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Abstract—In this paper we express signal correlation in a 

waveguide in terms of waveguide modes. We investigate the 
effect of waveguide dimensions, element location and attenuation 
on transmitter and receiver correlation. An analytical approach 
for the calculation of the signal correlation is proposed, and the 
results are verified with simulations. Good agreement is achieved 
as well as huge savings in computation time. The analytical 
method provides intuitive explanation for the capacity behavior 
of a MIMO system in a hallway environment. 
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I. INTRODUCTION  
In recent years, a lot of attention has been drawn to 

multiple input- multiple output (MIMO) systems, because they 
can achieve very high spectral efficiencies [1]. This is 
especially important in wireless applications that are power, 
bandwidth and complexity limited. Several techniques that 
require advanced signal processing at the receiver (and 
possibly the transmitter) have been developed and have been 
demonstrated to achieve a hefty portion of the theoretically 
achievable capacity [2].  

Assume a system with M transmitters and N receivers. 
Each transmitter sends an independent data stream with power 
Ex, so that the total transmitted power is Pt =M Ex. Let T be 
the channel transfer matrix, i.e. let Tij be the channel gain from 
transmitter j to receiver i. If we assume independent zero mean 
additive Gaussian noise of power σ2 on each receiver, the 
generalized Shannon capacity of this MIMO system is  

C=log2[ det(I + (Ex/σ2) TTH) ]                                         (1) 
where TH is the Hermitian (complex conjugate transpose) of 
the matrix T. 

The theoretical analysis conventionally treats the wireless 
channel between each transmitter and each receiver as a 
random process. A common assumption is that of a rich 
scattering environment, where power arrives with a uniform 
angle of arrival over [0, 2π], which leads to Gaussian 
distributed elements of T. It has been theoretically and 
experimentally demonstrated that correlation of the elements 
of T leads to lower channel capacity [3-5].  

Although general wireless environments are hard to model 
in a deterministic fashion, the waveguide model can be used 
as an approximation to describe the environment of a hallway. 
Propagation in this case can only occur in the waveguide 
modes and the channel transfer function for a given 
transmitter/ receiver pair is uniquely determined by the 
location and polarization of the transmitting/ receiving 
elements. It has been experimentally observed that the channel 
capacity is limited in a hallway [6], and the result has been 
theoretically interpreted with waveguide mode analysis [7]. 

In this paper we apply correlation calculations to the 
waveguide model, in order to provide an alternative 
explanation for the low capacity results in a hallway. 

II. SYSTEM MODEL AND NOTATION 

A. MIMO Capacity in terms of waveguide modes  
Assume a waveguide of rectangular cross-section. The 

waveguide has dimensions a, b along the x- and y- axis 
respectively and is assumed of infinite length along the z-axis. 
The solution to Maxwell’s equations in this structure are 
functions of the form cos(kx(m)x)sin(ky(n)y). A signal of 
frequency f excites all modes (m,n) with gains amn. A mode 
propagates without losses if the signal frequency f is above the 
cut-off frequency fc. If the frequency is less than the cut-off, 
then the mode is attenuated at a rate βz (evanescent mode). For 
a given frequency, let L be the number of allowable 
propagating modes. 

Following the analysis of [7], the electric field at any point 
(x, y, z)- z>0- is given by an equation of the form E(x or y) = 
pTA=ATp, where A is the vector of propagating mode 
coefficients (both TE and TM appropriately ordered) at z=0 
and the vector p depends on the location and the polarization 
of the receiver.  

Assume Nt sources, each one of which gives rise to a 
vector A. Let A be a matrix the columns of which are those 
excitation vectors A (this is an LxNt dimensional matrix). 
Assume also that Nr receivers are placed at different (x,y,z) 
locations. Let P be the matrix the columns of which are the 
position vectors p at the receiver locations. Under the 
narrowband assumption, the channel transfer matrix from the 
Nt transmitters to the Nr receivers is the matrix is T=PTA. 

0-7803-7467-3/02/$17.00 ©2002 IEEE. 787



B. Correlation definitions 
Let Tij be the channel complex gain between transmitter j 

and receiver i. The complex correlation coefficient of Tij and 
Tkl is defined as 

It is interesting to observe that two kinds of correlation 
affect the capacity of a MIMO system: 

� Transmitter correlation: ρxmtr=ρ(Tij, Tik), 
� Receiver correlation     : ρrcvr=ρ(Tij, Tkj) 

Using the channel transfer matrix definition introduced in 
section IIA, receiver correlation depends on the receiver 
location vector p, while transmitter correlation depends on the 
excitation vector A. 

