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Abstract- Systems with multiple element transmitter 
and receiver arrays have been shown to achieve very 
high spectral efficiencies. This is especially important 
in wireless applications that are power, bandwidth and 
complexity limited. The achievable capacity depends 
on the channel between the transmitters and the 
receivers, and a common assumption is that of a rich 
scattering environment. However an environment such 
as a hallway is more closely approximated as a 
waveguide, and we will look into the limitations this 
poses on the achievable rates. We will first show that 
the number of allowable propagation modes in a 
lossless waveguide limits the number of equivalent 
spatial sub-channels. We will then apply a similar 
analysis to a lossy waveguide, where the losses are 
due to imperfectly conducting boundaries and 
imperfections in the dielectric. For demonstration 
purposes we will show these effects for a waveguide 
of small dimensions. A hallway, which is a more 
practical environment for wireless applications, can be 
treated as an overmoded waveguide. In a hallway the 
losses are higher because the boundaries are dielectric 
materials that allow high power leakage. We will 
again demonstrate the above effects, taking into 
account the losses off the walls. 
 

I. INTRODUCTION 
 
Assume a system with Nt transmitters and Nr 
receivers. Each transmitter i transmits an 
independent data stream xi.  The total transmitted 
power is Pt and is equally distributed on all the 
transmitters.  Let Ex be the power from each 
transmitter (Pt = Nt Ex). 
If  the channel is narrowband, the channel gain 
between transmitter i and receiver j is a scalar Tji.  
Let yj be the received signal on receiver j, and let 
y be the Nr -dimensional vector of all the 
received signals. The transmitted and the 
received signals are related by an equation of the 
form  y  = Tx + n, where n is the noise vector 
(the channel transfer matrix T is NrxNt 
dimensional).  
The above notation also holds for the base-band 
representation of the signals and the channel, so 
the elements of x, y, n, T can be complex. 
The noise is assumed to be additive white noise 
with mean zero and variance σ2 and its 

components are assumed to be independent 
across the receivers. 
The mathematical expression for the channel 
capacity when there is no channel feedback to 
the transmitters is 
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We re-write the matrix T in its singular value 
decomposed form T=SUVH. The matrices S, V 
are unitary and the matrix U contains the 
singular values of T. Then TTH = SΛSH, where 
the matrix Λ is diagonal, and 
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where the λi’s are the absolute values of the 
singular values of T squared.  
The number of non-zero eigenvalues is the rank 
K of the matrix and ),min( rt NNK ≤ . In 
essence the channel is equivalent to K parallel 
scalar sub-channels, each of gain λi. 
The maximum achievable capacity for a given 
average signal to noise ratio ρ can be shown to 
be 
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and is attainable when all the subchannels have 
equal gains. 
It is commonly assumed in the literature that the 
wireless channel can be modeled as a rich 
scattering environment. Recent analysis ([2], [3]) 
however describes situations that indicate the 
potential limiting behavior of the channel. In this 
paper we will illustrate such a scenario.  
We will use the theoretical capacity of multiple 
input- multiple output (MIMO) systems, and we 
will apply it to propagation in a waveguide.  
Section II contains the mathematical formulation 
for lossless waveguides and section III extends 
the analysis to lossy waveguides. Section IV 
applies these results to a waveguide of small 
dimensions for illustration purposes. Section V 
shows how these results change when they are 
applied to a hallway, if we treat it as an over-
moded wave-guide.  Section VI summarizes our 
conclusions. 
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II. THEORETICAL ANALYSIS FOR A 
LOSSLESS WAVEGUIDE 

 
In a waveguide of rectangular cross-section, we 
define a coordinate system where the x- and y- 
axes are aligned with the sides of the wave- 
guide, the z- axis runs along the wave-guide and 
the origin is at the lower left corner of the 
rectangular cross-section. Let the dimensions of 
the cross-section be a, b in the x- and y- 
directions respectively. We distinguish two kinds 
of propagating modes: the transverse electric 
(TE) and the transverse magnetic (TM) modes, 
that have a zero component of the electric and 
the magnetic field along the z-axis respectively. 
The electric field for each mode is described by 
the following equations: 
 

TABLE I 
FIELD CHARACTERISTICS FOR TE AND TM MODES 
 TE TM 
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Both TE and TM modes have the same x- and y- 
dependence. 
For given waveguide dimensions, a mode (m,n) 
propagates without losses if the frequency ω is 
above the cut-off frequency ωc, with a 
propagation constant in the z direction kz. If the 
frequency is less than the cut-off, then the mode 
is attenuated at a rate αz.  
Let us order the modes in terms of their cut-off 
frequencies. So from now on a mode index i will 
correspond to a TE or TM mode (m(i), n(i)) such 
that ωc(i)≤ ωc(j), i≤j, and T(i)= TM or TE.   
For a given frequency in this waveguide, let L be 
the index of the highest-order allowable 
propagating mode. 
Let a source be placed sufficiently far from the 
plane z=0, so that at that plane the evanescent 
fields have disappeared. Assume that the source 
is excited by a sinusoid at frequency ω and let A 

