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Time-Frequency Distribution Analysis
of Scattering from Waveguide Cavities

Ali Moghaddar and Eric K. Walton

Abstract— Time—frequency distributions (TFD) describe a signal in
terms of its joint time and frequency content. In this paper, the TFD
analysis of the electromagnetic scattering from a circular waveguide
cavity is investigated. Two time—frequency representations, the Wigner
distribution and the running-window Fourier transform, are applied to
the frequency-domain scattering data and the results are compared. For
the cavity, propagating modes and cutoff frequencies can be determined
from the TFD, whereas neither time nor freq y repr tations will
directly provide such information.

1. INTRODUCTION

In the analysis of wideband electromagnetic scattering, it is com-
mon to obtain time-domain profiles by an inverse Fourier transform
(IFT) of the frequency response. This gives an approximation of the
impulse response of the scatterer. In some applications, it is natural to
discuss different scattering features in the frequency-domain, whereas
in other applications, the time-domain response is more appropriate.
Sometimes, however, it may be desirable to examine the mathematical
and physical properties of the scattering as a function of time and
frequency simultaneously. This is especially important for frequency
dispersive scattering such as some radar absorbing materials (RAM’s)
or frequency dispersive structures such as ducts or inlets.

For nondispersive scattering, the local maxima of the time-domain
response correspond to local scattering features, such as corners,
edges, or specular reflections [1]. For frequency dispersive features,
the corresponding impulse response will be spread in the time domain.
Because of this time spread, it may not be possible to associate such
a response to a spatially local feature of the scatterer. In such cases,
the impulse response alone cannot directly provide information about
the dispersive characteristics of the individual scattering mechanisms.

In this paper, the electromagnetic (EM) scattering from waveguide
cavities is examined as an example of frequency dispersive scat-
tering. It will be shown that time—frequency distributions (TFD’s)
provide a meaningful representation of the dispersive mechanism.
Two time—frequency representations, the running window Fourier
transform and the Wigner distribution, are applied to the scattering
from waveguide cavities. For the waveguide cavity, propagating
modes and cutoff frequencies can be readily determined from the
TED, whereas neither time nor frequency representations will directly
provide such information.

II. TFD OF A CIRCULAR WAVEGUIDE CAVITY

As an example of frequency dispersive scattering, let us consider
the EM scattering from a waveguide cavity. Referring to Fig. 1, one
can write the total scattered field as

Es = E:im + Egav + E:xts (1)
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Fig. 1. Geometry of the open-ended circular cavity and major scattering

mechanisms.

where E,,m is the field scattered by the edge of the aperture at the
open end of the cavity, and E;,(t is the scattering from the exterlor of
the cavity. The scattering from the interior of the cavity, EZ,,, is the
dominant frequency dispersive part of the total scattered signal. For
frequencies below the cutoff frequency of the cavity, Ejav does not
contribute to the total scattering. As the operating frequency increases,
the number of propagating modes and the propagation constant for
each propagating mode increase. As a result, the total scattering from
the cavity is frequency dispersive. In the following subsections, the
scattering from a circular cavity is considered for normal incidence
and for 45° incidence cases.

A. Normal Incidence Case

A 2-ft (61 cm) long, 1.75-in. (4.44 cm) diameter circular cavity
with an open end (see Fig. 1) is considered. The scattered signal is
measured (in units of radar cross section converted to normalized
voltage with relative phase) from 2 to 18 GHz at normal incidence
(@ = 0). The band-limited impulse response is computed using an IFT
of the windowed 2—18 GHz data [1]. The magnitude of the measured
frequency data and the band-limited impulse response are shown in
Fig. 2. From this figure, the scattering from the leading and trailing
ends of the cavity can be seen at —2.0 and 2.0 ns, respectively. From
the impulse response, one can also see a response spread in time
feature after 2.0 ns. This can be an indication that resonant scattering
from the cavity is present. However, neither the frequency nor the
time-domain data of Fig. 2 provide specific information about the
frequency dispersive features of the cavity.

For comparison, theoretical scattering data were also computed

using a high-frequency modal approach [2]. In computmg the the-
oretical data, only the scattermg from the rim, Enm, and scattering
from the interior of the cavity, Eja‘,, are included. The band-limited
impulse response for the theoretical data is included in Fig. 2.

