
Tunable Fault Tolerance for Runtime Reconfigurable Architectures

Steven K. Sinha†*, Peter M. Kamarchik†, and Seth C. Goldstein†*

Department of Electrical and Computer Engineering†
School of Computer Science*

Carnegie Mellon University
Pittsburgh, PA 15213

{ssinha, pmk, seth}@ece.cmu.edu

Abstract

Fault tolerance is becoming an increasingly
important issue, especially in mission-critical
applications where data integrity is a paramount concern.
Performance, however, remains a large driving force in
the market place. Runtime reconfigurable hardware
architectures have the power to balance fault tolerance
with performance, allowing the amount of fault tolerance
to be tuned at run-time. This paper describes a new built-
in self-test designed to run on, and take advantage of,
runtime reconfigurable architectures, using the
PipeRench architecture as a model. In addition, this
paper introduces a new metric by which a user can set the
desired fault tolerance of a runtime reconfigurable
device.

1. Introduction

Increased prevalence of computer systems
everywhere from industry to small home-office
businesses has created a need for greater reliability in
hardware and software. With many mission critical tasks
being delegated to computers, a degree of fault tolerance
in the computer’s circuitry is required to make sure
unforeseen problems can be dealt with gracefully. With
more frequent use of reconfigurable hardware in
embedded and wireless computing devices, there is a need
to develop an easy and effective fault detection system for
reconfigurable devices.

Some research has been done with Built-in Self-
Tests (BISTs) on Field Programmable Gate Arrays
(FPGAs) [1-2],[6-13]. FPGAs are a general class of
reconfigurable hardware which contain an array of
programmable logic blocks (PLBs), with programmable
interconnect between PLBs, as well as programmable I/O
cells. The configuration bits used to program the FPGA
determine the function of the device; one such function
can be a BIST. For most FPGA architectures, however,
configuration time is large, and there is no ability for
partial reconfiguration, which makes a frequent BIST
difficult to implement, and makes a dynamic and tunable
BIST nearly impossible [3].

The PipeRench architecture represents a new
direction for FPGAs. PipeRench is a runtime-

reconfigurable FPGA that manages a virtual pipeline,
allowing time-multiplexed use of the physical pipeline
stages. The logical size of a virtual pipeline is unbounded,
and it can be executed on a compatible architecture of any
size [4]. Fixed hardware constraints are no longer an
issue for the compiler with hardware virtualization.
PipeRench is also forward compatible. Additional
hardware will only add to the performance of the
application by allowing more virtual stripes to fit on the
physical fabric at any one time.

The reconfigurable nature of PipeRench lends
itself to fault tolerance. The ability to dynamically
reconfigure the fabric makes a frequent BIST feasible.
Our goal was to develop an effective BIST algorithm for
PipeRench that did not require any additional hardware.
The addition of BIST hardware to a device makes chip
implementation more difficult and also potentially
degrades the performance of applications that do not
require the BIST. This paper describes the faults that can
affect the PipeRench architecture, methods to detect the
faults, and ways to work around them once they have
been identified. This is accomplished with only minor
modifications to the control logic.

Unlike traditional BIST as previously applied to
FPGAs or to custom hardware, our testing procedure only
tests the parts of the FPGA that are currently in use. With
an FPGA, at any point in time only a portion of the
hardware is being used, the portion that is configured for
the current application. Because of this, exhaustive tests
of the FPGA fabric are wasteful. By testing only the part
of the fabric that is executing the application, we can
retain better application performance while still covering
a large percentage of relevant faults. We will refer to our
testing scheme as BIAST (Built-In Applicable Self-Test).

Integral to our approach to testing is the fact that
testing happens concurrently with the execution of the
application. Furthermore, the amount of resources
dedicated to testing can be tuned at runtime to trade off
security with application throughput. We thus introduce a
new metric to evaluate the effectiveness of a BIAST
algorithm; a metric that gauges the amount of time taken
to detect a fault rather than the absolute fault coverage.
This metric, which we refer to as Mean Time to Detect a
Fault (MTDF), gives the average amount of time to detect
any fault that has occurred. The metric gives the user the
means to measure and set the amount of fault tolerance of

the system, based on the desired level of fault tolerance
and application performance.

