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Abstract

Multi-element system capacities are usually thought of as limited only by correlations between elements. It is
shown here that degenerate channel phenomena, called “keyholes” may arise under realistic assumptions which have
zero correlation between the entries of the channel matrix H and yet only a single degree of freedom. Canonical
physical examples of keyholes are presented. For outdoor environments, it is shown that roof edge diffraction is
perceived as a "keyhole" by a vertical base array that may be avoided by employing instead a horizontal base array.

1. Introduction

Single user communication with M transmit and N receive antennas can achieve very high spectral efficiencies in
highly scattering environments [1]. For example, BLAST (Bell-labs LAyered Space-Time) communication
technique has been proposed by Foschini [2], and demonstrated experimentally by Golden, et. al. [3] and
Wolniansky, et. al. [4]. These high spectral efficiencies are enabled by the fact that a scattering environment makes
the signal from every individual transmitter appear highly uncorrelated at each of the receive antennas. As a result,
the signal corresponding to every transmitter has a distinct spatial signature at the receiver. In a sense, the scattering
environment acts like a very large aperture that makes it possible for the receiver to resolve the individual
transmitters.

The high spectral efficiency is reduced if the signals arriving at the receivers are correlated. A narrowband channel
may be described in terms of a complex channel transfer matrix H, whose entry h,,, corresponds to the response of
the n™ receiver to the signal sent by the m™ transmitter. When the entries of H are distributed as complex Gaussians,
maximum capacity is achieved when <h,,,h;*>=0 for n# and m#/. Correlation between antennas may be reduced
in actual deployments by, say, separating the antennas spatially [5,6,7]. However, it has been shown by Chizhik, et.
al. [8] and by Gesbert, et. al. [9] that low correlation is not a guarantee of high capacity. In (8] the existence of
degenerate channels, called "keyholes" has been proposed, and demonstrated through physical examples, that have
uncorrelated transmit and receive signals, and yet only a single degree of freedom. In this paper outdoor
propagation channels are analyzed to allow predictions of capacity for multiple transmitter, muitiple receiver
systems.

I.  Outdoor propagation

A.  Analysis

The outdoor environment is modeled as a dielectric slab, shown in Figure 1, which represents large-scale clutter, e.g.
houses, trees, etc. The signal radiated by the remote antennas is scattered in the vicinity of the remote and produces
a field U in the horizontal plane lying above the street where the remote is located and at the height of the top of the
large-scale clutter.

The scalar field U represents the horizontal H field in the case of vertical polarization and the horizontal E field in
the case of horizontal polarization. This scalar field representation is strictly valid only where there is no cross-
polarization coupling, but is used here for simplicity to demonstrate the effect of roof edge diffraction. As the
fading between the signals on the two polarizations is uncorrelated (Jakes [10]), the capacity is expected to be
doubled through the use of both polarizations at both the transmitter and the receiver, regardless of the strength of
cross-polarization coupling. It is assumed that the medium has no preferential treatment of either polarization [12].
The field U therefore satisfies the scatar Helmholtz equation V2U + k2U =0. The field radiated by the remote and
measured at the base station may be expressed in terms of the values of the field at the boundary which is a
horizontal plane just above the dielectric slab, by using Helmholtz-Kirchhoff theorem:
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where the G is the Greens function, §” points to the integration boundary, and r and r” point to the base station
antenna and its image, respectively. In (1) the integration is over the horizontal plane boundary. Both the field U
and the Green's function G satisfy the Dirichlet boundary condition at the top of the large-scale clutter: U=0, G=0.
This is approximately true for both horizontal and vertical polarizations for plane wave reflection from a dielectric
half space when the grazing angles are small. This is the case of interest in terrestrial communications, where the
height of the base station is small compared to the distance to the remote.

As the Greens function G is zero over the entire boundary, the second term in the integrand of (1) drops out and the
integration in (1) is then over the horizontal half-plane to the left of the gray region in Figure 1. The field at the base
may then be calculated as:
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where A is the wavelength. Using the Fresnel approximation for the distance R betwecn the base antenna (or its
image), and the high frequency asymptote for the end-point contribution from the neighborhood of x'=0, the
equation (2) may be simplified by cvaluating the integral over the X’ coordinate by means of the initial value
theorem:
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Now the integral is only over the y’ axis, which coincides with the roof edge. The equation (3) expresses the fact
that the field U measured at the base results from the diffraction of the remote field at the roof edge.
The edge field U(0,y",0) in (3) is :
1
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where G,(0.y’,0) is the Green's function due to the source m, which is evaluated at the roof edge, and includes all
the street-level scattering, and s, is the signal transmitted from the source m.

