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ABSTRACT: Reconfigurable hardware accelerators have
been shown to be flexible and efficient in stream-based applica-
tions. In this paper, we discuss the design of PCI-PipeRench and
the SWORDAPI. PCI-PipeRench is a coprocessor utilizing the
PipeRench architecture which includes on-chip control and data
buffering to interface with a host processor over a PCI bus.
SWORDAPI calls resemble standard C file control functions, and
allow developers to create applications independent of underly-
ing reconfigurable hardware details. In addition, the SWORDAPI
provides a cosimulation environment so that verification can be
performed using unmodified application source with a hardware
simulator. Efficient utilization of the bus is of critical importance
in the design of such a system; various methods used to address
this issue are presented.

1 Introduction
An increasing number of people are using their computers

to handle high-bandwidth streaming media such as live video,
real-time encryption, and digital signal processing. The
computational load associated with streaming data is different
from the load presented by more “traditional” computations:
it tends to be bandwidth-intensive, to be comprised of repeti-
tive operations, and to lack traditional data locality.

Many reconfigurable hardware devices have been proposed
and designed in response to these nontraditional needs, but in
order for reconfigurable hardware to be applied to these prob-
lems, it must be interfaced with a host processor. This paper
discusses the use of the PipeRench reconfigurable fabric[9] as
a coprocessor attached to a traditional processor via a PCI
bus. The paper also introduces an API that can be used to
interface both with the PipeRench hardware and with simula-
tors created to test the design.

In a well-balanced system, a coprocessor should make
good use of its bus by being able to meet or exceed the band-
width that the bus provides. The throughput of a PipeRench
coprocessor far exceeds the bandwidth of a 33 MHz PCI bus.
As a result, the performance of the system is determined
almost entirely by the degree to which the bus is used effi-
ciently. The design described in this paper is motivated in
large part by this need for efficiency. One important part of
PCI bus performance is obtained through the use of a packet
interface. The packets transferred can carry either configura-
tion or data, allowing the system to use the same bus for both
control and data.

The coprocessor and API rely upon the transfer of these

configuration and data packets. This system is well suited to
stream-based computing and is similar to well understood
network architectures. Concepts from the networking com-
munity allow us to extend the principle of layered architec-
tural abstraction, exemplified by hardware virtualization in
PipeRench. The coprocessor and API allow the use of the
same application C code and the same PipeRench configura-
tion bitstream with any present or future PipeRench device
without recompilation. The result is the SWORDAPI (Stream-
ing-Word Oriented Reconfigurable Device API), and the PCI-
PipeRench coprocessor.

Section 2 of this paper gives a brief review of the Pipe-
Rench architecture and the design considerations inherent in
interfacing it with the PCI bus. Section 3 details PCI-Pipe-
Rench, which was designed for use with the SWORDAPI.
Section 4 explains the packet format which the SWORDAPI
uses to establish communications between reconfigurable
devices and the host processor. Section 5 outlines the function
calls that the SWORDAPI provides to application developers
and discusses how the API’s modular nature facilitates expan-
sion to multiple simulators and devices. Section 6 shows how
the SWORDAPI resembles a layered network protocol stack.
Section 7 discusses related systems, and Section 8 presents
our conclusions.

2 PipeRench Fabric and the PCI Bus
PipeRench is an instance of the class of Pipeline Reconfig-

urable Fabrics discussed fully in [11]; a brief overview is
given here. Pipeline Reconfigurable Fabrics are FPGA-like
devices, divided into reconfigurable pipeline stages. Each
stage consists of programmable combinational functionality,
flexible routing interconnect, and a collection of registers.
These stages are separately configurable, and identical to one
another. As a result, an application which has been broken up
into pipeline stages can be mapped to the hardware stages,
and the configuration of any stage of the application can be
loaded into any stage of the hardware. These stages are
known asstripes; the stages of the application are calledvir-
tual stripes,and the hardware stages they are loaded into are
calledphysical stripes.