To show the frequency-dispersive behavior of the cavity, the
running window Fourier transform [3] (RWFT) is computed from
the complex scattering data S(w) such that

RWFT,(t, w) = /

—o0

S(OW(w — Q)e? dQ, 0))
where a 2-GHz-wide Kaiser—Bessel window has been used for the
W (w). The magnitude of the distribution, [RWFT, (¢, w)], is shown
in gray-scale levels in Fig. 3. In the same figure, along the time
and frequency axes, the impulse response, and the magnitude of
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Fig. 2. Magnitude of the i d frequency scan data, and the band-limited

impulse response for measured and theoretical data (0° incidence, horizontal
polarization).
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Fig. 3. Running-window Fourier transform time~frequency distribution
using a 2-GHz-wide Kaiser-Bessel window. Measured data for the
1.75-in-diameter circular cavity, horizontal polarization, 0° incidence.
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the frequency response are also included. From the TFD, one can
identify the leading and trailing ends of the cavity, and the two cutoff
frequencies at 3.9 GHz and 11.3 GHz. These values correspond to
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Fig. 4. Running-window Fourier transform time—frequency distribution
using a 2-GHz-wide Kaiser-Bessel window. Theoretical data for the
1.75-in.-diameter circular cavity, horizontal polarization, 0° incidence.
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Fig. 5. Wigner time—frequency distribution for the measured data.

the cutoff frequencies for the TE;; and TE;2 modes of the 1.75-in.-
diameter circular cavity.

The shape of the response caused by each mode in the
time—frequency plane also indicates the variation of the propagation
constant with frequency. As the operating frequency is increased,
the propagation constant of individual modes approaches the free-
space propagation constant. Thus, for each mode, the time delay
corresponding to the reflection from the closed end approaches the
time delay corresponding to the exterior trailing end scattering. The
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TABLE 1
CUTOFF FREQUENCIES FOR A 1.75-IN.-DIAMETER OPEN-ENDED CIRCULAR CaviTy
Mode TEy TMp TEz T™Myy TE3; ™y TE4q;
TEo
fc (GHz) 3.95 517 6.56 8.23 9.02 11.03 11.42
Mode TEs2 TM2o TMi3 TEs; TEz TEy
T™),
fe (GHz) 11.45 11.86 13.70 13.78 14.41 15.07
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Fig. 6. Magnitude of the measured frequency scan data, and the band-limited

impulse response for measured and theoretical data (45° incidence, horizontal
polarization).

hook-shaped curves in the T-F plane are a result of this variation in
the propagation time.

The TFD for the theoretical data using the RWFT is shown in
Fig. 4. By comparing Figs. 3 and 4, one can see that the cutoff
frequencies and the general shape of the distribution for the measured
and theoretical data are very similar. From the TFD of the measured
data, one can see the external scattering from the trailing end of
the cavity at a constant time (2 ns) for all frequencies. However,
for the theoretical data, since the scattering from the exterior is not
included, the cutoff for the TE;; mode (3.9 GHz) is the starting
frequency where the effect of the closed end can be observed. It
is worth emphasizing that this information cannot be obtained by
comparing the impulse responses in Fig. 2.

Another difference between the TFD of the theoretical data and
the TFD of the measured data is the resonance behavior at the cutoff
frequencies for the theoretical data. At the two cutoff frequencies,
an apparent noncausal response can be observed for the theoretical
case only. This is actually due to the aliasing of a very late time
response which is folded into the early time region. This implies that
the theoretical model should have included some attenuation for the
internal propagating modes.

The second TFD technique applied to the cavity data is the Wigner
distribution. The Wigner distribution (WD) of the scattering data,

Fig. 7. Running window Fourier transform time—frequency distribution for
the measured data (1.75-in.-diameter circular cavity, horizontal polarization,
45° incidence).

