duct behaves as a multimode
waveguide with a transmitting antenna coupling in and a receiving
antenna coupling out. We derive a simple analytical expression
for the frequency response of this channel using conventional
techniques. Experimental data taken on real circular ducts excited
by monopole probe antennas confirm theoretical results. This
model represents an initial step toward the development of a tool
for planning a wireless distribution system using building HVAC
ducts.

Index Terms—Indoor radio communication, monopole an-
tennas, multimode waveguides, radio propagation, wireless LAN.

I. INTRODUCTION

T HERE are a few different ways to provide network ac-
cess inside a large office building or a residential house.

High-speed connection can be provided by Ethernet line or fiber
optics, which may be a costly option. Wireless is an attractive al-
ternative. However, design of a wireless network in large build-
ings is still a difficult task [1], [2] due to the nature of an indoor
propagation [3], [4]. As an alternative, existing infrastructures,
such as powerlines [5], [6] or phonelines [7], can be used for data
communications. Recently, Stancil and coworkers proposed to
use HVAC ducts for signal distribution inside buildings [8], [9].
HVAC ducts present a new communication channel with poten-
tially high data transmission capacity.

Usually, HVAC duct system is a network of interconnected
hollow metal pipes of rectangular or circular cross section.
An example of a typical duct used in the U.S. is a cylindrical
steel pipe of approximately 30 cm in diameter. This duct
behaves as a multimode waveguide when driven at Industrial,
Scientific, and Medical (ISM) band frequencies (902–928
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Fig. 1. Modes in a circular HVAC duct.

MHz, 2.4–2.4835 GHz, 5.15–5.35 GHz, 5.725–5.825 GHz). At
2.5 GHz, a 30.5-cm diameter circular duct can have 17 propa-
gating modes whose cutoff frequencies are shown in Fig. 1 (the
horizontal axis is a unitless parameter, where the free-space
propagation constant , is the wavelength, and is
the duct radius).

Using multimode waveguides for communications was pro-
posed in the early 1950s [10], [11]. Experimental techniques for
characterizing the mode content in multimode waveguides were
widely studied in the 1950s and 1960s by Beck [12], Forrer and
Tomiyasu [13], Lewis [14], Levinson and Rubinstein [15], and
others. One efficient way of coupling in and out of a microwave
guide is a monopole probe fed by a coaxial cable. This technique
has been mentioned as early as in the late 1940s by Marcuvitz
[16], Marchand [17], and Montgomery, Dicke, and Purcell [18].
Most researchers were interested in equivalent impedance or
current distribution on such probes. Self-impedance of a coax-
ially fed probe coupled into a waveguide was first found by
Lewin [19] and Collin [20], and then studied extensively by
Williamson [21], Rollins [22], Jarem [23], Liang and Zaki [24],
and Lee and Yung [25]. The mutual impedance of two probes
in an infinite rectangular waveguide was found by Ittipiboon
and Shafai [26] using a vector potential. Wang [27], [28] found
the mutual impedance of two infinitely thin probes in semi-infi-
nite rectangular and circular waveguides for the multimode case
using a general dyadic Green’s function. Li and coworkers [29],
[30] analyzed the mutual impedance of two probes in an infinite
rectangular waveguide with a dielectric discontinuity.

From a communications point of view, we are interested
in the frequency response of the channel between two probes
coupled into an HVAC duct system rather than in their mutual
impedance. It is known that a communication channel can
be completely characterized by its frequency response, i.e.
transfer function. The latter can in principle be found via
mutual impedance. However, mutual impedance formulas
derived by the authors mentioned above are very complex
even for special cases considered. For the purposes of design
of a wireless HVAC distribution system, it is highly desirable
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Fig. 2. Transmitting and receiving probe antennas in a straight HVAC duct with different loads on both duct ends (top) and the equivalent circuit model(bottom).

to have a simple analytical model. This model must be valid
for ducts of different cross-sections and allow to investigate
easily the frequency response dependence on such parameters
as antenna geometry, transmitter-receiver separation distance,
duct cross-section size, conductivity of the duct material,
reflection coefficient of the terminated duct ends, etc. Below
we explicitly derive such a model for the HVAC duct channel in
the case of a straight multimode duct terminated on both ends,
with a transmitting probe antenna coupling in and a receiving
probe antenna coupling out.