At runtime, virtual stripes are loaded in sequence, one
stage ahead of the incoming data, until the physical stripes are
full. Then, the virtual stripe that was resident longest in the
fabric is swapped out, and replaced with the next virtual



stripe. The physical fabric “scrolls down” the virtual pipeline
repeatedly until all the data has traversed all of the pipeline.
The application can exceed the physical resources of the
device, and still run, with reduced throughput.[5] This allows
for forward compatibility: future devices with more physical
stripes can run the identical configuration with increased per-
formance, and no recompilation. This method also makes
compilation of applications faster, as the place and route algo-
rithm does not have to be optimal, since there is no hard con-
straint on the size of the pipeline.

PipeRench further divides each stripe into N Processing
Elements (PEs). Each PE consists of a barrel shifter, a 3 input
LUT, replicated to be B bits wide, a number of B bit registers,
and carry and zero detect logic. A B-bit word crossbar is pro-
vided in each stripe to connect the inputs of each PE to any of
the registered outputs of the previous stripe’s PEs or any reg-
istered or unregistered output of the current stripe’s PEs, The
utilization the compiler obtains, and hence the performance of
the application, is dependent on the selection of N and B. Fig-
ure 1 shows performance results obtained in [8].

The next prototype of PipeRench, PCI-PipeRench, will
contain 16 physical stripes, with 16 8-bit PEs per stripe. This
prototype is designed to interface to a host processor via a
33MHz, 32-bit PCI Bus. Although PCI is the current standard
for desktop PC buses, and thus an attractive target for recon-
figurable devices, the I/O needs of PipeRench do not easily
match the performance of PCI.

There are three major qualities of PipeRench that make it
difficult to interface to PCI:

1. Higher Frequency: The operating frequency targeted by
PCI-PipeRench is 100MHz, approximately three times the
speed of PCI. This will make PCI a bottleneck for many of
the operations that map well to PipeRench. Also, bus per-
formance can be highly variable due to traffic from other
devices on the bus.

2. Wide Datapath: Another drawback to PCI is its narrow

width. A key feature of PipeRench is its ability to operate
on wide data words. This wide datapath allows PipeRench
applications to exploit parallelism.

3. Bursty Data: PipeRench’s virtualized configuration com-
pensates somewhat for the speed bottleneck, but also
complicates the interface. The I/O needs of the fabric vary
depending on what parts of the application are currently
swapped in. This results in a bursty I/O demand that will
not coincide with the semi-constant stream of PCI.

These concerns are addressed in PCI-PipeRench. In addi-
tion, PCI-PipeRench was designed with a multi-chip system
in mind, allowing virtual pipelines to expand across multiple
chips to increase performance if an appropriately narrow
point in the dataflow graph can be found at which to split the
pipeline. The design of PCI-PipeRench addresses the mis-
match between PCI and PipeRench, and makes PipeRench
easily integrated with current products. While it has become
clear that PCI is still a bottleneck, pipelined reconfigurable
fabrics will become much more efficient when the fabric is
located closer to the host processor in future systems.

3 PCI-PipeRench

PCI-PipeRench is intended to be integrated into a PC sys-
tem via the PCI bus. PCI is a standard 32-bit, 33MHz bus
interface, capable of direct memory access (DMA). The chip
will be used on a custom card containing an off the shelf PCI
interface chip, and two 32-bit FIFOs. Figure 2 shows the
structure of the PCI-PipeRench chip. The configuration con-
troller is based on the one described in [5]. The configuration
controller handles configuration of the stripes and storing and
restoring state from swapped out stripes. This section will
explain the elements used to compensate for the discrepancies
between PipeRench and PCI described in Section 2, and
explain other design considerations of PCI-PipeRench.
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Fig. 1. Projected speedup 8-bit PE, 8 Register per PE, 144-bit wide 28-
stripe 100MHz PipeRench vs. UltraSparc-II running at 300Mhz
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3.1  Dealing with Higher Frequency

The differing clock frequencies are handled by FIFOs with
input and output ports that can be clocked at different fre-
quencies. This allows PCI-PipeRench to take advantage of its
own higher frequency without disturbing the PCI Bus. The
input port of the 128-bit Input FIFO and the output port of the
128-bit Output FIFO, along with the input and output control-
lers and assembly buffer are in the clock domain of the PCI
Bus and the remainder of the chip is in the 100 MHz Pipe-
Rench clock domain. Since the PCI bus must use large DMA
transfers to obtain its maximum throughput, deep 32-bit off-
chip FIFOs are used to buffer large transfers.

