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Abstract 

Fault tolerance is becoming an increasingly 
important issue, especially in mission-critical 
applications where data integrity is a paramount concern.   
Performance, however, remains a large driving force in 
the market place.  Runtime reconfigurable hardware 
architectures have the power to balance fault tolerance 
with performance, allowing the amount of fault tolerance 
to be tuned at run-time. This paper describes a new built-
in self-test designed to run on, and take advantage of, 
runtime reconfigurable architectures, using the 
PipeRench architecture as a model.  In addition, this 
paper introduces a new metric by which a user can set the 
desired fault tolerance of a runtime reconfigurable 
device. 

1. Introduction 

Increased prevalence of computer systems 
everywhere from industry to small home-office 
businesses has created a need for greater reliability in 
hardware and software. With many mission critical tasks 
being delegated to computers, a degree of fault tolerance 
in the computer’s circuitry is required to make sure 
unforeseen problems can be dealt with gracefully. With 
more frequent use of reconfigurable hardware in 
embedded and wireless computing devices, there is a need 
to develop an easy and effective fault detection system for 
reconfigurable devices. 

Some research has been done with Built-in Self-
Tests (BISTs) on Field Programmable Gate Arrays 
(FPGAs) [1-2],[6-13]. FPGAs are a general class of 
reconfigurable hardware which contain an array of 
programmable logic blocks (PLBs), with programmable 
interconnect between PLBs, as well as programmable I/O 
cells. The configuration bits used to program the FPGA 
determine the function of the device; one such function 
can be a BIST. For most FPGA architectures, however, 
configuration time is large, and there is no ability for 
partial reconfiguration, which makes a frequent BIST 
difficult to implement, and makes a dynamic and tunable 
BIST nearly impossible [3]. 

The PipeRench architecture represents a new 
direction for FPGAs. PipeRench is a runtime- 

reconfigurable FPGA that manages a virtual pipeline, 
allowing time-multiplexed use of the physical pipeline 
stages. The logical size of a virtual pipeline is unbounded, 
and it can be executed on a compatible architecture of any 
size [4].  Fixed hardware constraints are no longer an 
issue for the compiler with hardware virtualization. 
PipeRench is also forward compatible.  Additional 
hardware will only add to the performance of the 
application by allowing more virtual stripes to fit on the 
physical fabric at any one time. 

The reconfigurable nature of PipeRench lends 
itself to fault tolerance.  The ability to dynamically 
reconfigure the fabric makes a frequent BIST feasible.  
Our goal was to develop an effective BIST algorithm for 
PipeRench that did not require any additional hardware.  
The addition of BIST hardware to a device makes chip 
implementation more difficult and also potentially 
degrades the performance of applications that do not 
require the BIST.  This paper describes the faults that can 
affect the PipeRench architecture, methods to detect the 
faults, and ways to work around them once they have 
been identified.  This is accomplished with only minor 
modifications to the control logic. 

Unlike traditional BIST as previously applied to 
FPGAs or to custom hardware, our testing procedure only 
tests the parts of the FPGA that are currently in use.  With 
an FPGA, at any point in time only a portion of the 
hardware is being used, the portion that is configured for 
the current application.  Because of this, exhaustive tests 
of the FPGA fabric are wasteful.  By testing only the part 
of the fabric that is executing the application, we can 
retain better application performance while still covering 
a large percentage of relevant faults.  We will refer to our 
testing scheme as BIAST (Built-In Applicable Self-Test). 

Integral to our approach to testing is the fact that 
testing happens concurrently with the execution of the 
application.  Furthermore, the amount of resources 
dedicated to testing can be tuned at runtime to trade off 
security with application throughput.  We thus introduce a 
new metric to evaluate the effectiveness of a BIAST 
algorithm; a metric that gauges the amount of time taken 
to detect a fault rather than the absolute fault coverage.  
This metric, which we refer to as Mean Time to Detect a 
Fault (MTDF), gives the average amount of time to detect 
any fault that has occurred.  The metric gives the user the 
means to measure and set the amount of fault tolerance of 



the system, based on the desired level of fault tolerance 
and application performance. 

