800

Analysis of the Junction Between Smooth and
Corrugated Cylindrical Waveguides in
Mode Converters

LUIZ C. pa SILVA anp M. G. CASTELLO BRANCO

Abstract —A method for the determination of the scattering matrix of
the junction between smooth and corrugated cylindrical waveguides is
developed based on the expansion of the modal fields for the corrugated
waveguide into eigenfunctions of the transmission matrix of a waveguide
unit cell. This method, used in conjunction with usual techniques for
evaluation of the scattering matrix of mode converters, is here shown to
improve the precision of results obtained by rendering uniform the
accuracy of the models applied in the calculations. Also, the analysis is
now valid for any size of corrugation depth, and the frequency band of
applicability is enlarged accordingly.

I. INTRODUCTION

The return loss and the generation of unwanted modes in
corrugated horns are essentially determined by the characteris-
tics of the mode converter located between the smooth-walled
input waveguide and the horn [1], [2]. A common type of
converter is composed of a nonuniform section of corrugated
waveguide with gradually varying slot depths. In the typical
application of conversion from the TE;; to the HE,; mode in
cylindrical corrugated horns the initial slot has a depth of A /2
and the final one a depth of approximately A /4 [3]. Wider
bandwidths and lower SWR’s can be achieved using ring-loaded
corrugations or a quarter-wave transformer at the input of the
converter [4], [5].

An accurate performance analysis of the converter, an essen-
tial procedure to validate its design, is normally made by divid-
ing the structure into several elementary sections, calculating
the scattering matrix of each section, and progressively cascad-
ing them to obtain the overall scattering matrix of the device
(1], le].

Unless the cascading process is extended up to the aperture
of the horn [7] (which requires excessive computer time), it must
be stopped at a section where the remainder of the horn can be
approximated by a semi-infinite uniform corrugated waveguide.
In this case, the last elementary section to be computed is the
junction between a smooth-walled and a corrugated waveguide.
The usual method for calculating the scattering matrix of this
junction is based on mode-matching techniques, the modes in
the corrugated waveguide being obtained from an approximate
model where the effect of the corrugations is represented by an
anisotropic impedance [1], [8], [9].

In most situations, this technique produces quite good results.
If the depth of the corrugations of the terminal corrugated
waveguide is small in comparison with a single wavelength,
however, significant errors are observed in the calculated return
loss.

The problem derives from the fact that in the adopted approx-
imate model for the corrugated waveguide, only the fundamen-
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Fig. 1. The unit cell of a corrugated waveguide.

tal mode propagating into the corrugations is considered. For
shallow corrugations, however, this fundamental mode has a
small magnitude, and higher order evanescent modes must be
taken into consideration.

In this paper, a more rigorous model, one that circumvents
the problem cited above, will be presented for determining the
scattering matrix of the junction between smooth and corru-
gated cylindrical waveguides. The model, as will be shown here,
is based on the representation of the modal fields for the
corrugated waveguide by an expansion into eigenfunctions of
the transmission matrix of a unit cell formed by a period of the
waveguide.

II. MobAL FieLps IN A CORRUGATED WAVEGUIDE

Consider a corrugated waveguide and isolate a unit cell of this
waveguide, as shown in Fig. 1. (The corrugations can be ring
loaded, as shown in the figure.) The modal fields for the
corrugated waveguide can be obtained from the eigenvectors of
the transmission matrix of the unit cell, according to the expres-
sions [10]

N
Ecn Z amé’j (la)
j=1
— N —
hcnz Z aj+N.nh/" (1b)

j=1
Here &, and iz'c,, are the modal fields of the nth mode for the
corrugated waveguide, ¢; and £; are the modal fields of the jth
mode for a smooth-walled waveguide of radius a (inner radius
of the corrugated waveguide), «; ,, is the jth component of the
nth eigenvector, and 2N is the dimension of the transmission
matrix.

The transmission matrix of the unit cell can be determined,
through algebraic operations, from the scattering matrix, and
the scattering matrix can be calculated according to [1], [2], [6],
or [7].

III. ScATTERING MATRIX OF THE SMOOTH —~CORRUGATED
WAVEGUIDE JUNCTION

Consider the junction between a circular smooth-walled wave-
guide with radius a, and a corrugated waveguide with inner
radius a. Without loss of generality, it will be assumed that
a, = a (if not, the junction can be decomposed into a discontinu-
ity between two smooth-walled waveguides, with radii @, and a,
cascaded with a smooth—corrugated waveguide junction).
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Fig. 2. Return loss as a function of frequency for the discontinuity between
a smooth-walled waveguide with an inner radius of 27 mm and a corru-
gated waveguide with an inner radius of 28 mm, a corrugation depth of
12.6 mm, a corrugation length of 10 mm, and a distance between corruga-
tions of 5 mm. ( ) Theoretical results according to the present
method; (—-—--) experimental results; (———-) theoretical results ac-
cording to [1].

The scattering matrix of the junction is given in [1]. Of
particular_interest here are the elements p,;, g,;, and r; of the
matrices P, 0, and R in [1]. Making use of (1) for the fields in
the corrugated waveguide and taking into consideration the
orthogonality between modal fields for the smooth-walled wave-
guide (&}, h;), the expressions for p;; and g;; take the form

Dij =Nt (2a)
N

q9ii = Z @it N TGy (2b)
j=1

where it is assumed that the first N eigenvalues of the transmis-
sion matrix correspond to modes propagating in the positive z
direction and the expression for 7;; is given by [1, eq. (13)].
Only a slight effort is necessary to implement this technique
into previously developed computer programs for the analysis of
mode converters, since the algorithms for the calculation of
scattering matrices are already available in such programs.

