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1 - Introduction

Time-frequency techniques such as the shori-time Fourier transform (STFT) and wavelet
analysis have been recently used to process wideband radar echo from complex targets {1-4]. In the
two-dimensional time-frequency plane, scattering centers, target resonances-and dispersive
phenomena can be simuitancously displayed. However the additional insights gained in the time-
frequency plane come at the cost of loss of resolution. Recently Moore and Ling [5] proposed a
windowed super-resolution procedure that would allow the paramcierization of both scattering
centers and resonances present in wideband backscattered signals. However, that procedure could
not handle data containing dispersive mechanisms.

In this paper we implement a super-resolution algorithm that allows the full paramcterization
of waveguide-type dispersion mechanisms. In our algorithm, ESPRIT [6] is used as the
processing engine. Since super-resolution methods in their original form are not equipped to
handle dispersive behaviors, additional processing is required to parameterize the data. We use
ESPRIT both in the time and frequency domain to extract the cutoff frequencies and the delays
associated with each mode. A nonlinear sampling scheme is then used to come up with an
improved estimate of the cutoff frequencies. Finally, a polynomial fit for the amplitude of each
mode is performed to fully parameterize the data. The resulting curves can be displayed in the
time-frequency plane with very high resolution.

2 - Description of the Method

In this work wc focus on phenomena related to the propagation of waves in exposed
waveguide structures such as open-ended ducts and slotted waveguides. The dispersive behavior
exhibited by these structures is due to energy that propagates in the form of waveguide modes.
Therefore signals of the form:

E(f) = zAne—iﬁﬁ\lf’—f; ".e—iZ;tfl, o

are expected. In this expression, f¢p, is the cutoff frequency of the mode, Ty is equal to the length
of the guided path for this signal component divided by the speed of light and ¢ is some other
additional delay due to non-dispersive propagation paths. The amplitude of each of these
components, A, is also allowed to be a slowly varying function of frequency. Note that in the
limit as f, approaches zero, the above expression reduces to the standard scattering center model.

The objective of this work is to extract all the unknown parameters in (1), for each of the
components present in the scattered signal, from the backscattered data. To achieve this, we first
obtain the time-domain representation e(t) of (1) using the inverse discreic Fourier transform
(IDFT). It can be shown that cach component will tend towards a complex sinusoid of frequency
Jen during the late time. Therefore we can extract a first approximation for the cutoff frequencies
from the late-time data. Once the estimates for the cutoff frequencies are in hand, we can extract
the non-dispersive scattering centers from the data. We apply ESPRIT, but now in the fréquency
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domain, using only the frequencies below the first cutoff. The respective amplitudes can be
obtained by a polynomial approximation and a simple least square estimate.

If all the remaining components are related to the same waveguide path, they will have the
same delays 7, and £, but with different cutoff frequencies. To find these delays we can examine
the group delay of a single mode:
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By sliding a small window in the frequency domain between the first and the sccond cutoff
frequencies, and applying ESPRIT for cach position of this window, we can cxtract an
approximation for the group delay for differcnt frequencies. Fitting expression (2) 1o the resulting
data (which is just a lincar least squarc estimale problem) we obtain the estimates for 7, and tp.

In the last step, we climinate the lincar delay from the expression (1) by multiplying our data
by e/2®/*, still assuming that all the components have the same delay. We obtain:

E(f)=3 Ae ™0 ®

In the time domain this expression can be wrilten as:

e)= ZB,,(«I #-1 )e”"’ V(e - 1) @

By the change of variable x = 1* = 7%, we sce that expression (4) is just a summation of
sinusoids of frequencies f;,. Therefore, we can apply ESPRIT in the x domain to extract new
estimates of fc,. We compule e(x) using a nonlincarly sampled IDFT. Now, the amplitudes Ap
can be obtained by polynomial approximation and a simple least square estimate.

Finally we can iterate the above procedure to improve the accuracy in the results. Also, a
nonlinear optimization of the values for the delays may be used. Since the estimated values are
very close 1o the optimal ones, this final fine tuning is quick and easy.

3 - Results

The algorithm described above was applied 1o the backscattered data from an open-ended
circular waveguide with a diameter of 4.445 cm. A flat conducting termination exists 60.96 cm
inside the waveguide (Fig. 1). This data was generated in the frequency domain, taking into account
the interior cavity contribution using a modal approach and the diffraction from the front rim of the
cavity using an asymptotic formula [7]. The numerical simulation was performed from 2 10 18
GHz in 0.0313 GHz steps. The time-frequency representation for this geometry has already been
presented in [1] and [2). Fig. 3 shows the STFT of the simulated data.

In Fig. 2 we see the comparison between the simulated frequency domain data and the
parameterized one. The discrepancy between these two is just 5.35 % of the total energy, with a
very good agreement between the extracted cutoff frequencies and the expected values. Fig. 4
shows the super-resolved time-frequency representation we have obtained using our super-
resolution procedure. It clearly shows the positions of the scattering center and the modal
dispersions as given in cquation (2). The intensily at each point is depicied by a gray scale
strength. We can sce that the curves plotied in this figure give a much clearer and more precise
visualization of the phenomena involved when compared to the STFT image of Fig. 3.
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Fig. 1. Geometry of the open-cnded circular waveguide cavity
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Fig. 2. Comparison between simulated data and parameterized data.
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Fig. 3. STFT of simulated data.
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Fig. 4. Super-resolved time-frequency display.
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