In the next section, we discuss PipeRench, the 
reconfigurable fabric targeted by our BIST algorithm. In 
Section 3, we introduce the BIST algorithm.  In Section 4, 
we analyze its performance and introduce a standard by 
which to measure it.  The algorithms to isolate a fault are 
discussed in Section 5 and the methods to tolerate faults 
are described in Section 6.  We cover related work in 
Section 7 and state conclusions in Section 8. 

2. The PipeRench Architecture 

The PipeRench architecture implements pipe-
lined reconfiguration, a method of virtualizing pipelined 
hardware application designs by breaking each design 
into pieces that correspond to pipeline stages in the 
application.  These pieces are then loaded, one per cycle, 
into the fabric.  This makes it possible to perform the 
computation, even if the whole configuration is never 
present in the fabric at one time. 

The virtualization process is illustrated in Figure 
1, which shows a five-stage pipeline being virtualized on 
a three-stage fabric. The top portion of this figure shows 
the five-stage application and the state of each of the 
stages of the pipeline in five consecutive cycles. The 
bottom half of the figure shows the state of the physical 

stages in the fabric that is executing this application. An 
effective metaphor for this procedure is scrolling on a text 
window. Once the pipeline is full, every five cycles 
generates two results from the pipeline. In general, when 
an application having Nv stages is virtualized on a device 
with a capacity of Np stages (Np < Nv), the throughput of 
the implementation is proportional to (Np-1)/Nv. 
Throughput is a linear function of the capacity of the 
device.  Therefore, decreases in feature size (resulting in 
more physical hardware) and increases in clock speed will 
increase the throughput, until Np = Nv. Thereafter, 
performance of the application continues to improve only 
through increased clock speed. 

Because the configuration of stages happens 
concurrently with the execution of other stages, there is 
no loss in performance due to reconfiguration. As the 
pipeline is filling with data, stages of the computation are 
being configured ahead of that data. Even if there is no 
virtualization, configuration time is equivalent to the 
pipeline fill time of the application.  Therefore 
configuration does not reduce the maximum throughput 
of the application. 

In order for this virtualization process to work, 
the state of any pipeline stage must be a function only of 
the current state of that stage and the current state of the 
previous stage. In other words, cyclic dependencies must 
fit within one stage of the pipeline. Interconnect that 
directly skips over one or more stages is not allowed, nor 
are connections from one stage to a previous stage. 
Fortunately, many computations on streaming data can be 
pipelined within these constraints. Furthermore, by 
including structures we call pass registers, it is possible to 
create virtual connections between distant stages.  

The primary challenge facing pipeline 
reconfiguration is configuring a computationally 
significant pipeline stage in one clock cycle. To do this, a 
wide on-chip configuration buffer (either SRAM or 
DRAM) is connected to the nearby fabric. The word 
stripe is used to describe both the physical stages in the 
fabric (the physical stripes), and the configuration words 
that are written into them (the virtual stripes). Any virtual 

Figure 1. 
PipeRench Reconfiguration.  This diagram shows the 
progress of virtualizing a five-stage pipeline on a  
three-stage device. 

Figure 2.
PipeRench Architecture: PEs and Interconnect 
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stripe can be written into any physical stripe. Therefore, 
all physical stripes must have identical functionality and 
interconnect. This allows for excellent fault tolerance, 
because, if any physical stripe is damaged, unless it 
cannot pass data through itself unchanged, it can simply 
be removed from use. Although this does affect 
performance by reducing the number of physical pipeline 
stages by 1, the application can still run. 

The fabric of PipeRench is composed of a set of 
physical pipeline stages, or stripes. Each stripe is 
composed of an interconnect and an array of processing 
elements (PEs), which contain registers, shifters, and 
ALUs. An ALU is composed of look-up tables (LUTs) 
and extra circuitry for carry-chains, zero-detection, etc. 
(See Figure 2). The PEs have access to a global I/O bus. 
The interconnect network is composed of interstripe and 
intrastripe connections.  Interstripe interconnect moves 
the pass register data from one stripe to the next.  Through 
the intrastripe interconnect the PEs can access operands 
from registered outputs of the previous stripe as well as 
registered or unregistered outputs of the other PEs in the 
stripe.  

