Incremental Reconfiguration for Pipelined Applications

Herman Schmit Dept. of ECE Carnegie Mellon University

Motivation

Forward-compatibility

- Preserve "software" investment
- Expectation:
 - ✤ Future generations More performance
- Soft limits
 - Expectation:
 - ✤ Software runs on any compatible platform

Current State of FPGA Computing

- Process improvements:
 - Faster, bigger FPGAs
 - Cannot exploit increased area w/o redesign
 - Redesign: expensive
- Resource requirements are exact
 - One cell too few \Rightarrow doesn't fit
 - Extra cells \Rightarrow wasted

Our Vision

Design for Infinite hardware

- "Virtual" hardware design
- Exploit as much parallelism as possible
- Time-multiplex on real hardware
 - Minimal hardware: functional
 - Increased hardware: higher performance
 - ✤ Until Real = Virtual
 - Run-time Reconfiguration (RTR)
- Regularly Pipelined Applications

Overview

RTR for Pipelined Applications

- Reconfiguration techniques
 - Component-level reconfiguration
 - Incremental reconfiguration
- Throughput, Latency, and Memory
- Striped Reconfiguration
 - Support for incremental reconfiguration
 - Concurrent configuration and execution
- Example Application: IDEA encryption
- Conclusions

Application Definitions

Run-Time Reconfiguration

Component-Level Reconfiguration

Configuration Time: CT Data items per config: X

Component-level Throughput

Implementation Issues

- Works for any FPGA
- Reduce C or increase X
- C is large
 - XC4030: C = ~100,000
 - XC6216: C = ~3000
- Multiple Context FPGAs
 - DPGA and Xilinx
 - $C \Rightarrow 0$
 - Still pay the pipeline fill/empty penalty
- N≤ Contexts

Increasing X

Memory

- Increases linearly with X
- Too large to fit on-chip?
 - ✤ Off-chip memory access drives performance
 - Increases T
- Latency
 - Increases linearly with X
 - Real-time applications have latency limitations

Incremental Reconfiguration

Incremental Performance

Implementation Issues

- No pipeline penalty

 Difference important when C is small

 No storage required
 - Intermediate stored in fabric
- Low latency
- Requires:
 - partially reconfigurable FPGA
 - unusual interconnect

Virtualization

More physical hardware = more throughput

Virtualization

Reducing N (more hardware)

.

Concurrent Configuration

- How can we reduce C?
- Configuration concurrent with execution
 - Execute stage n, n-1, n-2, ...
 - Configure stage n+1
 - $C \Rightarrow 0$, Ideal throughput
- No FPGA supports this
- Striped reconfiguration

Striped Reconfiguration

Need to load one pipestage every cycle

- Store virtual design on-chip
- Wide configuration bus (~1024 bits)

Striped Reconfiguration

- Load rows (stripes) of the FPGA
- Rows implement pipeline stages
- Uniform interconnect:
 - Global and neighbor
 - Only relative placement is important

Row Architecture

Row Placement and Interconnect

Configuration Moves Local Interconnect

Stationary: SRAM Interconnect Problem

Stationary: SRAM Ring Interconnect

Example: IDEA Encryption

16-bit multiplication modulo 2¹⁶+1

16-bit addition modulo 2¹⁶

Widely used: PGP
Completely Pipelineable
BIG: 32 32-bit multipliers

Accelerating IDEA

- One cm² of silicon (0.35µm):
 - 32 rows of active FPGA
 - 256 rows of stored configuration
 - 50 MHz operation
- Deep pipeline:
 - 232 16-bit stages
 - 538 Mb / sec with 32 rows
 - + 177 Mb / sec on 25 MHz VLSI chip (1 cm², 1.2 μm, 1993)
 - Scales to 3.2 Gb / sec with 232 rows

Other Deeply Pipelined Applications

Sandia Labs' ATR Algorithms
 Image recognition and understanding
 Image and Signal Processing
 Genetic Algorithms for EDA

Summary

Incremental Pipeline reconfiguration

- High throughput, low latency, low memory
- Striped Reconfiguration
 - Concurrent configuration and execution
 - No reconfiguration time
 - Local and global interconnect
 - Ring structure for local interconnect
- Forward-compatibility, soft resource limits
 - Performance increases until Real = Virtual