For an array of base antennas that arc all located at the same distance x from the roof edge the channel transfer
function H may be written as:
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B. Vertical base array:

When the basc antennas are arranged in a vertical array, (Xa,Yn,Zo)=(X,Y,Z,) for all n, where » is the base antenna
index. Using thesc coordinates in (5) the channel transfer matrix may then be immediately written as:
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Note that the H matrix is a dyad, providing only a single degree of freedom. This degenerate behavior results from
applying the initial value theorem to (2) to get (3). The resulting field as measured at the base station has lost all
richness in the vertical direction.

C. Horizontal base array

When the base antennas are arranged in a horizontal linear array, the x and z coordinates are the same for all the
elements: (X, Ya, Zn)=(X, ¥n, Z). It may be observed that it is not possible to factor the H matrix in the same way as
was done in the case of the vertical array in (6). The integration carried out in (5) may be seen to be a linear (and
unitary) transformation of the roof edge field U(0,y’,0) and the Greens function G, respectively. As the field at the
roof edge has undergone extensive scattering in the vicinity of the remote, the field at the roof edge is actuaily a sum
of many multipath arrivals, and may be modeled as a complex Gaussian process, following the Centra} Limit
Theorem. Received field U(r) is a linear functional of aperture field U(r’), as seen in (2). If U(r") is a Gaussian
process, so is U(r), because a linear transformation of a Gaussian process is also Gaussian. Gaussian processes are
completely characterized by their mean and covariance.

The antenna elements at the remote are assumed to be adequately separated to produce no correlation between the
remote antennas (antenna separation on the order of A/2 for isotropic scattering). Thus, the Greens functions
G,(0,y’,0) and G,(0,y’,0) are not correlated for any m#p, and, alternatively, entries of H which are in different
columns are uncorrelated. The only correlations that need be computed are between the entries in different rows but
the same column of H.

Now the mean of the field at the base due to remote antenna m is computed by taking the average of any element of
(5), and is found to be zero, provided the mean field at the roof edge is zero, (Gm 0,, 0)> =0

The field of the remote antenna m at the roof edge may be represented by an incoherent line source of intensity /(y ).
The correlation of the roof edge field is
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where the fields at two distinct points are assumed to be uncorrelated. This is an approximation which is thought to
be valid as the field is expected to be decorrelated on a scale of A/2, which is much smaller than other spatial scales.
Using (7), the correlation of the field due to source m, measured at the two base antennas (Um(’l )Um(’z).> may be

determined from the correlation of the corresponding entries of (5) that are in the same column m:
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If we assume the incoherent intensity to be of Gaussian form with the spatial scale 0, of the order of street width,
1 2 ) the correlation coefficient, obtained by normalizing (8), is also of Gaussian form:
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where y, is the distance between base antennas.

Now the stochastic process determining the channel transfer matrix H is completely specified. Given the
assumptions in this section, and for the case of the horizontal base array, the H process is seen to be a complex
Gaussian process with matrix mean zero, and zero covariance between distinct remote antennas. The correlation
coefficient between antennas has been derived in [7] based on the assumption that the angular spectrum of signals
received at the base is of width 2° at 1 km, which is equivalent to (9), if @, is set to 30 meters.. The results in [7]
may therefore be applied here without reservation. It was found that, when the base antennas are separated by 4A,
the capacity at 10% outage is 80% of that achievable in completely uncorrelated Gaussian channels. This appears to
be a reasonable compromise between base antenna array size and achievable capacity.
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1.  Conclusion

It was shown here that degenerate channel phenomena, called “keyholes™ may arise under realistic assumptions
which have zero correlation between the entries of the channel matrix H and yet only a single degree of freedom.
Decorrelation is therefore not a guarantee of BLAST performance. Of most relevance to outdoor propagation, a
diffraction-induced keyhole that is perceived by a vertical base array has been discussed and modeled in detail. A
remedy for this degeneracy is to use a horizontal array, where the antenna elements are separated enough to resolve
the scattering region around the remote. It is found to be sufficient to separate the elements by 4A, provided the
scattering region is about 30 meters in diameter (about a street width), and the remote is less than 1 km away from
the base.
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Figure 1. Canonical outdoor environment.
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