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Abstract

This work studies the nature of super-resolution, the phenomenon of resolution beyond the diffraction limit, which
has been experimentally and numerically verified for acoustic and electromagnetic waves. The prospect of subwave-
length resolution at optically large observation distances is investigated. Two conjectures as to how super-resolution
can be attained are evaluated and tested. The first conjecture underscores the unraveling of the phase accumulations
during multiple scattering of propagating waves whereas the second relies on the conversion of evanescent spectrum
to propagating waves that can be observed at the far-field.

I Introduction

Super-resolution is a curious nonlinear inverse scattering phenomenon which enables us to resolve objects far smaller
than the wavelength used to probe them. Since the early 90’s, it has been demonstrated through experiments and
numerical simulations not only in the electromagnetic realm [1–5] but also in the acoustic realm [6–8]. A better
understanding of super-resolution may lead to major advances in nondestructive testing, remote sensing and in the
inverse algorithms themselves as discussed briefly in the conclusions. However, to the authors’ knowledge, such a
study has not been undertaken, mainly owing to its nonlinear nature which precludes an analytical approach. This
nonlinearity is mainly due to multiple scattering. Hence, it is essential to understand the effects of multiple scattering
in order to understand super-resolution, but the former can be analyzed mainly through numerical simulations. In this
work, we assume the 2D TM problem governed by the scalar wave equation to facilitate insight into the phenomenon.
We also assume thee−iωt time-dependence and that noa priori information is available concerning the location and
contrast of the objects to be reconstructed.

We define the diffraction limit, also called the Rayleigh criterion, to beλ/4 rather than the widely assumedλ/2.
This is because the scattered fieldEz can be expressed as the Fourier transform of the object or contrast function
O(ρ′) = k2(ρ′)− k2

o with the Born and far-field approximations [9]:

Ez ∼
∫

dρ′e−(kr−kt)·ρ′
O(ρ′). (1)

Here,kr = koρ̂r andkt = −koρ̂t are related to the receiver and transmitter positions denoted byρ̂r andρ̂t respec-
tively. By the Nyquist criterion, variations in the object function can happen only if

∆ρ′ >
π

max |kr − kt|
=

λ

4
(2)

where we assume thatkr = kt = ko = 2π/λ. Thus, with a suitable receiver-transmitter configuration, quarter
wavelength resolution can be achieved by diffraction tomography alone.

The two possibly corroborating conjectures that will be tested in this study are:

1. Propagating waves undergo multiple scattering within subwavelength distances and hence accumulate a phase
that is a function of such distances. The unraveling of these phase effects by an inverse solver lies behind
super-resolution. Indeed, there are even reconstruction schemes such as [10] that rely on the unwrapping of
phase.

2. The evanescent near-field spectrum undergoing multiple scattering is converted into propagating waves. Thus,
the far-field pattern contains much higher spectral content, albeit in disguise.
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II Formulation and Results
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Figure 1: (a) TX/RX configuration. (b) Reconstructions for ther = 2048λ case.
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Figure 2: (a) The super-resolved crossection for variousr. (b) DBIM convergence for ther = 2048λ case. Relative
L2-norm is defined by

√∑
n |fn − fe

n|2/
∑

n |fe
n|2 where the superscripte stands for “exact”.

We use the setup in Figure 1-a with 8 transmitters and 32 receivers distributed over a circle of radiusr meters
surrounding the computational domain. The discretization and domain sizes in terms of the wavelength are shown in
Figure 1-b. The algorithm used in the inversion is the distorted Born iterative method (DBIM) [11]. The radiating,
incident and backpropagating Green’s functions are scaled by

√
r to render the regularization procedure independent

of observation distance. The inverse problem is Tikhonov-regularized by an identity matrix scaled by a regularization
factorγ, which is gradually decreased to a minimum to allow for higher spectral content with each iteration. Theonly
difference among the reconstructions in Figure 2-a is the observation distancer. The two single pixel, i.e.,0.082λ
x 0.082λ, objects are separated by only0.082λ. Here, we note that the contrast in Figure 2 is actually expanded in



terms of pulses. In each case, the29th iteration is shown where the scattered field error is around−120 dB. The
reconstructions cannot achieve the perfect profile because the field difference is about−100 dB by the14th iteration.