In the next section, we discuss PipeRench, the
reconfigurable fabric targeted by our BIST algorithm. In
Section 3, we introduce the BIST algorithm. In Section 4,
we analyze its performance and introduce a standard by
which to measure it. The algorithms to isolate a fault are
discussed in Section 5 and the methods to tolerate faults
are described in Section 6. We cover related work in
Section 7 and state conclusions in Section 8.

2. The PipeRench Architecture

The PipeRench architecture implements pipe-
lined reconfiguration, a method of virtualizing pipelined
hardware application designs by breaking each design
into pieces that correspond to pipeline stages in the
application. These pieces are then loaded, one per cycle,
into the fabric. This makes it possible to perform the
computation, even if the whole configuration is never
present in the fabric at one time.

The virtualization process is illustrated in Figure
1, which shows a five-stage pipeline being virtualized on
a three-stage fabric. The top portion of this figure shows
the five-stage application and the state of each of the
stages of the pipeline in five consecutive cycles. The
bottom half of the figure shows the state of the physical

stages in the fabric that is executing this application. An
effective metaphor for this procedure is scrolling on a text
window. Once the pipeline is full, every five cycles
generates two results from the pipeline. In general, when
an application having Nv stages is virtualized on a device
with a capacity of Np stages (Np < Nv), the throughput of
the implementation is proportional to (Np-1)/Nv.
Throughput is a linear function of the capacity of the
device. Therefore, decreases in feature size (resulting in
more physical hardware) and increases in clock speed will
increase the throughput, until Np = Nv. Thereafter,
performance of the application continues to improve only
through increased clock speed.

Because the configuration of stages happens
concurrently with the execution of other stages, there is
no loss in performance due to reconfiguration. As the
pipeline is filling with data, stages of the computation are
being configured ahead of that data. Even if there is no
virtualization, configuration time is equivalent to the
pipeline fill time of the application. Therefore
configuration does not reduce the maximum throughput
of the application.

In order for this virtualization process to work,
the state of any pipeline stage must be a function only of
the current state of that stage and the current state of the
previous stage. In other words, cyclic dependencies must
fit within one stage of the pipeline. Interconnect that
directly skips over one or more stages is not allowed, nor
are connections from one stage to a previous stage.
Fortunately, many computations on streaming data can be
pipelined within these constraints. Furthermore, by
including structures we call pass registers, it is possible to
create virtual connections between distant stages.

The primary challenge facing pipeline
reconfiguration is configuring a computationally
significant pipeline stage in one clock cycle. To do this, a
wide on-chip configuration buffer (either SRAM or
DRAM) is connected to the nearby fabric. The word
stripe is used to describe both the physical stages in the
fabric (the physical stripes), and the configuration words
that are written into them (the virtual stripes). Any virtual

Figure 1.
PipeRench Reconfiguration. This diagram shows the
progress of virtualizing a five-stage pipeline on a
three-stage device.

Figure 2.
PipeRench Architecture: PEs and Interconnect

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

1 2 3 4 5 6Cycle:

Virtual Pipestage

1Stage 1

Stage 2

Stage 3

4

5

1

2

1

2

3

2

3

4

3

Physical Pipestage

Configuring ExecutingLegend:

stripe can be written into any physical stripe. Therefore,
all physical stripes must have identical functionality and
interconnect. This allows for excellent fault tolerance,
because, if any physical stripe is damaged, unless it
cannot pass data through itself unchanged, it can simply
be removed from use. Although this does affect
performance by reducing the number of physical pipeline
stages by 1, the application can still run.