S(w), can be computed by [4]

WD, (¢, w) = /‘°° S(w + %)S* (w - %)eim Q.  (3)

It has been shown [5] that the Wigner distribution has the highest
signal concentration in the time-frequency plane. The Wigner dis-
tribution for the measured data is shown in Fig. 5. As expected,
the Wigner distribution provides a higher resolution for the leading
and trailing ends of the cavity as well as the propagating modes.
The major disadvantage of the Wigner distribution is the presence of
nonphysical cross terms [3]. These nonphysical cross terms can be
ignored during the interpretation of the TFD if they can clearly be
identified. For some sections of the distribution, however, the cross
terms obscure the distribution to the point where it is difficult to
distinguish between the co- and cross components.

B. 45° Incidence Case

In the second experiment, the backscattering from the cavity was
measured at a 45° azimuth angle. The magnitude of the measured
signal and the band-limited impulse response for horizontal polar-
ization are shown in Fig. 6. From the impulse response in this
figure, one can identify the leading and trailing ends of the cavity.
However, no specific information about the propagating modes or
cutoff frequencies is available directly from the impulse response.
The theoretical frequency data were also computed for 45° incidence.
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Fig. 8. Running window Fourier transform time—frequency distribution for
the theoretical data (1.75-in.-diameter circular cavity, horizontal polarization,
45° incidence).

Since scattering from the exterior is not included in the theoretical
data, scattering from the trailing end of the cavity will be absent
(compare the impulse response at +1 ns for theoretical and measured
data in Fig. 6).

The TFD’s obtained by applying the running-window Fourier
transform to the measured and theoretical data are shown in Figs.
7 and 8, respectively. From these figures, a number of propagating
modes can be seen. The cutoff frequencies for the propagating modes
of the cavity are also computed and the results are summarized in
Table I. By comparing the TFD in Fig. 7 with Table I, one can identify
the particular modes which contribute to the total scattering.

HI. CONCLUSIONS

In this paper, time—frequency distributions (TFD) have been used to
evaluate the EM scattering from waveguide cavities. As an example,
the TFD of measured and theoretical backscattering from a 1.75-
in.-diameter circular cavity were examined. Two time—frequency
representations, the running window Fourier transform (RWFT) and
the Wigner distribution (WD), were compared. It was shown that
for the cavity, the dominant propagating modes can be determined
from the TFD, whereas neither time nor frequency representations
will directly provide such information.
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Impedance Matching of a Dual-Frequency
Microstrip Antenna with an Air Gap

Choon Sae Lee and Vahakn Nalbandian

Abstract—A novel microstrip antenna has been proposed to operate at
dual frequencies. The microstrip is a single layer patch with nonradiating
edges closed with a conducting foil. Resonant frequencies are altered by
varying the air gap under the patch. The separation of the resonant
frequencies can be nearly zero and has no upper limit in principle. The
input impedance is easily matched by shifting the air gap. The radiation
patterns are not affected by modification for dual-frequency operation.

I. INTRODUCTION

Microstrip antennas have many advantages over the conventional
antennas, for example, in weight, cost, and profile. The most detri-
mental aspects of the microstrip antennas, which limit more wide-
spread usage, are in their inherent narrow bandwidth. The most
popular technique to obtain a larger bandwidth is either to place
parasitic elements next to the radiating element or to stack them
vertically [1]-[3]). When the operating frequencies are widely sepa-
rated, such techniques may not provide sufficient bandwidth. In some
applications, such as in the global positioning system (GPS), only a
few distinct frequency bands are needed as opposed to a continuous
operating frequency range. The purpose of this paper is to introduce a
novel dual-band microstrip antenna. This device relies upon a single
dielectric layer instead of the widely used two-layer structure [4],
[5]. The radiation pattern of the new device is nearly identical to
that of the single-band microstrip antenna and the design procedure
is relatively simple.

Section II presents the design scheme for desired resonant frequen-
cies. The input impedance is matched at both resonant frequencies
by varying the feed location and the air gap size and location.
Experimental results are given in Section IIL

II. DESIGN SCHEME

The proposed microstrip antenna is shown in Fig. 1. The layer
thickness is assumed to be small compared with the wavelength,
and the cavity model [6], [7] is used for the design scheme. The
microstrip antenna is considered to be a lossy resonating cavity
enclosed by a perfect electric conductor for the metallic surfaces and
a perfect magnetic conductor for the radiating edge. A characteristic
equation for the resonant frequencies is obtained by imposing the
boundary conditions and the continuity conditions of the fields at the
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