The current PipeRench chip has four global 
busses. Two of these busses are dedicated to storing and 
restoring stripe state during hardware virtualization. The 
other two are used for data input and output. 

3. Built-in Self-test Algorithm 

Since PipeRench combines uniformity in its 
logic (PEs, LUTs, etc.) with the ability to reconfigure the 
fabric quickly and easily, a BIST becomes both a fast and 
efficient method for detecting faults.  Faults in PipeRench 
can occur in the PEs, the interstripe interconnect, the 
intrastripe interconnect, the global bus, the configuration 
lines, the controller, and the memory (FIFO, store, 
configuration).  This BIST can detect faults occurring in 
any non-memory component except the configuration 
lines and controller, which are vital to the algorithm’s 
execution.  In this paper we do not address the 
mechanisms, which are already well known, that can 
ensure that the memory is fault free. 

In normal operation, a PipeRench device is 
continually configuring one stripe (pipe stage) of an 
application ahead of relevant data.  After the last virtual 
pipe stage is configured, the device starts again with the 
first virtual stripe of the application.  Since there is, by 
definition, no connection between the last stripe and the 
first, there is an opportunity to insert additional stripes 
between the last stripe and first without affecting the 
functionality of the device.  The only cost is the one cycle 
delay per added stripe before the application’s first stripe 
resumes computation.  The inserted stripe (or stripes) can 
be used to test the hardware.  A positive outcome for the 

test would help assure accuracy of the device’s output.  A 
negative result could be handled appropriately. 

Our BIST algorithm takes twelve stripes, 
vigorously testing two stripes at a time (see Figure 3).  In 
those twelve stripes, we configure two stripes under test 
(SUTs) identically, and stimulate each with identical 
pseudo-random input.  The results are compared to each 
other for discrepancies:  If one exists, there is a fault.  
Sections 5 and 6 describe how we isolate the fault and 
how the fault is tolerated. 

A more detailed look at the BIST shows slightly 
greater complexity.  Each PE of every stripe takes two 
inputs, A and B.  Those inputs come directly or indirectly 
from the registered output of the last stripe or from the 
global bus.  To stimulate the inputs of each SUT with 
known data, we need to create the data and store it in 
register locations that will be chosen as the A and B 
inputs of the PEs of the SUT.  The A inputs should be 
different from the B inputs so as to test various bit 
combinations as input into each PE.  Thus, in the first 
stripe of the BIST we configure two unique test pattern 
generators: two linear feedback shift registers (LFSRs) 
are identically configured with different initial values.  
Due to the nature of PipeRench, the outputs of the LFSRs 
are saved in the first registers of the PEs that are 
configured to output the LFSR value.  Should the PEs in 

Figure 3.
BIST stripe layout. 



first SUT be receiving their inputs from any place other 
than those first registers, the LFSR values will have to be 
rerouted to the correct location.  The second and third 
stripes of the BIST take care of this requirement.  The 
second stripe reroutes the output of the first unique LFSR 
to the registers that will be used as input A for each PE of 
the SUT.  The third stripe reroutes the output of the 
second unique LFSR to the registers that will be used as 
input B of each PE of the SUT.  These reroute stripes are 
thus a function of the SUT’s configuration bits.  The 
SUTs are required to be stimulated identically. Thus 
stripes 1 and 7, stripes 2 and 8, and stripes 3 and 9, are 
each, respectively, configured identically.  Note that any 
of the PEs of the SUTs that take inputs from the global 
bus will be getting the same data from the same global 
bus, so the SUTs will continue to be stimulated 
identically.  The output of the first SUT is written to the 
global bus in Stripe 5, and is read in and compared to the 
results of the second SUT in Stripe 11. 

This BIST runs in a special test mode.  
Following the configuration of the last stripe of the 
application and the subsequent configuration of the BIST 
stripes, normal (sequential) configuration is halted and 
enough time is given for the application to drain all of its 
data before testing begins.  After testing is complete, 
normal configuration restarts, commencing with the 
configuration of the first virtual stripe of the application. 