3.2  Dealing with the Wide Datapath

In order to support the wide datapath of PipeRench, PCI-
PipeRench includes an assembly buffer to concatenate
between one and four PCI words into one PipeRench input
word. The flexibility of the assembly buffer allows applica-
tions with inputs narrower than PipeRench’s input bus to uti-
lize the full bandwidth of PCI, without having to pad the
inputs to 128 bits. This buffer is controlled by the input con-
troller and can be configured with a flexible control word to
assemble in various patterns. The pattern is specified in the
I/O controller configuration word (see Section 3.4) by three
fields:

1.Initial mask (4 bits)
2.Shift size (2 bits)
3.Initial shift count(2 bits)

The 128-bit assembly buffer is divided into four 32-bit
slots. Each cycle, the incoming 32-bit word is written into the
slot corresponding to 1’s in the 4-bit mask variable. If the 2-
bit shift count variable is greater than zero, the mask is shifted
left by the shift size, and the shift count is decremented. This
process is repeated until the shift count reaches zero signaling
that the assembled word is complete. It is put into the 128-bit
input FIFO and the mask and shift count are reset to their ini-
tial values.

On the other end of the fabric, the output controller formats
data in the output FIFO into an output packet, in a similar
fashion to the assembly buffer; the only difference is that the
assembly buffer has the capability of a one-to- many mapping
to the buffer slots1, and the output buffer obviously cannot do
a many-to-one mapping from the 128-bit Output FIFO to the
32-bit Output FIFO.

3.3  Dealing with the Bursty Data

When an input stripe is swapped in, the input FIFO is rap-
idly drained, and when an output stripe is swapped in, the out-
put FIFO is rapidly filled. As long as the bus is not busy, the
input FIFO is filled and the output FIFO drained at the rate

and availability of PCI. The larger these FIFO buffers are, the
more decoupled the I/O demands can be from what PCI pro-
vides.

Each time the input and output virtual stripes are swapped
in, they only remain resident for a number of cycles equal to
the number of physical stripes in the fabric. In between those
times, the rest of the pipeline is processing, and the I/O stripes
are swapped out, allowing the bus to load inputs and drain
outputs for a number of cycles equal to the virtual stripes
minus the physical stripes. Thus, the wide FIFOs need only
be as deep as the number of physical stripes. PCI-PipeRench
has 16 physical stripes, so total capacity of all the on-chip
FIFOs is only 256 bytes (small enough to have a negligible
impact on die area).

3.4  Other Design Considerations
In order to process PCI-PipeRench packets (see Section 4)

the chip also includes input and output controllers. The input
controller decodes incoming packets and provides central
control to the rest of the chip. The output controller constructs
outgoing packets as shown in Section 3.2.

The operation of these controllers is configured with one
configuration word associated with each application in the
configuration cache. Since each line of the configuration
cache is the width of one stripe’s configuration, there is ample
space in this configuration word to program the controller and
for future expansion of on-chip resources, such as a scratch-
pad RAM or more sophisticated I/O control. The advantage
of this approach is that the entire configuration for an applica-
tion, including I/O controller configuration, can be sent in a
single DMA bus transfer.

4 PCI-PipeRench packets
PCI-PipeRench has a packet based interface that serves the

following purposes:
• Bundling data and configuration into large blocks that

can take advantage of DMA
• Inter-chip routing to a specific PipeRench chip in a sys-

tem
• Intra-chip routing to the appropriate part of the chip (fab-

ric, configuration, initial state registers)
• Handling streams of dynamic length

While most PCI interface chips provide mechanisms for
sending individual signals between the board and the host
processor, these signals ultimately must be decoded on the
board from the PCI datastream and are not standardized. To
take advantage of the full bandwidth of the bus, and maintain
portability to other platforms or chipsets, no signals external
to the 32-bit datastream are used in the interface. Data sent
across the bus is divided into packets. The preamble of a
packet includes its length and instructions to the on-chip data
controllers, removing the need for external signals.