be the vector of the resulting mode coefficients 
at z=0 ( [ ]T

LAAAA ...21= ). 
The coefficients Ai can be complex numbers to 
account for the different phases, and they depend 
on the position of the source, and the distance 
between the source and the plane z=0. In essence 
the vector A is equivalent to the channel transfer 
function. Under the narrowband assumption if 
the source were transmitting a signal of the form 
g(t), the resulting mode coefficients at the plane 
z=0 would be Ag(t) . 
At any point (x, y, z) with z≥0, the electric field 
is given by the following equations 
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The factor δ is in accordance to the type of the 
mode according to Table 1. A similar expression 
can be derived for the z component of the TM 
modes, but, without loss of generality, we will 
concentrate on the x and y components. 
The electric field is a sum of exponential terms. 
These will for some values of z add in phase and 
for others out of phase, therefore the electric 
field wil be periodic in z for x, y constant.  
Each component of the electric field can be 
written as the inner product of the vector A and a 
position-dependent vector p. So 
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We can further separate the z dependence by 
writing 
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If we assume Nt sources, each one of them gives 
rise to a vector of the form of the vector A at the 
plane z=0. Let A  be a matrix the columns of 
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which are those excitation vectors A (this is an 
LxNt dimensional matrix). 
Now assume that Nr receivers are placed at 
different (x,y,z) locations, and that each one of 
them can pick up either the x- or the y- 
coefficient of the electric field (this is equivalent 
to assuming that small electric dipoles are placed 
at these locations). Let VP,  be the matrices the 
columns of which are respectively the position 
vectors vp,  defined at the receiver locations. 

Whether )(, xx vp  or )(, yy vp  is selected depends 

on whether the receiver picks up the x- or the y- 
component of the electric field. Then the channel 
transfer matrix from the Nt transmitters to the Nr 
receivers is the matrix is 

APT T=  
So the channel capacity can be written as 

))(det(log *
22 PAAP

N
P

IC HT

t

t

σ
+=    (4) 

If moreover all the receivers are on the same z 
plane (z=zR), we can write 
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For the same reasons that the electric field is 
periodic with z, the capacity is expected to be 
periodic with z as well. 
The rank K of the matrix T is now bounded by 

),,min( LNNK rt≤  (not ),min( rt NNK ≤  as in 
section I). So L now limits the number of finite 
amplitude parallel spatial channel dimensions 
that can be created to communicate over the 
channel.  
 

III. THEORETICAL ANALYSIS FOR A LOSSY 
WAVEGUIDE 

 
There are two fundamental sources of loss in a 
waveguide: imperfectly conducting boundaries 
and lossy dielectric. 
In the case where the conducting boundaries are 
imperfect, an exact solution would require 
solution of Maxwell’s equations in both the 
dielectric and conducting regions. Because this 
procedure is impractical for most geometrical 
configurations, we take advantage of the fact that 
most practical conductors are good enough to 
cause only a slight modification of the ideal 
solution. We therefore assume that power decays 
exponentially with distance and the attenuation 
constant is the ratio of the power loss per unit 
length to the average power transfer.  

TABLE II 
ATTENUATION FOR TE AND TM MODES 
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Similarly we can define the power loss due to 
imperfect dielectric.  

( )212 ff c

d
−
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It is interesting to note that the form of the 
attenuation produced by an imperfect dielectric 
is the same for all modes and all shapes of 
guides, although the amount of attenuation is a 
function of the cutoff frequency, which does 
depend on the guide and the mode.  
The total power loss is the sum of the above 
contributions. Let dc ααα += . The losses can 
be incorporated in the formulation of the 
previous section in the matrix Z  that 

becomes )( ))()(( zijki
L

zediagZ +−= α                   (8). 

It is useful to observe that the higher order 
modes have higher cut-off frequencies and 
higher attenuation coefficients. This indicates 
that they decay faster than lower order modes 
and the effective rank of the matrix 

L
Z is less 

than L. The number of equivalent parallel sub-
channels diminishes with distance and so does 
the channel capacity. 
 For conventional waveguide materials, the 
losses are small and the degradation in average 
received power and the consequent capacity roll-
off only becomes noticeable at high distances.  
An equivalent treatment of the problem that 
would better describe high losses is assuming a 
certain (field) reflection coefficient R<1 off the 
walls of the waveguide. Each propagating mode 
corresponds to a certain incidence angle on the 
boundaries, i.e. a certain number of reflections 
per unit length.  So for a mode (m, n) 
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IV. DEMONSTRATION OF THE CAPACITY 

ANALYSIS FOR SMALL WAVEGUIDES 
 
Our purpose is to illustrate the capacity 
periodicity with z, its dependence on the mode 
excitation, and the receiver location. For 
simplicity we normalize all distances to the 
wavelength, and we look at square systems 
(same number of transmitters and receivers).  
Assume a rectangular waveguide of dimensions 
a=0.7λ, b=1.4λ. The allowable modes are: 
TE: (0,1), (0,2), (1,0), (1,1) 
TM: (1,1)  
We will concentrate on a system with two 
elements on each side, and we will observe that 
capacity depends on distance, the locations of the 
receivers and the kind of excitation. Both 
receivers are assumed to be on the same z-plane. 