3.1. Built-in Applicable Self-test (BIAST) 

There are three variables to this BIST: the 
number of test vectors generated for each SUT, the 
number of configurations tested on each SUT, and the 
makeup of those configurations.  There are simple 
mathematical relationships between the first two and the 
amount of relative fault coverage obtained by running the 
BIST, as we will demonstrate in the next section.  
However, the third variable presents more of a problem.  
There are an almost infinite number of possible 
configurations for the SUTs, so it is important to test 
those configurations that are most pertinent to whatever 
application is running. 

There are two common choices for test 
configuration generation: hardwired test configurations, 
which take up a large amount of memory, and pseudo-
random test configuration generators, which take up a 
large amount of logic space, increase the area that might 
contain faults, and require many cycles to cover any 
significant set of configurations [6].  Beyond the mere 
introduction of their inherent problems to a device, the 
addition of hardwired test configurations or dedicated test 
configuration generators conflicts with our goal to 
implement a BIST without additional hardware. 

The solution to our problem is simple and 
straightforward.  Since PipeRench stores all the stripe 

configurations for the current application on-chip in a 
configuration memory, we simply use those 
configurations as the configurations to test our SUTs, thus 
avoiding costly changes to the architecture.  Although 
these configurations are not guaranteed to detect all faults, 
there is no need to.  We only need to detect those faults 
that would cause our current application to function 
incorrectly.  With our BIST testing for the existence of 
“applicable” faults only, we refer to our scheme as Built-
In Applicable Self-Test, or BIAST. 

4. Evaluation 

Before we evaluate the performance of BIAST 
on PipeRench, let us first introduce some terms and 
variables. 

We define a configuration cycle as the time it 
takes to run the desired number of test patterns on one 
configuration of the SUT.  Every configuration cycle 
consists of the following steps: reconfiguring the SUTs, 
reroute, write, and compare stripes once, generating test 
patterns, and comparing results.  

The SUTs are repeatedly reconfigured until all 
the desired stripe configurations have been used and all 
test vectors have been applied, in what we define as a 
stripe-test cycle. 

The time to perform a stripe test cycle on all the 
physical stripes of the device is referred to as a test cycle. 
 
•= Nv - number of virtual stripes in an application 

•= Np - number of physical stripes available to the 
 application 

•= Nd - number of data vectors the LFSR will generate  

•= Pt - percentage of cycles to be devoted to test 

•= Ts - time to complete one stripe test cycle 

•= Tt - time to complete one test cycle, i.e. to completely 
 test the physical fabric for the current application 

4.1. Cost of Testing 

The cost of a test cycle is dependent on the 
number of test patterns used for each configuration, and 
the number of configurations tested on each SUT. The 
number of test patterns (Nd) to use varies.  By using a 
synthesizable verilog model of the LUT, and performing 
fault coverage analysis using Synopsys Test Compiler, we 
determined that 56 test patterns would be needed to attain 
full coverage of all detectable faults.  In our test model, 
the inputs to the PEs were 8-bit quantities; we used 8-bit 
LFSRs configured to produce 63 distinct vectors.  



The first configuration cycle requires 11 cycles 
initially to configure each of the stripes in the test block, 
and Nd cycles to run all the vectors through the SUT. 
After the first configuration cycle, it takes six cycles to 
reconfigure the reroute, SUT and global bus read/write 
stripes.  Then Nd cycles are needed to run through all the 
test vectors. This is done Nv-1 times. Putting this 
information together gives the following figure for time 
per stripe-test cycle (TS): 

 Nv (Nd + 6) + 5 = TS  (EQ 1) 

The time for a test cycle (Tt) can then be easily 
determined.  With each stripe-test cycle covering two 
physical stripes, Np / 2 stripe-test cycles would be needed 
to ensure that every physical stripe is tested: 

 (Np /2) (Nv (Nd + 6) + 5) = Tt (EQ 2) 

For an example, IDEA, the cryptosystem used in 
PGP, takes 177 stripes when run on a 16-stripe 100MHz 
chip.  The test cycle time for complete coverage of 
applicable modes of operation is (16/2)(177(56+6)+5) = 
87,832 cycles = 878.32 µs. 