Each packet’s preamble consists of a 32-bit “header” and a
1. This is accomplished by using an input mask with more than one bit
set to 1.



32-bit “marker”. In general, the header contains instructions
on what to do with the enclosed data, and the marker contains
a description of the data. These words are considered separate
to facilitate multichip systems, where several chips must per-
form different operations on the same data, and multipacket
streams, where the same operation must be performed on
multiple packets of data.

The contents of a typical packet are shown in Figure 3. The
fields of the preamble are as follows:

Headers and Markers:
• Header/Marker Indicator: tells the input controller

whether this word is a Header (1) or a Marker (0)
Headers

• Packet Type: Packets can be of types: Data to be pro-
cessed (0), Configuration (1), Initial State (2)or State
Dump (3).

• Chip ID: For multiple chip systems, identification of the
chip that this header is meant to control.

• Configuration Cache address:For Configuration and
State packets, the address at which to write the incoming
data. For Data packets, the address of the configuration to
be run on the incoming data. For State Dump packets, the
address at which to begin the state dump.

Markers:
• Packet Size: Number of content words to follow or how

many state words to dump.
• Flush command: Bit to indicate whether(0) or not(1) to

automatically drain the pipeline after this packet.

This packet interface can support a number of reconfig-
urable chips chained together. In this case, the output of each
chip is connected directly to the input of the next one, and the
ends of the chain are connected to the bus interface.Bare
packetswith only a marker and no header are possible, as a
device can move them around without having an instruction
to deal with them. Bare packets are used to send data to a chip
further down the chain. The destination chip downstream is
sent a header telling it to expect data. The Chip ID field tells
each chip whether to keep the header or pass it along. Then,

any number or bare packets are sent through the chain. When
the input controller receives a bare packet, it checks to see if it
is currently processing a header. If so, it is assumed that this
incoming packet belongs to the header it has received. If not,
this packet must be for a device further on the chain, and is
passed on untouched. Eventually it will reach the destination
chip, and since that chip will have received a header, it knows
the packet is meant for it. In this way, if only some of the
chips are being used, the others will act as a mostly transpar-
ent bus. A small latency cost will be incurred as the stream is
passed through the unused chips.

Data packets are consumed, and produce a corresponding
output packet. The output packet will be a bare packet, with
the appropriate length being calculated by the device produc-
ing it. In this way, the output of one chip can be passed to the
next for more computation. The ratio between the size of the
input packet and the size of the output packet is statically
determined when the configuration is generated. Unfortu-
nately, the ratio’s static nature makes it difficult to implement
variable length compression algorithms; dynamic generation
of output packet markers is a possible future improvement on
the system.

The “flush” bit allows the interface to handle streams of
data where the length of the incoming data is not known at the
beginning. For an application like a filter, the user may want
to continuously stream data through the filter as it comes in
from a sensor or similar source, without having to initially
specify how long the entire stream will be. Using this signal,
the stream can be broken into multiple packets, and the state
of the pipeline is retained between the packets.

Multiple bare packets are sent following a single header,
and as long as the last packet bit is inactive, PipeRench will
wait for more data. When the stream is complete, the last
packet bit is made active, either on the last packet of actual
data, or on a zero-length packet afterwards, and the input con-
troller automatically drains the pipeline and discards the cur-
rent header.

Figure 4 shows an example of multiple chips and the flush
feature. At the time this packet is sent, it is assumed that all
the Reconfigurable Devices in the system have been sent con-
figuration packets containing the applications that they are
about to run. If the on-chip configuration caches are large
enough, it is possible that all four chips could contain all four
programs. In any case, a header is sent to each chip, telling it
which program to begin executing (i.e. which configuration to
make active). Each chip will pass along any headers with a
Chip ID greater than zero, decrementing the Chip ID. Head-
ers with a Chip ID of zero are processed and consumed. This
gives the programmer the advantage of addressing the chips
by their order of connection to each other, and not requiring
jumpers, switches, or registers to hard-code an address.