Section II describes the propagation model. Comparison of
theoretical and experimental results is presented in Section III.
Section IV contains the discussion of the model and its implica-
tions. Conclusions are given in Section V.

II. PROPAGATION MODEL

Consider a straight HVAC duct of rectangular or circular
cross-section, made of metal and terminated at each end as
shown in Fig. 2. Two monopole probe antennas provide the cou-
pling. Such a duct is a double-probe waveguide with a number
of propagating modes determined by the operating frequency
and the waveguide dimensions. Assume that termination loads
1 and 2 have respective reflection coefficients and for
waveguide mode , which can be frequency-dependent. The
distance between the transmitter and the receiver is, and the
respective distances to the terminated ends areand .

For a thin monopole probe, a sinusoidal current distribution
along the probe length can be assumed [25], [27], [31]

(1)

where is the current amplitude at the antenna terminals,is
the normalized current distribution on the antenna,is the radial
coordinate transversal to the probe,is the probe length, and
is the coordinate along the antenna length .

The current in the transmitting probe radiates in the wave-
guide and excites electromagnetic (EM) waves travelling for-

ward and backward. The electric fieldof these waves can be
expressed in terms of normal waveguide modes as

(2)

where is the normalized electric field of the mode, is
the mode excitation coefficient, is the complex
propagation constant, is the attenuation constant, and is
the propagation constant. Above, we assumed that the antenna
radiates in a waveguide with matched loads and thus neglected
the effect of EM fields, reflected from the ends, on the transmit-
ting antenna. We also considered only propagating (nonevanes-
cent) modes.

Fig. 2 also shows the equivalent circuit model, whereis the
antenna impedance, is the voltage of the transmitter source,
and both transmitter and receiver are assumed, for simplicity, to
have the same internal impedance (resistance)and be con-
nected to the probe antennas by matched cables. The current in
the transmitting antenna then is

(3)

Using a standard microwave technique for probe-waveguide
coupling described, see Collin [20] and Pozar [32], we can cal-
culate mode coefficients to be

(4)

where is the normalized power carried by modein one
direction and the integral is taken over the length of the probe.

The EM field at the receiving antenna can be decomposed into
the sum of normal modes. Assume that the mode coefficients at
the plane of the receiving probe antenna are. The field of
mode induces such a current in the receiving probe that
the tangential electric field due to modeis zero at the probe
surface. If the receiving antenna is identical to the transmitting
antenna, then this current can be found from the time reversal
and reciprocity principle [18] as

(5)
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Fig. 3. Experimental setup.

This current causes voltage to appear on the receiving an-
tenna. The total voltage on the receiving antenna is

(6)

where is the antenna impedance due to modeand the sum-
mation is performed over all propagating modes (evanescent
modes are neglected since antennas are assumed to be far apart).
The total average power dissipated at the receiver load is given
by

(7)

Combining (3), (5), (6), and (7) allows one to expressas

(8)

Now let us find in terms of . Each mode will experience
multiple reflections due to reflections from the loads on termi-
nated duct ends. The sum of mode coefficients at the receiving
antenna is an infinite geometric series which converges because
of the conductor wall loss and the loss at each reflection. As-
sume that no mode conversion takes place (modes do not mix
which means that the summation can be performed separately
for each mode). One can easily identify four main terms in a se-
ries and their periodical reflections as

(9)

where . After some algebra, we
obtain

(10)

When experimentally characterizing the communication
channel response, the network analyzer measurement of the
channel loss is typically done with respect to the loss in a
reference channel. If transmitter and receiver are connected
directly by a lossless matched cable, the reference measured
power is

(11)

The frequency response magnitude can then be determined
from

(12)

Combining (8), (10), and (11) allows one to obtain the final
expression for the magnitude of a frequency response

(13)

where impedances and are computed as shown in the
Appendix. Expressions for attenuation and propagation con-
stants, needed to compute, are well known for rectangular
and circular waveguides (see, e.g., Collin [20]).