Fig. 1. Capacity of a 2x2 system for different excitations and 
receiver locations 

Fig. 1 shows the results for two different kinds of 
excitation. In the first case, both transmitters 
excite only the (0,1) mode with the same power, 
and in the second, one transmitter excites the 
(0,1) mode and the other one the (0,2) mode.  In 
the first case we are forcing the rank of the 
matrix T to be 1. 
We also look at two sets of receiver locations. 
The first one again limits the effective rank of T, 
by using two locations that have the same y-
dependence. Since we are looking at (0,n) 
modes, the x-location of the receivers is not 
significant. 
We observe that the channel capacity is indeed 
periodic with z, with the same period for both 
excitations and receiver locations (for the case of 
a single excited mode, the capacity is still 

periodic, but the variation is too small to show in 
the scale of the above axes). The range within 
which the capacity varies is different because the 
spread of the eigenvalues of the matrix T  is 
different.  
Exciting a single mode results in poor capacity 
performance and leads to higher capacity 
variation with distance. Placing the receivers at 
locations that have the same y-dependence also 
limits the rank of the transfer matrix, and 
therefore the channel capacity.  
The effects of excitation and location are not 
separable. A system designer should take the 
combined effect into account when designing a 
MIMO system in such an environment. 
 

V. WAVEGUIDES OF  PRACTICAL 
DIMENSIONS 

 
We have demonstrated that the number of 
allowable propagating modes in a waveguide 
limits the channel capacity. A rough measure of 
the number of such modes is the ratio (4ab)/λ2. If 
we consider the frequency band around 2GHz 
where current wireless systems operate, then the 
wavelength is of the order of 15cm. Given that 
most hallways are around 1.5m wide and 3m tall, 
there are about 1200 allowable modes (this 
number is nearly doubled if we consider both TE 
and TM). The number of allowable modes is not 
the true limiting factor. However in a hallway 
environment, the main source of loss is the loss 
through the walls. Commonly walls are dielectric 
materials and allow high penetration. Although 
there is still a large number of available modes, 
losses now are considerable and limit the number 
of significant propagating modes.  
We will assume that the reflection coefficient is 
the same for all surfaces. This is not exactly true 
because of the different dielectric properties of 
the floors/ ceiling tend relative to the walls. It is 
a first order approximation to illustrate the 
effects we are looking at. 
The following plot shows the capacity of a 6x6 
system in a hallway of dimensions a=10λ, 
b=20λ, which would correspond to a 1.5mx3m 
hallway at 2GHz. In this case there are 1250 
allowable modes, and we are assuming that each 
transmitter excites the modes in such a way that 
the excitation vectors are orthogonal. The 
receivers are arranged on a 2x3 orthogonal grid 
that uniformly spans the cross-section of the 
hallway. Fig. 2 presents the results for the cases 
where there is no loss (R=1), low loss (R=0.9) 
and high loss (R=0.5). 
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Fig. 2. Capacity dependence on distance in an overmoded 
lossy waveguide 

 
We observe that the system capacity has a wilder 
variation with distance. This is because it is a 
sum of a large number of sinusoids of different 
frequencies (different kz ’s). We also observe that 
the higher the loss, the faster the capacity 
degradation, because the average signal power 
falls faster. However the capacity for both lossy 
situations seems to stabilize at high distances, i.e. 
when the high-order modes are sufficiently 
attenuated and the low order modes dominate.  
  

VI. CONCLUSIONS 
 

In this paper we have illustrated a situation 
where the propagation environment inherently 
limits the achievable capacity of a multiple 
input- multiple output system.  
We analytically showed that in a waveguide the 
number of allowable propagation modes limits 
the number of equivalent spatial sub-channels.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Similar analysis for a lossy waveguide indicates 
that losses make the higher-order modes less 
significant, which in turn limits the achievable 
channel capacity. We have demonstrated how the 
location of the receivers and the excitation 
affects the system capacity performance in 
waveguides of small dimensions where the 
number of allowable propagating modes is 
limited.  
A hallway, which is a more practical 
environment for wireless applications, can be 
treated as an overmoded waveguide. However 
the losses are higher because the boundaries are 
dielectric materials that allow high power 
leakage. In that case the limiting factor is not the 
number of allowable modes but the high 
attenuation that limits the number of significant 
modes. 
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