As shown in the Appendix, the evanescent waves are buried in the irregular part of the Hankel function, i.e., the
Neumann function, which has spectral contents far above the wavenumberko. Hence, a purely propagating Green’s
function results if we adopt the Bessel function as the Green’s function. In the setting of a simple (pulse basis, point
matching) method of moments implementation, this would lead to the following modification of the Green’s function
utilized in the computation of theinternalfield:

∫ ∫
Si

G(ρj − ρ′) dx′ dy′ =

{
i
4H

(1)
o (koρmn)∆x∆y m 6= n

i
2k2

o

[
πko aH

(1)
1 (ko a) + 2i

]
m = n

⇒
{

i
4Jo(koρmn)∆x∆y m 6= n

i
2ko

πaJ1(ko a) m = n
(3)

wherea =
√

∆x∆y/π andρmn =
√

(xm − xn)2 + (ym − yn)2.
With the above change of theinternal Green’s function, there is surprisingly little difference in the scattered

fields as shown in Figure 3-a. Here, the various curves are due to incident fields from the 8 transmitters, some of
which overlap. Although the resulting inversion converges, it fails to resolve the two distinct objects as shown in
Figure 3-b .
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Figure 3: (a) The scattered fields due to the Bessel Green’s function as the internal Green’s function are quite similar
to those due to the actual Hankel one. (b) DBIM fails to reconstruct the objects distinctly without evanescent fields.

III Conclusions

With sufficiently high signal-to-noise ratio equipment, it should be possible to observe super-resolution at optically
large distances. This can lead to advances in e.g. medical imaging where the equipment should be as unintrusive
as possible. The imperfect reconstructions result because the field difference is minimized to a level close to the
numerical noise floor.

It has been shown that evanescent waves play a vital role in the super-resolution of objects.
Super-resolution cannot be readily demonstrated by all inverse scattering algorithms. For example, it is known

in general that the first-order Born iterative method (BIM) cannot perform as well as the second-order DBIM [2], and
that at least one gradient based approach fails to achieve super-resolution withouta priori information concerning
the location of the object [1]. The correlation of backpropagated or time-reversed received fields with the currents
in the computational domain may be a prerequisite to the manifestation of super-resolution [7]. Such correlations
are performed by the (D)BIM algorithms when the functional to optimize is solved since conjugate transpose of the



inverse operator, which corresponds to backpropagated or time-reversed fields in the time-domain, appears in the
solution. Future research is necessary to elicit these points.

IV Appendix

In the spectral domain, the 2D Green’s function can be expressed as

G(ρ,ρ′) =
i

4
H(1)

o (koρ) =
i

4π

∫ ∞

−∞
dkx

ei(kxx+ky|y|)

ky
(4)

whereky =
√

k2
o − k2

x [12]. By virtue of the dispersion relation,k2
o = k2

x + k2
y, waves evanesce in they-direction

while propagating in thex-direction. Hence, in general, the designation of evanescence or propagation depends on the
coordinate system. However, the regular part of the Hankel function, i.e., the Bessel function, is free of evanescent
waves, regardless of how the coordinate system is rotated. That is,

H(1)
o (koρ) =

∫ ∞

−∞
dkx

ei(kxx+ky|y|)

ky
=

∫ ∞

0

dkx cos(kxx)
eiky|y|

ky
(5-a)

=
∫ ko

0

dkx cos(kxx)
eiky|y|

ky
+

∫ ∞

ko

dkx cos(kxx)
e−|ky||y|

i|ky|
(5-b)

in which the purely imaginary second integral on the right-hand side contains all the evanescent spectrum. Therefore,
taking the real part of both sides of the equation reveals thatJo(koρ) is free of evanescent waves.
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