The fabric of PipeRench is composed of a set of
physical pipeline stages, or stripes. Each stripe is
composed of an interconnect and an array of processing
elements (PEs), which contain registers, shifters, and
ALUs. An ALU is composed of look-up tables (LUTs)
and extra circuitry for carry-chains, zero-detection, etc.
(See Figure 2). The PEs have access to a global I/O bus.
The interconnect network is composed of interstripe and
intrastripe connections. Interstripe interconnect moves
the pass register data from one stripe to the next. Through
the intrastripe interconnect the PEs can access operands
from registered outputs of the previous stripe as well as
registered or unregistered outputs of the other PEs in the
stripe.

The current PipeRench chip has four global
busses. Two of these busses are dedicated to storing and
restoring stripe state during hardware virtualization. The
other two are used for data input and output.

3. Built-in Self-test Algorithm

Since PipeRench combines uniformity in its
logic (PEs, LUTs, etc.) with the ability to reconfigure the
fabric quickly and easily, a BIST becomes both a fast and
efficient method for detecting faults. Faults in PipeRench
can occur in the PEs, the interstripe interconnect, the
intrastripe interconnect, the global bus, the configuration
lines, the controller, and the memory (FIFO, store,
configuration). This BIST can detect faults occurring in
any non-memory component except the configuration
lines and controller, which are vital to the algorithm’s
execution. In this paper we do not address the
mechanisms, which are already well known, that can
ensure that the memory is fault free.

In normal operation, a PipeRench device is
continually configuring one stripe (pipe stage) of an
application ahead of relevant data. After the last virtual
pipe stage is configured, the device starts again with the
first virtual stripe of the application. Since there is, by
definition, no connection between the last stripe and the
first, there is an opportunity to insert additional stripes
between the last stripe and first without affecting the
functionality of the device. The only cost is the one cycle
delay per added stripe before the application’s first stripe
resumes computation. The inserted stripe (or stripes) can
be used to test the hardware. A positive outcome for the

test would help assure accuracy of the device’s output. A
negative result could be handled appropriately.

Our BIST algorithm takes twelve stripes,
vigorously testing two stripes at a time (see Figure 3). In
those twelve stripes, we configure two stripes under test
(SUTs) identically, and stimulate each with identical
pseudo-random input. The results are compared to each
other for discrepancies: If one exists, there is a fault.
Sections 5 and 6 describe how we isolate the fault and
how the fault is tolerated.

A more detailed look at the BIST shows slightly
greater complexity. Each PE of every stripe takes two
inputs, A and B. Those inputs come directly or indirectly
from the registered output of the last stripe or from the
global bus. To stimulate the inputs of each SUT with
known data, we need to create the data and store it in
register locations that will be chosen as the A and B
inputs of the PEs of the SUT. The A inputs should be
different from the B inputs so as to test various bit
combinations as input into each PE. Thus, in the first
stripe of the BIST we configure two unique test pattern
generators: two linear feedback shift registers (LFSRs)
are identically configured with different initial values.
Due to the nature of PipeRench, the outputs of the LFSRs
are saved in the first registers of the PEs that are
configured to output the LFSR value. Should the PEs in

Figure 3.
BIST stripe layout.

first SUT be receiving their inputs from any place other
than those first registers, the LFSR values will have to be
rerouted to the correct location. The second and third
stripes of the BIST take care of this requirement. The
second stripe reroutes the output of the first unique LFSR
to the registers that will be used as input A for each PE of
the SUT. The third stripe reroutes the output of the
second unique LFSR to the registers that will be used as
input B of each PE of the SUT. These reroute stripes are
thus a function of the SUT’s configuration bits. The
SUTs are required to be stimulated identically. Thus
stripes 1 and 7, stripes 2 and 8, and stripes 3 and 9, are
each, respectively, configured identically. Note that any
of the PEs of the SUTs that take inputs from the global
bus will be getting the same data from the same global
bus, so the SUTs will continue to be stimulated
identically. The output of the first SUT is written to the
global bus in Stripe 5, and is read in and compared to the
results of the second SUT in Stripe 11.

This BIST runs in a special test mode.
Following the configuration of the last stripe of the
application and the subsequent configuration of the BIST
stripes, normal (sequential) configuration is halted and
enough time is given for the application to drain all of its
data before testing begins. After testing is complete,
normal configuration restarts, commencing with the
configuration of the first virtual stripe of the application.