III. COMPARISONWITH EXPERIMENT

To validate the model, we performed measurements on a
straight section of a circular HVAC duct 30.5 cm in diameter
made of galvanized steel. The experimental setup is shown in
Fig. 3. The antennas were thin copper monopole probes 3.5-cm
long and 1 mm in diameter, set on the straight line along the
duct length. We used an Agilent E8358A network analyzer with
an internal impedance of 50 Ohms to measure the frequency
response between the probes in the 2.4–2.5 GHz band.

Fig. 4 shows the experimental frequency response for a cir-
cular duct with open ends (approximation of matched loads).
The theoretical frequency response was computed for the case of
a duct with matched loads on both ends . In our model,
we used the radiation resistances given by (A.5) and (A.6). The
frequency response shape (number of nulls, their depth and po-
sition) depends on the excited mode distribution, the distance
between the antennas, and the distance to terminations, if any.
Recall from Fig. 1 that up to 17 modes can propagate in such
a system. The three most significantly excited modes in this
geometry are Ohm , Ohm ,

Ohm . It is mostly the interference between
these three modes that determines the specific locations of peaks
and nulls in Fig. 4. Adding more modes increases the accuracy
of the theoretical curve. In the presence of only one mode, the
frequency response would be very flat.

Fig. 5 shows the experimental frequency response for a cir-
cular duct with one end open and the other end covered by a
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Fig. 4. Theoretical frequency response (solid line) for a circular duct with two
matched ends(� = 0) and experimental frequency response (dashed line) for a
circular duct with two open ends (2a = 30:5 cm,L = 4:57 m,L = 0:25 m,
L = 10:39 m, l = 3:5 cm).

Fig. 5. Theoretical frequency response (solid line) for a circular duct with one
matched load(� = 0) and one short-circuit load(� = �1) and experimental
frequency response (dashed line) for a circular duct with one end open and
another end covered by a metal cap (2a = 30:5 cm, L = 2:43 m, L =
0:315 m, L = 0:315 m, l = 3:5 cm).

metal cap. The theoretical frequency response was computed for
the case of a duct with matched load on one end and
a short-circuit load on the other end . Again, the spe-
cific locations of nulls and peaks can be reproduced by consid-
ering only three most excited modes and their reflections from
the short-circuited end.

It can be seen that the experimental and theoretical curves
are in good agreement. The theoretical curve reproduces all
major maxima and minima observed in the experiment. Small
scale variations observed on the experimental curve are due par-
tially to mode reflections from open ends and partially to sur-
face and shape imperfections of the circular HVAC duct used
for measurements.

IV. DISCUSSION

Equation (13) specifies the magnitude of a frequency re-
sponse of the HVAC duct channel. It is presented in a form that
is valid for any antenna in a duct of an arbitrary cross-section.
The dependence on antenna parameters is contained in the
impedances of the waveguide modes. For thin probe
antennas these parameters are probe antenna length and its
relative orientation. Radiation resistances of probes in rectan-
gular or circular waveguides can be derived analytically (see
Appendix). For more complicated antenna types (e.g. post-like
structure) radiation resistances have to be computed using
other methods, such as a wire-mesh model. Dependence on
the waveguide cross-section shape and size (which define the
eigenfunctions) is contained both in the impedancesand
the complex propagation constants. Dependence on the
waveguide wall conductivity is contained only in the complex
propagation constants .

To analyze the propagation characteristics of the HVAC duct
system constructed from ducts of a certain type and for specific
types of antennas, and have to be computed or measured
only one time. Once they are determined, the dependence of the
frequency response on separation distance, distance to termi-
nations and , reflection coefficients and of termi-
nations, and impedance of the transmitter and receivercan
easily be explored. This capability is especially useful for op-
timal system design purposes which may require multiple com-
putations of the transfer function. We analyzed identical trans-
mitting and receiving monopole probe antennas but the resulting
formula can be modified to account for antennas of different
geometry.