4.2. Mean Time to Detect a Fault 

Since the total time to exhaustively test all 
physical stripes is known, it is possible to compute the 
Mean Time to Detect a Fault.  If each stripe is equally 
likely to contain a fault, half of the stripes will have to be 
tested, on average, before a fault is detected if one exists 
1.  Conservatively, this means than the MTDF can be 
expressed as follows: 

 ((Np /2) (Nv (Nd + 6) + 5)) / 2 = MTDF (EQ 3) 

However, MTDF is only really meaningful while running 
another application, as it will correspond roughly to the 
number of erroneous outputs that can occur before the 
fault is detected.  To compute the MTDF of a device that 
divides its time between running an application and 
executing BIAST, we must first define the percentage of 
time devoted to test, Pt.   Then: 

 (((Np /2) (Nv (Nd + 6) + 5)) / 2)/Pt = MTDF (EQ 4) 

For any given application running on the current 
version of the PipeRench chip, Nd=56 (as determined 
above) and Np=16. Thus, the MTDF can be computed in 
terms of Nv and Pt.  

 (248Nv + 20)/Pt = MTDF in current PipeRench (EQ 5) 

In Figure 4, we show the case where Nv ranges from 10 to 
160, and Pt ranges from 5% to 50%.  For IDEA, assuming 
                                                           
1 A fault can be detected in any one of the 12 stripes used to test 
the two under test.  Thus, there is a reasonable chance that any 
fault in a stripe will be discovered before that stripe is actually 
the stripe under test. 

10% of our cycles spent in test, the MTDF is 
(248*177+20)/0.1 cycles = 4.3916 ms. If the application 
designer decides this is too long and decides to increase 
the Pt to 30%, the new MTDF is 1.4639 ms. 

These figures only apply to the detection of the 
presence of a fault.  If and when that occurs, another 
sequence of tests is run to determine which part of the 
hardware has failed.   This sequence takes approximately 
450 cycles to run and is described further in the Section 5.  
Emphasis at that point however is not on application 
performance, but on isolating the fault and returning the 
device to working order as soon as possible.  

4.3. Tunable Fault Testing 

From the equations presented in the previous 
subsection, it is clear that the MTDF scales linearly in 
each of its factors. This makes it easy for users to specify 
the amount of fault tolerance for the system, based on 
how often they wish to test, how many test vectors they 
wish to apply, or how many virtual stripes their 
applications use. 

When the chip is powered on and configured, the 
complete test cycle can be run before the application is 
allowed to begin executing, to ensure proper initial 
operation.  Thereafter, a percentage of the total cycles can 
be devoted to running an ongoing BIAST cycle that goes 
through complete test cycles as the program executes.  
The configuration controller is responsible for ensuring 
that all physical stripes are used as SUTs, moving the 
BIAST stripe block so that stripes that have already been 
testing in the current test cycle will not be tested again 

Figure 4.
MTDF in cycles as a function of percentage of cycles 
devoted to test (Pt) and number of virtual stripes (Nv) 
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5. Fault Isolation 

The BIAST algorithm detects the existence of 
faults in a device, but it does not locate the point of 
failure.  A detected fault can originate in any of the stripes 
used in the test.  An additional suite of tests designed to 
isolate the fault comprise a second stage of BIAST.  First, 
the integrity of the interstripe interconnects is tested, 
followed by the global bus, the LFSR stripes, and the 
reroute stripes. If none of these is faulty, then the SUTs 
and the write and compare stripes are tested.   The 
intention is to eliminate suspect areas one by one, using 
the resources of each cleared component to help test then 
next. 