The first packet of input data is sent after the headers.
Chip0 will begin to process the data, and output results to
Chip1, and so on down the chain. When Chip0 has read the

Initial State

Data
Configuration

1 Word

1 Word

Header/Marker indicator

...

Marker

Header

Contents

N Words

Header/Marker indicator
Packet Type
State dump command
Chip ID
Configuration Cache address

Flush pipeline when done command
Packet Size (N)

Fig. 3. Structure of a Typical Packet



last input word of the first packet (the Nth data word) into the
pipeline, it stalls, since the Marker indicated that more data
was coming. Likewise, the subsequent chips will stall when
they run out of data. Chip0 will not have completed its out-
put packet (since there is still data in the pipeline) and since
that serves as Chip1’s input packet, Chip1 will simply wait
until Chip0’s output packet finishes. When the next bare
packet of input arrives, processing will continue, and Chip0
will drain its pipeline after the (N+M)th data word, as
ordered by the second Marker. All the final output data will
then propagate back to the host. This system further extends
the concept of hardware virtualization, with multiple PipeR-
enches taking the place of a single large one.

Due to PCI bandwidth issues, running an application
which exceeds the size of the configuration cache incurs
such a large performance loss that it is impractical. However,
we have found that most kernels that have been implemented
on PipeRench either fit in the cache, or are easily partitioned
on multiple chips. For example, the 8-round IDEA encryp-
tion algorithm can be split easily between any of the rounds.
We expect future PipeRench based coprocessors to be closer
to the host processor, (e.g. at the L2 cache level) where the
configuration cache can act more like a true cache, with the
full configuration stored in the host’s memory.

Other reconfigurable architectures could be adapted to use
the PCI-Piperench interface with the addition of compliant
I/O controllers to decode and direct packets appropriately.
Addressable configuration spaces are supported, but not a
required feature, as long the API is aware of what type of
device is being used, and does not allow the user to acciden-
tally overwrite the configuration.

5 SWORDAPI: Streaming Word-Oriented
Reconfigurable Device API

The SWORDAPI was designed with several high-level

objectives in mind. In particular, the API had to maximize
the efficiency of PCI bus utilization. In addition, we required
that the API be generalized and extensible to many different
backend simulation tools, and that the API present an inter-
face that would be familiar to programmers who were unac-
customed to reconfigurable computing.

5.1  A Generalized & Extensible API
The internals of the SWORDAPI are layered, that is, they

have the ability both to interface directly with our hardware
prototype and to run applications on many different soft-
ware-based simulators (including Verilog, Java, and C++).
Applications are able to interface with any of these packages
using only the API, with no modification to the application
source code.

Additionally, it is simple to add interfaces to new types of
simulators. There is little need to duplicate code between
versions, which simplifies the process of developing new
versions of the API for new simulators or prototypes.

We accomplished this by taking advantage of the object-
oriented nature of C++. (See Figure 5.) Each API call was
written as a virtual public member of a C++ base class, with
a different derived class for each type of simulator.1

Using a structure of this type, the API for each different
simulator can inherit the majority of its functions from the
base class. Only the functions which deal directly with the
communications mechanisms need to be changed.

As shown in Figure 5, our base class is an abstract class.
All the code which does not deal directly with the communi-
cations interface was written to be generally applicable to all
versions of the API. The interface between the API and Ver-
ilog is implemented in the Verilog_PipeRench derived class
using named pipes. Verilog PLI calls to access the named

Host

Marker: M words follow 

Chip0

Chip1

Chip2

Chip3

Header: Chip 3, Program D
Header: Chip 2, Program C
Header: Chip 1, Program B
Header: Chip 0, Program A
Marker: N words follow, 
                Don’t flush

Marker: M words follow, 

N Data Words

M Data Words

                Flush

Input Packet From Host Output Packet to Host
Marker: N words follow 

N Data Words

M Data Words

Output is:
D(C(B(A(Input))))

Fig. 4. Packets for multiple PipeRench Chips

1. A virtual member function of a C++ class is inherited by its
derived subclasses, but may be overridden by each of those sub-
classes.



pipes were created using a similar method to the socket-based
PLI calls in [6]. To implement a derived class which would
interface directly to the hardware, we will rewrite the commu-
nication calls to send and receive data over the PCI bus. No
other modifications should be necessary. In addition, we have
implemented an instance of the API that uses a second Ver-
ilog simulator package; this required less than 20 lines each
of new API code and PLI code.