3.1. Built-in Applicable Self-test (BIAST)

There are three variables to this BIST: the
number of test vectors generated for each SUT, the
number of configurations tested on each SUT, and the
makeup of those configurations. There are simple
mathematical relationships between the first two and the
amount of relative fault coverage obtained by running the
BIST, as we will demonstrate in the next section.
However, the third variable presents more of a problem.
There are an almost infinite number of possible
configurations for the SUTs, so it is important to test
those configurations that are most pertinent to whatever
application is running.

There are two common choices for test
configuration generation: hardwired test configurations,
which take up a large amount of memory, and pseudo-
random test configuration generators, which take up a
large amount of logic space, increase the area that might
contain faults, and require many cycles to cover any
significant set of configurations [6]. Beyond the mere
introduction of their inherent problems to a device, the
addition of hardwired test configurations or dedicated test
configuration generators conflicts with our goal to
implement a BIST without additional hardware.

The solution to our problem is simple and
straightforward. Since PipeRench stores all the stripe

configurations for the current application on-chip in a
configuration memory, we simply use those
configurations as the configurations to test our SUTs, thus
avoiding costly changes to the architecture. Although
these configurations are not guaranteed to detect all faults,
there is no need to. We only need to detect those faults
that would cause our current application to function
incorrectly. With our BIST testing for the existence of
“applicable” faults only, we refer to our scheme as Built-
In Applicable Self-Test, or BIAST.

4. Evaluation

Before we evaluate the performance of BIAST
on PipeRench, let us first introduce some terms and
variables.

We define a configuration cycle as the time it
takes to run the desired number of test patterns on one
configuration of the SUT. Every configuration cycle
consists of the following steps: reconfiguring the SUTs,
reroute, write, and compare stripes once, generating test
patterns, and comparing results.

The SUTs are repeatedly reconfigured until all
the desired stripe configurations have been used and all
test vectors have been applied, in what we define as a
stripe-test cycle.

The time to perform a stripe test cycle on all the
physical stripes of the device is referred to as a test cycle.

•= Nv - number of virtual stripes in an application

•= Np - number of physical stripes available to the
 application

•= Nd - number of data vectors the LFSR will generate

•= Pt - percentage of cycles to be devoted to test

•= Ts - time to complete one stripe test cycle

•= Tt - time to complete one test cycle, i.e. to completely
 test the physical fabric for the current application

4.1. Cost of Testing

The cost of a test cycle is dependent on the
number of test patterns used for each configuration, and
the number of configurations tested on each SUT. The
number of test patterns (Nd) to use varies. By using a
synthesizable verilog model of the LUT, and performing
fault coverage analysis using Synopsys Test Compiler, we
determined that 56 test patterns would be needed to attain
full coverage of all detectable faults. In our test model,
the inputs to the PEs were 8-bit quantities; we used 8-bit
LFSRs configured to produce 63 distinct vectors.

The first configuration cycle requires 11 cycles
initially to configure each of the stripes in the test block,
and Nd cycles to run all the vectors through the SUT.
After the first configuration cycle, it takes six cycles to
reconfigure the reroute, SUT and global bus read/write
stripes. Then Nd cycles are needed to run through all the
test vectors. This is done Nv-1 times. Putting this
information together gives the following figure for time
per stripe-test cycle (TS):

 Nv (Nd + 6) + 5 = TS (EQ 1)

The time for a test cycle (Tt) can then be easily
determined. With each stripe-test cycle covering two
physical stripes, Np / 2 stripe-test cycles would be needed
to ensure that every physical stripe is tested:

 (Np /2) (Nv (Nd + 6) + 5) = Tt (EQ 2)

For an example, IDEA, the cryptosystem used in
PGP, takes 177 stripes when run on a 16-stripe 100MHz
chip. The test cycle time for complete coverage of
applicable modes of operation is (16/2)(177(56+6)+5) =
87,832 cycles = 878.32 µs.