III. METHODOLOGY 

A. Receiver Correlation 
For a given excitation vector A, let u, v be the values of the 

electric field at two locations r and r+dr. Without loss of 
generality, we assume that the receivers are on the same z-
plane and that they pick up the same component of the electric 
field (Ex or Ey). Let rxy =(∆x, ∆y) be the projection of r onto 
the xy plane. We derive an expression for the correlation for a 
separation along either the x- or the y- axis (∆y=0 or ∆x=0 
respectively). The random variable in this case is the location 
rxy over the allowable portion S of the waveguide cross-section 
C, i.e. S={rxy, such that rxy, rxy+drxy ∈C}. We assume uniform 
distribution of r on S. Then:  
u = E(x or y)(r)=ATp(r), v = E(x or y)(r+dr)= ATp(r+dr) 

The purpose of this study is to express the correlation of u 
and v in terms of the waveguide modes. Let us define the 
following auxiliary vectors and matrices: 

E[u]=E[ATp(r)]= AT E[p(r)]= ATC=CTA 
E[v]=E[ATp(r+dr)]= ATE[p(r+dr)]= ATD=DTA 
|E[u]|2=(E[u])*(E[u])= AH C* CTA = AH F A 
|E[v]|2=(E[v])*(E[v])= AH D* DTA = AH G A 
E[|u|2]=E[u*u]= AH E[p(r)* p(r) T]A = AH J A 
E[|v|2]=E[v*v]= AH E[p(r+dr)* p(r+dr) T]A = AH H A 
E[uv*]=E[ATp(r)pH(r+dr)A*]=ATE[p(r)pH(r+dr)]A*=ATQA 

where 

Then the correlation can be expressed as 

The exact expressions for the elements of the auxiliary 
vectors and matrices can be found in [8]. 

B. Transmitter correlation 
1)Mode excitation 

For the case of the transmitter correlation we need first to 
express the excitation vector A in terms of the transmitter 
location. The waveguide modes are functions of the form 
cos(kx(m)x)sin(ky(n)y) and define a set of orthogonal 
eigenfunctions for the waveguide structure. The source 
excitation can then be written as a scaled sum of these 
eigenfunctions, where the scaling coefficients correspond to 
the projection terms. These projections are defined for all (m, 
n), however the modes (m, n) that do not satisfy the 
propagation condition are evanescent modes and are assumed 
to be sufficiently attenuated and can be ignored. 

Let us assume that a transmitting antenna at a location (x0, 
y0) is a point source that produces a delta function field along 
the x- or the y- direction. The exact expressions for the mode 
excitation coefficients can be found in [6]. In reality, the 
source excitation is not a delta function and other factors such 
as the antenna gain pattern should be taken into consideration. 
However this can be performed by integration of the 
expressions for the delta function excitation. 

2)Problem formulation 
The formulation is similar to the one in Section IIIA. For a 

given receiver location p, let r and r+dr be the locations of two 
transmitters. We define: 

E[u]=E[pTA(r)]= pT E[A(r)]=pTC=CTp 
E[v]=E[pTA(r+dr)]=pTE[A(r+dr)]=pTD=DTp 
|E[u]|2=(E[u])*(E[u])= pH C* CTp = pH F p 
|E[v]|2=(E[v])*(E[v])= pH D* DTp = pH G p 
E[|u|2]=E[u*u]= pH E[A(r)* A(r) T]p = pH J p 
E[|v|2]=E[v*v]= pHE[A(r+dr)* A(r+dr) T]p =pH H p 
E[uv*]=E[pTA(r)AH(r+dr)p*]=pTE[A(r)AH(r+dr)]p*=pTQp 

Then the correlation can be expressed as 
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The exact expressions for the elements of the auxiliary vectors 
and matrices can be found in [8]. 

It is interesting to observe that the correlation coefficient 
depends on the exact location of the receiver. However one 
can take the expectation of the correlation expression over the 
cross-section of the hallway and derive an average value for 
the correlation coefficient. A similar calculation could not be 
performed for the receiver correlation coefficient because one 
would need a distribution over the space of excitation vectors. 

IV. EXPERIMENTAL VALIDATION 
The signal correlation over the cross-section of the hallway 

was also calculated by simulation in order to verify the 
correctness of the theoretical results. The fields u and v were 
calculated over a grid of NxxNy points that uniformly covers 
the cross-section C of the hallway, and the correlation of u, v 
was then computed over this ensemble set.  

The Nyquist sampling criterion states that the minimum 
sampling frequency is double the maximum signal frequency. 
In our case, the signals vary periodically in two-dimensional 
space, and the maximum spatial frequencies are  

So  Nx>mmax,Ny>nmax.  
Figure 1 shows the results of the comparison for receiver 

correlation in a waveguide of dimensions a=0.7λ, b=1.4 λ, 
where all the modes are equally excited (grids:10x10 and 
100x100). 

Fig. 1: Verification of theoretical results 

Both methods provide similar results, and as the fineness 
of the grid increases, the experimental method approaches the 
theoretical results. The experimental method requires in the 
order of (NxNy +L NxNy) operations, whereas the theoretical 
calculation requires in the order of (3L2+2L) calculations. 
Given that L<mmaxnmax, and Nx>mmax, Ny>nmax, it is obvious 
that the theoretical calculation is preferable. This is especially 
true for large over-moded waveguides. 

V. EFFECT OF GEOMETRY & ATTENUATION   

A. Effect of waveguide dimensions 
Assume that all the modes are equally excited with 

amplitude 1 and the same phase. We study two sizes of 
waveguides (for convenience all dimensions are given with 
respect to the wavelength): 
� Small waveguide: a=0.7 λ,b=1.4 λ. Allowable 

modes: TE:(0,1), (0,2), (1,0, (1,1), TM: (1,1) 
� Medium waveguide: a=5 λ, b = 10 λ. Allowable 

modes: 172 TE and 142 TM modes. 