The interstripe interconnect test serves as a good 
example of all the tests.  As shown in Figure 5, Stage 1, 
there are initially two stripes involved in testing, one to 
stimulate the interstripe interconnect being tested with 
data (Stripe 1), and one to verify the value of the data 
after it has been propagated through the interstripe 
interconnect (Stripe 2).  It is assumed that both stripes 
will not have faults that manifest themselves in such a 
way as to exonerate a damaged interconnect for all 
stimuli.  Thus, if there is a positive comparison for all 
stimuli, the interconnect is deemed working, and the next 
interconnect is tested.  If an error is detected, the test 
moves to Stage 2 and an alternate source of stimuli is 
used to test the interconnect (Stripe 0) so as to ensure that 
the previous source (Stripe 1) was not the cause of the 
error.  If the error is no longer present, we determine that 
Stripe 1 is the cause of the error, and mark it as such.  
However, if the error is still present, the test moves to 
Stage 3, in which we use an alternate compare stripe 
(Stripe 3) to see if the original stripe (Stripe 2) was the 
cause of the error.  If the error does not resurface, we 
know that the original compare stripe had the defect.  
Should the error persist, we determine that the 
interconnect under test is faulty. 

The general scheme of each test is the same.  
Configure two stripes, one to stimulate the resource under 
test, and one to check for the expected results.  If an error 
is detected, use an alternate stripe to determine the 
possible culprit.  Note that this scheme assumes a stripe 
configured to check for expected results (Compare) and 
its alternate are not both damaged at the same time.  A 
scenario where each has a fault will cause the wrong 
resource to be marked as damaged.  Setting aside 
additional alternate compare stripes may alleviate the 
problem.  

It is good policy to rerun the whole BIAST 
structure after a fault is isolated and dealt with to ensure 
that no additional faults exist. 

6. Fault Tolerance 

Once a fault is isolated in a device, it is 
necessary for the device to be able to work around the 
error to be of any future use.  Most damage can be 
mended.  However, there are types of faults that cannot be 
tolerated. The faults that can be tolerated fall into two 
separate categories: non-interstripe interconnect faults, 
and interstripe interconnect faults. 

Faults that are unrecoverable at the present time 
include faults in the configuration bus and global bus.  
Also included is the multiple fault scenario previously 
mentioned, in which two stripes are damaged, the damage 
manifests itself when either is configured to verify correct 
output of a resource under test, and one stripe is the 
alternate verifying stripe of the other.  In this case, faults 
may be continually misdiagnosed until the entire chip has 
been declared damaged.   

The classes of recoverable faults are quite 
considerable, however. Any single fault scenario (single 
stuck-lines, bridging faults) in which a PE, stripe, 
intrastripe interconnect or interstripe interconnect is 
damaged can be detected and is recoverable, as well as 
multiple fault scenarios not specifically alluded to in the 
previous paragraph. 

6.1. Non-Interstripe Interconnect Faults 

Stripes represent the smallest autonomous logic 
units in PipeRench.  Faults occurring in parts of a PE 
(e.g., LUT, barrel shifter) will render the PE unusable. 
Without an extra PE through which to redirect all the 
interstripe and intrastripe interconnect lines of a faulty 
PE, the computational power of the stripe will be lessened 
to the point where the stripe must be disabled. As long as 
the interstripe interconnect works, however, the contents 
of the register file from the previous stripe can be passed 
through the damaged stripe to the next good stripe.  

Figure 5. 
Interstripe Interconnect test: 3-step fault isolation scheme
Interconnect between Stripes 1 and 2 under test. 
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Figure 6. 
Non-interstripe interconnect fault work-around. 
“bad stripe” is configured to pass register values through
unchanged.  Configurations and input delayed one cycle
For non-interstripe interconnect errors, the 
damaged stripe is set to pass the values in its pass 
registers through to the next stripe unchanged (See Figure 
6).  Any input or configurations meant for that stripe are 
delayed one cycle and input into the next stripe. Thus, the 
performance of the application is degraded by 1/Np. 

6.2. Interstripe Interconnect Faults 

If an interstripe interconnect line is faulty, the 
pass registers cannot all move through to the next stripe. 
To illustrate this, imagine a 16 PE/stripe, 8 register/PE 
PipeRench chip. There are 128 registers per stripe, and 
128 interstripe interconnect lines to move the values of 
those registers to the next stripe. If one of the interstripe 
interconnect lines contains a fault, there are not enough 
lines to move all the register values through. 