4.2. Mean Time to Detect a Fault

Since the total time to exhaustively test all
physical stripes is known, it is possible to compute the
Mean Time to Detect a Fault. If each stripe is equally
likely to contain a fault, half of the stripes will have to be
tested, on average, before a fault is detected if one exists
1. Conservatively, this means than the MTDF can be
expressed as follows:

 ((Np /2) (Nv (Nd + 6) + 5)) / 2 = MTDF (EQ 3)

However, MTDF is only really meaningful while running
another application, as it will correspond roughly to the
number of erroneous outputs that can occur before the
fault is detected. To compute the MTDF of a device that
divides its time between running an application and
executing BIAST, we must first define the percentage of
time devoted to test, Pt. Then:

 (((Np /2) (Nv (Nd + 6) + 5)) / 2)/Pt = MTDF (EQ 4)

For any given application running on the current
version of the PipeRench chip, Nd=56 (as determined
above) and Np=16. Thus, the MTDF can be computed in
terms of Nv and Pt.

 (248Nv + 20)/Pt = MTDF in current PipeRench (EQ 5)

In Figure 4, we show the case where Nv ranges from 10 to
160, and Pt ranges from 5% to 50%. For IDEA, assuming

1 A fault can be detected in any one of the 12 stripes used to test
the two under test. Thus, there is a reasonable chance that any
fault in a stripe will be discovered before that stripe is actually
the stripe under test.

10% of our cycles spent in test, the MTDF is
(248*177+20)/0.1 cycles = 4.3916 ms. If the application
designer decides this is too long and decides to increase
the Pt to 30%, the new MTDF is 1.4639 ms.

These figures only apply to the detection of the
presence of a fault. If and when that occurs, another
sequence of tests is run to determine which part of the
hardware has failed. This sequence takes approximately
450 cycles to run and is described further in the Section 5.
Emphasis at that point however is not on application
performance, but on isolating the fault and returning the
device to working order as soon as possible.

4.3. Tunable Fault Testing

From the equations presented in the previous
subsection, it is clear that the MTDF scales linearly in
each of its factors. This makes it easy for users to specify
the amount of fault tolerance for the system, based on
how often they wish to test, how many test vectors they
wish to apply, or how many virtual stripes their
applications use.

When the chip is powered on and configured, the
complete test cycle can be run before the application is
allowed to begin executing, to ensure proper initial
operation. Thereafter, a percentage of the total cycles can
be devoted to running an ongoing BIAST cycle that goes
through complete test cycles as the program executes.
The configuration controller is responsible for ensuring
that all physical stripes are used as SUTs, moving the
BIAST stripe block so that stripes that have already been
testing in the current test cycle will not be tested again

Figure 4.
MTDF in cycles as a function of percentage of cycles
devoted to test (Pt) and number of virtual stripes (Nv)

0

20

40

60 0

50

100

150

200
0

2

4

6

8

10

x 10
5

N(v)

Mean Time to Detect a Fault

P(t)

M
T

D
F

5. Fault Isolation

The BIAST algorithm detects the existence of
faults in a device, but it does not locate the point of
failure. A detected fault can originate in any of the stripes
used in the test. An additional suite of tests designed to
isolate the fault comprise a second stage of BIAST. First,
the integrity of the interstripe interconnects is tested,
followed by the global bus, the LFSR stripes, and the
reroute stripes. If none of these is faulty, then the SUTs
and the write and compare stripes are tested. The
intention is to eliminate suspect areas one by one, using
the resources of each cleared component to help test then
next.