Fig. 2: Receiver correlation vs. ∆∆∆∆x in a small waveguide 

Fig. 3: Receiver correlation vs. ∆∆∆∆x in a medium waveguide 

The existence of more allowable modes in a larger 
waveguide gives rise to more ripples in the correlation 
dependence on separation. Also, the correlation coefficient is 
not a monotonically decreasing function of separation. This is 
due to the mode spatial distribution that is symmetrical or anti-
symmetrical around the center of the waveguide. In a larger 
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waveguide the range of separations over which the correlation 
is low (normalized to the total waveguide width) is also larger. 
Finally the range of separations over which the correlation is 
low depends on the component of the electric field that the 
receivers pick up. 

B. Effect of receiver location 
Figures 4 and 5 show the dependence of the transmitter 

correlation on the receiver location for transmitter antenna 
separations of ∆x = λ/2 and ∆x = 4λ respectively, in a wave-
guide of dimensions a=5λ, b=10λ. 

Fig. 4: Transmitter correlation for Ex field and ∆∆∆∆x= λ λ λ λ /2 

Fig. 5: Transmitter correlation for Ex field and ∆∆∆∆x=4 λ λ λ λ 

The larger the transmitter separation, the larger the 
transmitter correlation dependence on the receiver location. 

C. Effect of attenuation 
The above analysis has been performed in the absence of 

attenuation. In reality, the dielectric material in the waveguide 
and the finite conductivity of the waveguide boundaries 
introduce losses. The precise expression for these losses can 
be found in [9].  

An equivalent treatment of the problem that would better 
describe high losses is to assume a certain (field) reflection 
coefficient R<1 off the walls of the waveguide. Let the 
reflection coefficients for the electric fields on the boundaries 
parallel to the x- and y- axis respectively be Rx, Ry. Each 
propagating mode corresponds to a certain direction of 
propagation as described by the propagation vector k = (kx, ky, 
kz), |k|=2π/λ, kx=mπ/a,kx = nπ/b. It has been shown in [6] that 
a mode (m, n) is attenuated at a rate 

Fig. 6 and 7 show how the receiver correlation varies with 
distance along the waveguide and separation ∆x under the 
assumption of no attenuation (figure 6) and R=0.9 (figure 7). 
The analysis is performed for a waveguide of dimensions 
a=0.7λ, b= 1.4λ, assuming that all the modes are equally 
excited. 

Fig. 6: Receiver correlation for Ex with a separation along 
the x-axis without attenuation 

 
 
 
 
 
 
 
 
 

 

 

Fig. 7: Receiver correlation for Ex with a separation along 
the x-axis and R=0.9 
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Without losses, the correlation coefficient varies 
periodically with the distance along the hallway. This is due to 
the exponential dependence of the modes on z, and the same 
effect has been observed for the capacity dependence on 
distance in [7]. In the case of attenuation, the higher order 
modes (that correspond to more reflections per unit length) 
decay faster. At large distances, there are few significant 
modes, which do not allow enough degrees of freedom for the 
field to vary over the cross-section of the waveguide, and 
therefore the correlation coefficient approaches 1. The value 
of the reflection coefficient determines the rate at which the 
reflection coefficient increases. 

D. Effect of excitation 
In the examples studied above, all the modes have been 

assumed to be excited with the same amplitude and phase. 
Here, we assume that all the modes are excited with the same 
amplitude, and we explore the effect of phase randomization.  

Fig. 8: ρρρρrcvr (excitation: equal amplitudes and phases) 

Fig. 9: ρρρρrcvr (excitation: equal amplitudes, random phases) 

Figure 8 shows the amplitude and the phase of the receiver 
correlation coefficient when all the modes have the same 
phase (0o) and figure 9 performs a similar analysis for the case 
where they have the same amplitude but random phases 
(uniformly distributed over [0, 2π]). The calculations have 
been performed for the case of a small waveguide (a=0.7λ, 
b=1.4 λ) and for receivers picking up the x-component of the 
electric field. 

The introduction of phase randomization introduces a 
randomization in the phase and amplitude of the correlation 
coefficient as well. However the general trend with separation 
is preserved. 

VI. CONCLUSIONS 
In this paper, an analytical way to compute signal 

correlation in a waveguide structure has been proposed. The 
theoretical results have been verified by simulations. The size 
of the waveguide determines the width over which the receiver 
correlation coefficient is low. Moreover, the orientation of the 
receiver antennas affects the receiver correlation. Also, the 
value of the transmitter correlation for a given transmitting 
element separation depends on the exact receiver location. 
Finally the existence of losses (finite reflection coefficient off 
the waveguide boundaries < 1) increases the correlation 
coefficient. This is another way to account for the low MIMO 
capacity that has been experimentally observed in a hallway 
environment.  

The results can be refined to include the reflection 
coefficient dependence on wave polarization and angle of 
incidence, and can be extended for the case of coupled 
waveguide modes. 
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