5.2  Performance Requirements

It is shown in [8] that for the majority of applications
mapped to PCI-PipeRench, overall performance is limited by
the PCI bus. Therefore, it is vital that the API maximize the
utilization of the PCI bus, and that it not contribute to the deg-
radation of performance.

To this end, the API establishes buffers between the appli-
cation and the bus which will allow the bus to operate in
DMA mode as much as possible. In addition, the API holds
input data until a sufficiently large amount has been accumu-
lated to make efficient use of the DMA bursts.

5.3  A Familiar Interface

Another feature of the SWORDAPI is that it has an interface
that is familiar to application programmers who are not nec-
essarily accustomed to reconfigurable computing. We mod-
eled most of the API calls after the C library calls used for
interfacing with files.

The code sample in Figure 6, which performs a vector
addition, illustrates the operation of a few SWORDAPI calls.

5.4  Implementation

The SWORDAPI allows an application to perform three
principal tasks: configuring PipeRench, sending data to Pipe-
Rench, and receiving data from PipeRench.
5.4.1 Configuration
• int config(char *filename)

Configuration is acheived through a function call which
reads configuration data out of a binary file and sends it
(along with the appropriate headers) to PipeRench in one

large configuration packet.
• int set_in_table(char *in_table)

int set_out_table(char *out_table)
These tables allow the user to assign names to inputs and
outputs.

• int init(int config_num,
int num_stripes,
int *vstripes,
int *statevals)

The init () function instructs PipeRench to begin exe-
cuting with configurations beginning atconfig_num .
It also permits the application to send initial state values
into the stripes on PipeRench.

Fig. 5. The Object-Oriented Structure of the API

Public:

Protected:
-virtual functions to manage data & build packets

-virtual API calls

Protected: Protected:

communications with Verilog
-virtual functions specific to -virtual functions specific to

All functions not listed are inherited
from the base class

Derived Classes
Class HW_PipeRench

communications over PCI bus

Class PipeRench

-undefined virtual functions for communication

Abstract
Base Class

Class Verilog_PipeRench

// Set up input & output tables
// (defined elsewhere)

piperench->set_in_table(in_table);
piperench->set_out_table(out_table);

// configure PipeRench
start = piperench->config(“add.bin”);

// Send initial state and start addr.
piperench->init(start, 5, statestripes,

states);

// Send 8 of each input
piperench->pwrite(a, sizeof(int), 8, 0);
piperench->pwrite(b, sizeof(int), 8, 1);

// tell PipeRench we’re done
piperench->pdone();

// attempt to read 15 results
i = piperench->pread(c, sizeof(int),

15, 0);

Fig. 6. SWORDAPI code sample



5.4.2 Sending Data
• int pwrite(void *input_ptr, int size,

int num_elements,
unsigned char input_num)

To send data to PipeRench, the application specifies to
the SWORDAPI a pointer to a number of values for a par-
ticular logical input specified byinput_num . The API
copies the values out of the application and places them
directly into a buffer of data words to be sent in pack-
ets.(See Section 5.5 for details on this copy operation.)

• void psetbufsize(int size)
void pflush()
Each data word contains exactly one value for each input
to PipeRench. As the SWORDAPI accumulates values for
the various inputs to PipeRench, it keeps track of how
many data words are complete, containing a value for
every input. Once the number of complete data words
meets the number set usingpsetbufsize() , the API
sends PipeRench a packet containing all the data that is
ready to be sent.pflush()  can be used to force that
buffer to flush.

5.4.3 Output
• void pdone()

When the last input word has been queued for output
usingpwrite() , tell PipeRench to flush the virtual
pipeline and prepare all outputs for reading.