The interstripe interconnect test serves as a good
example of all the tests. As shown in Figure 5, Stage 1,
there are initially two stripes involved in testing, one to
stimulate the interstripe interconnect being tested with
data (Stripe 1), and one to verify the value of the data
after it has been propagated through the interstripe
interconnect (Stripe 2). It is assumed that both stripes
will not have faults that manifest themselves in such a
way as to exonerate a damaged interconnect for all
stimuli. Thus, if there is a positive comparison for all
stimuli, the interconnect is deemed working, and the next
interconnect is tested. If an error is detected, the test
moves to Stage 2 and an alternate source of stimuli is
used to test the interconnect (Stripe 0) so as to ensure that
the previous source (Stripe 1) was not the cause of the
error. If the error is no longer present, we determine that
Stripe 1 is the cause of the error, and mark it as such.
However, if the error is still present, the test moves to
Stage 3, in which we use an alternate compare stripe
(Stripe 3) to see if the original stripe (Stripe 2) was the
cause of the error. If the error does not resurface, we
know that the original compare stripe had the defect.
Should the error persist, we determine that the
interconnect under test is faulty.

The general scheme of each test is the same.
Configure two stripes, one to stimulate the resource under
test, and one to check for the expected results. If an error
is detected, use an alternate stripe to determine the
possible culprit. Note that this scheme assumes a stripe
configured to check for expected results (Compare) and
its alternate are not both damaged at the same time. A
scenario where each has a fault will cause the wrong
resource to be marked as damaged. Setting aside
additional alternate compare stripes may alleviate the
problem.

It is good policy to rerun the whole BIAST
structure after a fault is isolated and dealt with to ensure
that no additional faults exist.

6. Fault Tolerance

Once a fault is isolated in a device, it is
necessary for the device to be able to work around the
error to be of any future use. Most damage can be
mended. However, there are types of faults that cannot be
tolerated. The faults that can be tolerated fall into two
separate categories: non-interstripe interconnect faults,
and interstripe interconnect faults.

Faults that are unrecoverable at the present time
include faults in the configuration bus and global bus.
Also included is the multiple fault scenario previously
mentioned, in which two stripes are damaged, the damage
manifests itself when either is configured to verify correct
output of a resource under test, and one stripe is the
alternate verifying stripe of the other. In this case, faults
may be continually misdiagnosed until the entire chip has
been declared damaged.

The classes of recoverable faults are quite
considerable, however. Any single fault scenario (single
stuck-lines, bridging faults) in which a PE, stripe,
intrastripe interconnect or interstripe interconnect is
damaged can be detected and is recoverable, as well as
multiple fault scenarios not specifically alluded to in the
previous paragraph.

6.1. Non-Interstripe Interconnect Faults

Stripes represent the smallest autonomous logic
units in PipeRench. Faults occurring in parts of a PE
(e.g., LUT, barrel shifter) will render the PE unusable.
Without an extra PE through which to redirect all the
interstripe and intrastripe interconnect lines of a faulty
PE, the computational power of the stripe will be lessened
to the point where the stripe must be disabled. As long as
the interstripe interconnect works, however, the contents
of the register file from the previous stripe can be passed
through the damaged stripe to the next good stripe.

Figure 5.
Interstripe Interconnect test: 3-step fault isolation scheme
Interconnect between Stripes 1 and 2 under test.

Stripe 0

Stripe 1

Stripe 2

Stripe 3

(unused)

Write

Compare

(unused)

Write

pass values

Compare

(unused)

(unused)

Write

pass values

Compare

Stage 1 Stage 2 Stage 3

.

virtual stripe n

bad stripe

virtual stripe n + 2

virtual stripe n + 1

I N T E R C O N N E C T

I N T E R C O N N E C T

I N T E R C O N N E C T

Figure 7.
Interstripe interconnect fault work-around.
PE x’s register file is shown. R3 interconnect of Stripe n
is damaged. R3 values are rerouted through the free R7.

R0 R1 R2 R3 R4 R5 R6 R7Stripe n - 1

R0 R1 R2 R3 R4 R5 R6 R7Stripe n

R0 R1 R2 R3 R4 R5 R6 R7Stripe n + 1

R0 R1 R2 R3 R4 R5 R6 R7Stripe n + 2

PE
Figure 6.
Non-interstripe interconnect fault work-around.
“bad stripe” is configured to pass register values through
unchanged. Configurations and input delayed one cycle
For non-interstripe interconnect errors, the
damaged stripe is set to pass the values in its pass
registers through to the next stripe unchanged (See Figure
6). Any input or configurations meant for that stripe are
delayed one cycle and input into the next stripe. Thus, the
performance of the application is degraded by 1/Np.