A promising use of the HVAC communication channel is
providing high-speed network access to the offices in a large
building. The HVAC channel is practical and economically vi-
able since it uses an already existing infrastructure. The capacity
of this channel depends on the coherence bandwidth. For the
frequency response shown in Fig. 4, the coherence bandwidth
(50% signal correlation) is 11 MHz. The coherence bandwidth
generally reduces with an increase in transmitter-receiver dis-
tance due to interference between multiple propagating modes
and their reflections in the duct system. The optimal transmis-
sion scheme under these circumstances is multicarrier modu-
lation. The maximum possible data rate depends on specific
coding, modulation, and equalization schemes and can poten-
tially far exceed the maximum achievable data rate over phone-
lines and powerlines [9], [33], while providing efficient RF dis-
tribution for wireless LANs.

In derivation of the model, several approximations were
made which allowed us to obtain a closed-form expression.
The rigorous treatment of this problem would involve finding
a waveguide Green’s function and matching the boundary
conditions on the probes and on the duct ends. Real HVAC
ducts are not manufactured and joined together with the same
degree of precision as microwave guides, so some degree of
parameter uncertainty will always be present. However, we
feel that the agreement between the model and experimental
results presented here is sufficiently good to use the model
for estimating the quality of the straight duct communication
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channel. To further improve the agreement between curves
presented in Figs. 4 and 5, exact mode reflection coefficients
for an open-ended circular waveguide need to be computed, but
this task is beyond the scope of the present paper.

V. CONCLUSION

HVAC ducts are an attractive medium to use for high-speed
communications inside buildings. At high frequencies ducts be-
have as multimode waveguides which can carry EM waves. To
design a wireless HVAC distribution system, a knowledge about
the channel is needed. It is highly desirable to have a simple an-
alytical model for the channel. In this paper, we presented an
approximate, closed-form, propagation model for the straight
HVAC duct channel in the form of a multimode waveguide ex-
cited by probe antennas.

We performed experimental measurements to validate our
model and found that they confirmed our theoretical results.
While in this paper we considered an HVAC channel in the form
of a straight duct, the real HVAC duct system is much more
complicated, as it may contain tapers, bends, T-junctions, etc.
Efficient modeling of RF propagation in such a system is a chal-
lenging task. Our model should be perceived as a first step to-
ward predicting the radio coverage in ducts when designing an
HVAC wireless distribution system.

APPENDIX

The antenna impedance and impedance due to mode
, which are used in (13), include both radiation resistance and

reactance

(A.1)

(A.2)

The radiation resistance is resistance that would consume
the same amount of power that is radiated by the antenna into
the duct in all modes, if inserted in place of the antenna. Because
normal modes in a waveguide are mutually orthogonal, the ra-
diation resistance is a linear sum of radiation resistances of
all propagating modes

(A.3)

The resistance due to mode is defined similarly and deter-
mines how well an antenna couples into a specific mode. It can
be found from

(A.4)

For an antenna in a waveguide with matched loads, the radia-
tion resistance is determined by waveguide eigenfunctions and
antenna geometry. We calculated the radiation resistance due to

and modes for a thin monopole probe in a cir-
cular multimode waveguide with matched loads to be

(A.5)

(A.6)

where is the free space impedance, and
are mode propagation constants in the waveguide, is
the Bessel function of the first kind of order, is its
derivative, is the th zero of , and is the th
zero of . The above expressions contain definite integrals
which are unitless and can easily be computed numerically for
any given combination of parameters. Equation (A.5) reduces
to the one derived by Lee [25] for the mode case.

Antenna reactance is also found as a linear sum

(A.7)

where reactance due to mode can be found via the Hilbert
transform if the resistance is known

(A.8)

We computed the reactance via the Hilbert transform using a
series expansion for the band-limited case as explained in detail
in [34].
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