• int pread(void *output_ptr, int size,
int num_elements,
char output_num)

Whenever the application requests output data, the API
retrieves all the data words that are waiting in Pipe-
Rench’s internal queues. It then copies the data into the
application.

5.5  Performance Issues

As described in Section 5.4.2, when the SWORDAPI builds
packets to be sent to PipeRench, the data is stored in unpad-
ded slots within a contiguous block of memory. There are two
reasons why this copy is deemed worthwhile: it enables Pipe-
Rench to autonomously retrieve large numbers of packets
over the PCI bus using DMA, and it protects the data from
modification by the application during the DMA transfer.

Nonetheless, this copy presents a particular hazard to the
performance of the API. It is critical that the number of times
that input data is copied from one region in memory to
another be held to a minimum, as the API takes a perfor-
mance hit every time this data is copied.

There is another concern involved in assembling packets of
input data. If an application calls for multiple vector inputs,
the inputs will most likely be stored in separate arrays, which
the SWORDAPI interleaves into single packet, because Pipe-
Rench must read in one of each input at a time. For example,
in the simple case of the vector add shown in Figure 6:
A+B=C, A and B will be stored in host memory in separate

contiguous blocks. But PipeRench will want An and Bn at the
same time, and so on. Interleaving the input vectors can cause
another loss of performance for the API; however, it is neces-
sary in order to support the performance gains associated with
DMA.

We have not yet determined exactly how much effort
should go into aligning data for DMA transfers before it
begins to offset the performance gained from burst mode. The
best solution to this problem is to move the task of interleav-
ing onto the chip itself, so that simple contiguous blocks of
single inputs are sent by DMA across the bus; however, sili-
con area constraints prevented us from implementing this fea-
ture on this version of PCI-PipeRench. We are also
investigating high-performance API calls which will offer
less protection, but which will eliminate this copy procedure.

Fortunately, few real PipeRench-friendly applications have
multiple input streams. Encryption, transforms, filters, and
the like operate on a single stream, and aren’t affected by this
problem. But a future expansion to the SWORDAPI and PCI-
PipeRench may include separate FIFOs for each logical input,
perhaps sent through separate DMA channels.

6 Analogy to the Layered Network Model

Since the SWORDAPI uses a packet-based communications
system, it is natural to draw comparisons between it and com-
puter networking protocols. When framed in this context,
some useful and interesting aspects of the API’s design come
to light.

Network protocols are often specified as a set of layers,
each having a well-defined interface. The most famous lay-
ered protocol stack is the seven-layered Open Systems Inter-
connection (OSI) stack specified by the ISO. We can define
the SWORDAPI as a stack of “protocol layers” as well. A layer
diagram is shown in Figure 7.

Fig. 7. API Network Layers
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Viewing the SWORDAPI in this way, we can see clearly
how its object-oriented nature provides levels of abstraction
which can be very useful both to the application programmer
and to the developer of the API.
• The Session layer represents the programmer’s interface.

It allows any application to utilize the hardware without
any awareness of the API internals, or of the hardware
implementation details.

• The Network / Transport layer contains all the code nec-
essary to do the buffering described in Section 5.4.2.
This allows the developer of the API to leave this code
unchanged when interfacing to the hardware and to vari-
ous simulators. It also allows the API to route packets to
specific PCI-PipeRench chips in a multichip system, and
to direct packets to the appropriate controller on-chip.

• The Data Link layer allows the API developer to inter-
face all of the above layers with different hardware proto-
types and with different software simulations. At this
layer, the only difference between models of the recon-
figurable device is the way in which they communicate
with the application.

This modularity allows a programmer to adapt the API
with a minimum of coding. It has been simple to benchmark
different applications with different hardware simulators
using different API internals, all without rewriting any more
code than necessary.

Coupled with the forward-compatible nature of PipeRench,
this standardized API structure permits the exchange of Pipe-
Rench chips for more advanced ones (containing more physi-
cal stripes) with absolutely no modification or recompilation
of code necessary - even the configuration bits would remain
the same.