6.2. Interstripe Interconnect Faults

If an interstripe interconnect line is faulty, the
pass registers cannot all move through to the next stripe.
To illustrate this, imagine a 16 PE/stripe, 8 register/PE
PipeRench chip. There are 128 registers per stripe, and
128 interstripe interconnect lines to move the values of
those registers to the next stripe. If one of the interstripe
interconnect lines contains a fault, there are not enough
lines to move all the register values through.

Applications interstripe interconnect fault
tolerance requires hardware or compiler support to restrict
user access to all but one register in each PE. This
restriction frees an interstripe interconnect line and
register in each PE that can then be used in the event of
interstripe interconnect damage. With this change, should
an interstripe interconnect line be broken, the value of the
register affected can be redirected into the unused register
in the stripe before the damaged interconnect, and can be
directed back into its initial position in the stripe
following the broken interconnect (See Figure 7). In this
way, chip functionality is maintained, although at a cost
of a 3/Np degradation in performance, so long as there is
not more than one bad interconnect line to any one PE.
For greater fault tolerance, additional changes are
necessary to allow other registers the accept redirected
data.

7. Related Work

There have been a few other research efforts that
have focused on BIST designs in FPGA-style
reconfigurable hardware [1],[2],[6-12]. Those BISTs were
designed for industry standard Xilinx, Lucent, and Altera
FPGAs, which lack the virtualized pipeline of PipeRench.
It is precisely this feature, the ability to break an
application up into discrete pipeline stages, that allows us
the ability to tune the amount of fault tolerance.

The BISTs designed for industry standard
architectures were able to scale in constant time, in
contrast to the linear scaling of the BIST implemented on
PipeRench. This was achieved, however, by reducing the
test coverage of the interconnect between programmable
logic blocks (PLBs), and increasing reliance on global
buses to supply test data to PLBs. It is important to note
as well that comparing the ability to scale in constant
versus linear time is perhaps misleading, as the constant
associated with configuration of industry FPGAs is
usually quite large, when compared to the single clock
cycle reconfiguration time for PipeRench

Additionally, the configurations used to test the
PLBs have, in the past, been either generated pseudo-
randomly or stored specifically for testing. A greater
number of configuration patterns were needed for fault
coverage equivalent to stored configurations if the
configurations were generated on the fly. If the patterns
were stored, an increase in fault coverage meant an
increase in memory to store the additional patterns. The
new BIAST described in this paper uses the application
configurations already stored on the chip as the test
configurations. While this method does not cover all areas
of operation for the chip, it does cover 100% of the
configuration space that matters to the program at hand.

Past methods have tested program-irrelevant modes of
operation of hardware, finding errors and mapping out
hardware that may be reliable in program-applicable
modes of operation [13].

8. Conclusions

In this paper, we have described a new built-in
self-test algorithm and fault tolerant hardware model
designed for runtime reconfigurable devices. The
importance of fault tolerance is growing as people rely
more heavily on computers. Reconfigurable hardware is
one area of computing with great growth potential. It is
already seeing increased use in areas such as tele-
communications, and as the reconfigurable hardware
industry continues to grow, so must its fault tolerance.

We found the PipeRench architecture to be a
good platform for processing needs with fault tolerance
requirements. PipeRench’s hardware virtualization
allows a frequently executing BIST, such as the one
described in this paper, to be run concurrently with an
application. The amount of time devoted to testing can be
tuned at runtime. This is ideal for mission-critical
applications where speed of execution is secondary to the
requirements of data integrity.

We mentioned that the BIAST described can
detect many classes of faults, and that the majority of
failures have fixes that require few hardware changes.
The ability to tolerate faults adds little delay. BIAST itself
requires little additional hardware, allowing it to run at
program clock speed.

By reusing the configurations already stored for
the program running on PipeRench, we found that
complete applicable fault coverage was obtained on a per-
application basis with no additional memory or hardware
beyond a minor amount of control logic.