Applications interstripe interconnect fault 
tolerance requires hardware or compiler support to restrict 
user access to all but one register in each PE. This 
restriction frees an interstripe interconnect line and 
register in each PE that can then be used in the event of 
interstripe interconnect damage. With this change, should 
an interstripe interconnect line be broken, the value of the 
register affected can be redirected into the unused register 
in the stripe before the damaged interconnect, and can be 
directed back into its initial position in the stripe 
following the broken interconnect (See Figure 7). In this 
way, chip functionality is maintained, although at a cost 
of a 3/Np degradation in performance, so long as there is 
not more than one bad interconnect line to any one PE.   
For greater fault tolerance, additional changes are 
necessary to allow other registers the accept redirected 
data. 

7. Related Work 

There have been a few other research efforts that 
have focused on BIST designs in FPGA-style 
reconfigurable hardware [1],[2],[6-12]. Those BISTs were 
designed for industry standard Xilinx, Lucent, and Altera 
FPGAs, which lack the virtualized pipeline of PipeRench. 
It is precisely this feature, the ability to break an 
application up into discrete pipeline stages, that allows us 
the ability to tune the amount of fault tolerance. 

The BISTs designed for industry standard 
architectures were able to scale in constant time, in 
contrast to the linear scaling of the BIST implemented on 
PipeRench.  This was achieved, however, by reducing the 
test coverage of the interconnect between programmable 
logic blocks (PLBs), and increasing reliance on global 
buses to supply test data to PLBs.  It is important to note 
as well that comparing the ability to scale in constant 
versus linear time is perhaps misleading, as the constant 
associated with configuration of industry FPGAs is 
usually quite large, when compared to the single clock 
cycle reconfiguration time for PipeRench  

Additionally, the configurations used to test the 
PLBs have, in the past, been either generated pseudo-
randomly or stored specifically for testing. A greater 
number of configuration patterns were needed for fault 
coverage equivalent to stored configurations if the 
configurations were generated on the fly. If the patterns 
were stored, an increase in fault coverage meant an 
increase in memory to store the additional patterns. The 
new BIAST described in this paper uses the application 
configurations already stored on the chip as the test 
configurations. While this method does not cover all areas 
of operation for the chip, it does cover 100% of the 
configuration space that matters to the program at hand. 



Past methods have tested program-irrelevant modes of 
operation of hardware, finding errors and mapping out 
hardware that may be reliable in program-applicable 
modes of operation [13]. 

8. Conclusions 

In this paper, we have described a new built-in 
self-test algorithm and fault tolerant hardware model 
designed for runtime reconfigurable devices.  The 
importance of fault tolerance is growing as people rely 
more heavily on computers.  Reconfigurable hardware is 
one area of computing with great growth potential.  It is 
already seeing increased use in areas such as tele-
communications, and as the reconfigurable hardware 
industry continues to grow, so must its fault tolerance. 

We found the PipeRench architecture to be a 
good platform for processing needs with fault tolerance 
requirements.  PipeRench’s hardware virtualization 
allows a frequently executing BIST, such as the one 
described in this paper, to be run concurrently with an 
application.  The amount of time devoted to testing can be 
tuned at runtime.  This is ideal for mission-critical 
applications where speed of execution is secondary to the 
requirements of data integrity. 

We mentioned that the BIAST described can 
detect many classes of faults, and that the majority of 
failures have fixes that require few hardware changes.  
The ability to tolerate faults adds little delay. BIAST itself 
requires little additional hardware, allowing it to run at 
program clock speed.  

By reusing the configurations already stored for 
the program running on PipeRench, we found that 
complete applicable fault coverage was obtained on a per-
application basis with no additional memory or hardware 
beyond a minor amount of control logic. 

The BIAST implemented on PipeRench 
represents a new testing model for hardware with space 
constraints, with a focus on efficiency and flexibility. 
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