APIs for systems other than PipeRench, if designed with
this model in mind, would benefit in the same ways. If an
agreed-upon interface were used, it would even be possible to
use application code written for one pipelined reconfigurable
coprocessor with the API and hardware for another. This
could all be accomplished without the need to write addi-
tional code to compensate for differences between the fabrics;
these compensations would be handled automatically by the
layered nature of the API.

7 Related Work
The Wormhole Runtime Reconfiguration system from Vir-

ginia Polytechnic Institute and State University shares many
similar features to the SWORDAPI. In both systems, configu-
ration and data streams are both sent through the same wide
port. Header information directs the flow of both configura-
tion and data streams through the fabric. However, in Worm-
hole RTR, the reconfigurable fabric itself must be able to sort
out configuration at each routing point. This does allow multi-
ple streams to be processed simultaneously, but increases the
complexity required within the fabric. The SWORDAPI only
requires compliant data and configuration controllers and is

therefore adaptable to many fabric architectures. In addition,
the SWORDAPI allows for cached configurations, a major fea-
ture of PCI-PipeRench which enables context switching
between applications without re-sending the configuration
data.[3]

The Cheops/Magic8 system is another example of a net-
work of stream-based processors.[4] While PCI-PipeRench is
attached to a PC or similar host via the PCI bus, the Cheops
system uses a specialized backplane and busses, which gives
it flexibility and large bandwidth. Also, the Cheops system is
specialized for image and video processing. But, the treat-
ment of data as a stream and the modular processor capabili-
ties show the emergence of similar solutions for similar
problems.

The USC Information Sciences Institute’s SLAAC archi-
tecture also uses a layered software interface to connect heter-
ogeneous adaptive devices to a host processor. SLAAC’s
software layers are more like a traditional network interface,
with the goal of incorporating multiple disparate devices in a
single system. The lower layers of the SLAAC protocol are
device dependent, whereas the SWORDAPI puts the device
dependent operations in PCI-PipeRench’s on-chip data con-
trollers.[7]

Like the SWORDAPI, JHDL, from Brigham Young Univer-
sity, stresses the need for reconfigurable coprocessors to be
treated in a familiar way by applications programmers. It also
exploits object oriented programming to allow simulators and
real hardware to be used interchangeably in cosimulation.[2]

Commercial reconfigurable logic boards, such as Annapo-
lis Micro Systems’ WILD-ONETM PCI Board, have propri-
etary APIs. These APIs are intended to be used with
traditional FPGAs and are not well-suited for runtime recon-
figuration and unconventional reconfigurable fabrics like
PipeRench. The WILD-ONETM API also includes hardware
specific calls such as setting clock frequencies and FIFO
thresholds.[1] These are issues that SWORDAPI hides from
the application programmer.

8 Conclusions
In this paper we have introduced both hardware and soft-

ware interfaces for reconfigurable devices which free pro-
grammers from the need to understand low-level details of the
hardware. The hardware interface embodied in PCI-Pipe-
Rench is particularly suited for the high-bandwidth streaming
applications (which are increasingly important tasks). The
SWORDAPI uses a layered approach to implement this inter-
face for multiple back-ends, while minimizing the amount
work for the developer. It supports PipeRench’s inherent for-
ward compatibility by maintaining the capacity to execute
configurations on future chips without recompilation

PCI-Piperench consists of a PipeRench reconfigurable fab-
ric with added control units, and on-chip FIFOs to compen-
sate for differences between PCI and PipeRench data flows.
Making efficient use of the PCI bus was the foremost concern



in designing the chip.

The SWORDAPI’s layered nature maintains abstractions
between the application, the API itself, and the hardware.
This makes it easily extensible, and enables it to integrate
unmodified application code with present and future Pipe-
Rench implementations. In addition, it supports cosimulation
with many software models of PipeRench.

At this time, two working models of PCI-PipeRench have
been written in Verilog, and SWORDAPI instances for two
separate Verilog simulation packages have been completed.
Cosimulations of the PipeRench models and applications
using the SWORDAPI are running successfully and have been
invaluable in verification of the chip. VLSI design of the two
PCI-PipeRench chips is in progress; the chips will be fabri-
cated in 0.25 and 0.35 micron processes.
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