The BIAST implemented on PipeRench
represents a new testing model for hardware with space
constraints, with a focus on efficiency and flexibility.

9. Acknowledgments

The authors would like to acknowledge the
constant help and support of Herman Schmit, Matt Moe,
Reed Taylor, and the rest of the PipeRench group. In
addition, they would like to thank Shawn Blanton for his
help with testability issues, and the reviewers of this paper
for their helpful comments. This work was supported by
DARPA contract DABT63-96-C-0083.

References

[1] C. S. Stroud, E. Lee, M. Abramovici, "BIST-
Diagnostics of FPGA Logic Blocks," Proc. Or the
1997 IEEE International Test Conference, pp 539-
547, 1997.

[2] C. S. Stroud, E. Lee, M. Abramovici, "Using ILA
Testing for BIST in FPGAs," Proc. Of the 1996 IEEE
International Test Conference, pp. 68-75, 1996.

[3] S. C. Goldstein, H. Schmit, M. Moe, M. Budiu, S.
Cadambi, R. R. Taylor, R. Laufer, "PipeRench: A
Coprocessor for Streaming Multimedia
Acceleration," International Symposium on Computer
Architecture, Atlanta, GA June 1999. To be
published.

[4] M. Meyers, K Jaget, S. Cadambi, J. Weener, M. Moe,
H. Schmidt, S. C. Goldstein, D. Bowersox,
PipeRench Manual, 1998.

[5] R. D. Blanton, S. C. Goldstein, H. Schmidt, "Tunable
Fault Tolerance via Test and Reconfiguration," Fault
Tolerance Computing Symposium, 1998.

[6] M. Meyers, "Testing of Pipeline Reconfigurable
Machines," M.S. Thesis, Department of Electrical and
Computer Engineering, Carnegie Mellon University,
1998

[7] C. Stroud, S. Honala, P. Chen and M. Abramovici,
“Built-In Self-Test of Logic Blocks in FPGAs
(Finally, a Free Lunch: BIST Without Overhead!)”,
The 14th IEEE VLSI Test Symposium, 1996

[8] W. K. Huang and F. Lombardi, “An Approach for
Testing Programmable/Configurable Field
Programmable Gate Arrays,” 14th IEEE VLSI Test
Symposium, 1996

[9] T. Inoue, et al., “Universal Test Complexity of Field-
Programmable Gate Arrays,” Fourth Asian Test
Symposium, Los Alamitos, CA, 1995

[10] X. T. Chen, W. K. Huang, F. Lombardi and X. Sun,
“A Row-Based FPGA for Single and Multiple Stuck-
At Fault Detection,” IEEE International Workshop
on Defect and Fault Tolerance in VLSI Systems,
Lafayette, LA, 1995

[11] C. Jordan and W. P. Marnane, “Incoming Inspection
of FPGAs,” Third European Test Conference, Los
Alamitos, CA, 1993

[12] K. Kwiat, W. Debany and S. Hariri, “Effects of
Technology Mapping on Fault-Detection Coverage in
Reprogrammable FPGAs,” IEEE Proceeding -
Computers and Digital Techniques, 1995

[13] G. A. Mojoli, et al., “KITE: A Behavioral Approach
to Fault-Tolerance in FPGA-Based Systems,” IEEE
International Symposium on Defect and Fault
Tolerance in VLSI Systems, Boston, MA, 1996

	Tunable Fault Tolerance for Runtime Reconfigurable Architectures
	Abstract
	1.	Introduction
	2.	The PipeRench Architecture
	3.	Built-in Self-test Algorithm
	3.1.	Built-in Applicable Self-test (BIAST)

	4.	Evaluation
	4.1.	Cost of Testing
	4.2.	Mean Time to Detect a Fault
	4.3.	Tunable Fault Testing

	5.	Fault Isolation
	6.	Fault Tolerance
	6.1.	Non-Interstripe Interconnect Faults
	6.2.	Interstripe Interconnect Faults

	7.	Related Work
	8.	Conclusions
	9.	Acknowledgments
	References