IV. EXPERIMENTAL AND NUMERICAL RESULTS

An example of a typical situation where the present method
of analysis improves the accuracy of the results is now consid-
ered. The scattering matrix of the discontinuity between a
smooth-walled waveguide with inner radius of 27 mm and a
corrugated waveguide with inner radius of 28 mm, corrugation
depth of 12.6 mm, corrugation length of 10 mm, and distance
between corrugations of 5 mm (the corrugation depth corre-
sponding to 0.12482 at 3.4 GHz) was computed. The calculated
return loss, as a function of frequency, is shown in Fig. 2. In the
same figure are also shown measured results and theoretical
results obtained according to [1] (approximate impedance model
for the terminal corrugated waveguide). It is observed that the
method proposed here produces good agreement with experi-
ment, with discrepancies less than 1.5 dB over the frequency
band. The method proposed in [1] introduces a significant error
at the lower frequencies, amounting to 8 dB at the lowest
frequency.

As a second example, the mode converter shown in Fig. 3,
with the dimensions given in Table I, was considered. The
calculated return loss, as a function of frequency, applying the
present method of analysis is shown in Fig. 4. The scattering
matrices of the sections of the converter preceding the terminal
discontinuity smooth-corrugated waveguide were determined

Fig. 3. Longitudinal section of the TE,;-to-EH,; mode converter.

TABLE 1

DIMENSIONS (IN MM) OF THE MoDE CONVERTER SHOWN IN FiG. 3
i a; by < L, OBS.

X
1 27.00 41.75 3.21 12.50
2 27.50 42.00 5.71 10.00
3 27.50 42.13 7.00 6.43
4 27.75 42.25 8.50 5.43

I
5 27.75 42.50 10.00 5.00 &

g
6 28.00 42.50 10.00 5.00 8
7 28.00 42.00 10.00 5.00
8 28.00 41.60 10.00 5.00
9 28.00 41.10 10.00 5.00 v
10 28.00 40.60 10.0 5.00 corrugated

waveguide

according to [6]. Eighteen modes in the inner waveguide and
four radial modes in the corrugations were sufficient to ensure
convergence of the results.

Also shown in Fig. 4 are the measured results and theoretical
results obtained according to [1]. Once again, the present method
of calculation produces results in good agreement with experi-
ment (discrepancies less than 1.5 dB for return losses below 30
dB). The error introduced by the approximate impedance model
reaches a value of 8.0 dB at the lower end of the frequency
band.

V. CONCLUSIONS

A rigorous method for the determination of the scattering
matrix of the discontinuity between smooth-walled and corru-
gated cylindrical waveguides was developed. The method can be
easily implemented in existing computer programs for the im-
proved analysis of the performance of cylindrical waveguide
mode converters. This method is particularly useful in mode
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Fig. 4. Return loss, as a function of frequency, for the mode converter

shown in Fig. 3. ( ) Theoretical results according to the present
method; (—-—-—) experimental results; (———-) theoretical results ac-
cording to [1].

converters terminated into corrugated waveguides with shallow
corrugations.
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Resonant Frequency of Cylindrical Dielectric
Resonator Placed in an MIC Environment

R. K. MONGIA, MEMBER, IEEE

Abstract —In this paper, an effective dielectric constant technique has
been used to determine the resonant frequency of the TE, ; mode of a
cylindrical dielectric resonator placed in an MIC environment. A suit-
able expression for €. has been reported which makes it possible to
obtain results that compare favorably with rigorous methods. A large
number of experimental results are also reported to demonstrate the
validity of the method. Finally, for a given resonant frequency, closed-
form expressions are given for computing the height of the resonator.
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Fig. 1.

I. INTRODUCTION

A typical configuration in which a cylindrical dielectric res-
onator is used in MIC’s is shown in Fig. 1. A few rigorous
methods have been reported during the last few years for
determining the resonant frequency of a dielectric resonator
placed in configurations of the type shown in Fig. 1 (e.g. [1] and
[2D. A number of rigorous methods have also been reported for
structures which are special cases of the structure shown in Fig.
1 [3]-[9]. However, all the rigorous methods are computationally
quite complex, which makes their use in practical design appli-
cations almost prohibitive. On the other hand, approximate
methods such as the dielectric waveguide model (DWM) method
[10] are simple to use but do not offer adequate accuracy.

Today’s CAD trends indicate the need for a method which
offers both simplicity and accuracy. An approximate but accu-
rate and simple effective dielectric constant technique has previ-
ously been proposed for the analysis of isolated cylindrical
dielectric resonators [11], [12]. The technique is basically an
improvement of the DWM method. In principle, the improve-
ment is similar to that offered by the EDC technique [13] over
Marcatili’s method [14] for analyzing rectangular dielectric
waveguide structures. In this paper, we use the effective dielec-
tric constant technique to find the resonant frequency of the
structure shown in Fig. 1. The technique leads to results nearly
matching in accuracy those of rigorous methods. The resonant
frequency of the resonator has been obtained by using a suitable
approximation for €. The expression reported for e is differ-
ent from the one used earlier for the case of an isolated
resonator [11], [12].

II. THEORY

We limit our attention to the lowest order TE;;; mode of
resonance, which is the most commonly employed mode of
resonance in practical applications. For this mode, only three
field components, i.e., E,, H, and H,, exist. The H, compo-
nent, from which the other field components can be derived, is
assumed to be of the following form inside the resonator at
resonance:

H,=Jy(hr)[ A, cos{B(z — H))} + B, sin{B(z — H,)}]. (1)

In the above equation J, denotes the Bessel function of first
kind and order zero. The problem of finding the resonant
frequency is one of finding wavenumbers /4 and B which also
satisfy the separation equation

h? + B =¢€,k} 2

where k, is the free-space wavenumber corresponding to the
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