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Abstract—The open radio access network (O-RAN) architec-
ture provides enhanced opportunities for integrating machine
learning in 5G/6G resource management by decomposing RAN
functionalities. Yet, generic learning mechanisms either do not
fully exploit the disaggregated non-real-time and near-real-time
RAN controllers or ignore the potential elasticity of applica-
tion demands, another degree of freedom in managing RAN
resources. We introduce a two-timescale framework aimed at
optimizing users’ long-term total QoS. Rather than reactive
resource allocation, our approach proactively modifies multi-
resource user demands using congestion indicators, prior to
enforcing any allocation rules. Addressing the issue of insufficient
user feedback on individual resource utilities, we employ a
bandit-feedback version of the combinatorial multi-armed bandit
framework to deduce resource-specific signals. Also, to compen-
sate for insufficient and infrequent feedback, we’ve developed an
algorithm that gleans side information from live network traffic to
refine predictions on user resource sensitivities. This streamlines
the algorithm’s optimality convergence and leverages the two-
tier O-RAN controller structure. We validate our algorithms’
efficacy through analysis and 5G usage experiments, revealing
our proposed method improves application utility by 13-60%,
throughput by 8-19%, and reduces latency by 10-18%.

Index Terms—Open Radio Access Network (Open RAN),
elastic multi-resource management, online learning

I. INTRODUCTION

The problem of managing resources such as spectrum
blocks in wireless networks so as to optimize users’ quality-
of-service (QoS) has been examined over the past few
decades [1], [2]. However, emerging applications have het-
erogeneous performance needs [3], e.g., enhanced mobile
broadband (eMBB) use cases require high peak data rates,
while ultra-reliable low latency communication (URLLC) traf-
fic prioritizes ultra-high reliability and low latency [4]. As the
key component of 5G/6G networks, the Open Radio Access
Network (O-RAN) [5] faces the challenge of fulfilling hetero-
geneous, elastic, and multi-dimensional resource demands in
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Fig. 1: Disaggregated O-RAN architecture with non-real-time
and near-real-time RICs

a multi-tenant RAN system, e.g., allocating combinations of
spectrum, power, and cell sites [6], [7], or RAN slices of radio
spectrum, backhaul link bandwidth, and cache storage [8].

As shown in Figure 1, O-RAN [9]–[11] decouples baseband
unit (BBU) functions from Radio units (RUs) at each cell
site into distributed units (DUs) for data plane operations
and a centralized unit (CU) for global control. This hierarchi-
cal architecture further includes near-real-time and non-real-
time RAN Intelligent Controllers (RICs) running at different
timescales [12] interacted with the CU. It is therefore natural to
ask: whether and how to exploit the elasticity of user demands
and the two-tier architecture logic for multi-resource manage-
ment? Recent machine learning (ML) advances can predict
users’ QoS needs to enable flexible resource allocation. For
instance, schedulers may learn to allocate fewer but consistent
cellular blocks to a smart factory application, which does
not need high peak data rates like ultra-high definition video
streaming. However, it is not obvious how to integrate ML with
the two-tier O-RAN structure. Moreover, existing learning
algorithms rely on either large-scale training data-sets [13]
or fine-grained instantaneous online feedback (e.g., multi-
armed bandits [14]). We address these shortcomings through:
1) an outer-loop proactively reshaping elastic user demands
by learned optimal control signals at a longer timescale, using
only limited and possibly delayed application feedback; and
2) an inner-loop transforming in-direct knowledge from real-
time network data into side information for refining the outer-
loop learning parameters. These control signals are designed
to induce congestion-aware traffic demands from application
APIs in order to improve the total QoS performance achieved
by existing resource allocation schemes. Using control signals
to regulate users can also be found in other scenarios such



as demand response for smart grids [15] and dynamic cloud
VM pricing [16], although they do not exploit two-tier control
loops.

To this end, this work is among the first learning ap-
proaches that can proactively control multi-resources for
O-RAN systems under coarse-grained hindsight feedback
and offer theoretical guarantees. By “coarse-grained”, we
mean that the feedback is a single scalar of each user’s
aggregated QoS over the multiple types of acquired resources.
While imposing less of a burden on the user application
APIs, this kind of feedback impedes the learning convergence.
We leverage our inner-loop to overcome this problem. Thus,
unlike existing mechanisms for RAN resource scheduling
that do not fully exploit the O-RAN promoted disaggregated
architecture [10], [11], and unlike traditional online learning
algorithms for resource allocation that require fine-grained
user feedback [17], [18], we design a new learning algorithm
with theoretical guarantees that fully exploits the two-tier
nature of the O-RAN intelligent controllers to learn from
coarse-grained feedback and reshape elastic user demands
according to available resources. Other networked systems
may also benefit from this approach (Section VI-A).

In introducing this control framework, we encounter several
research challenges:

Uncertain and diverse application/user behaviors are hard
to predict with the current RAN control logic, given that
application APIs may only be able to provide limited feedback
at sparse time points, e.g., few users will upload scores
indicating their satisfaction with network QoS.

Ultra-low latency requirements for real-time resource man-
agement prohibit sophisticated allocation algorithms with high
time-complexity, e.g., solving a combinatorial admission con-
trol problem. We must allocate resource combinations without
knowing users’ timely QoS feedbacks.

Elastic and multi-resource demands motivate proactive
regulation of user demands when the network encoun-
ters congestion. However, multiple resources (e.g., spec-
trum/bandwidth on different links) greatly expand the space
of demands encountered and control signals offered.

Online learning [14], [19] provides efficient solutions to
optimize actions by learning through sequential feedback. We
introduce new learning intelligence to address our research
challenges, allowing us to make the following technical con-
tributions.

First, we design a two-tier closed-loop control framework,
which magnifies the value of the two-timescale O-RAN intel-
ligent controllers. To reduce the complexity of solving elastic
and multi-resource allocation, we propose an outer-loop online
learning routine to first induce congestion-aware demands
through control signals. In the inner loop, a gradient-based
strategy (Algorithm 2) is designed to extract side information
for improving our outer-loop learning ability. Lightweight
allocation rules are thus integrated into the inner-loop as well
for final resource provisioning (Section V), removing the need
to create a clean-slate reinvention of O-RAN resource man-
agement in order to implement adaptive resource allocation.

Second, our C-MAB-based outer-loop can learn multi-
dimensional decisions from single-dimensional feedback. It

therefore uses much weaker assumptions than linear ban-
dits [18] or semi-bandits C-MAB [20], [21], which require
one feedback value for the control signal of each type of
resource. We first reshape our original solution space and then
parameterize the unknown QoS objective function in order to
optimize it. Since we construct a one-hot format of the control
signal for each type of resource, our linear parameterization
admits an arbitrary QoS function with respect to (w.r.t.) the
allocation and the control signal of any given resource.

Third, our learning scheme is a novel variant of contextual
MAB algorithms. Unlike prior works [22]–[25], ours requires
neither explicit contexts as parameters of the reward functions
nor a context-reward relationship known a priori. Inspired by
the widely adopted optimizers of neural network learning, we
construct gradient-based contexts to improve our estimates
of the uncertain reward values, i.e., to shrink the confidence
region of the learning parameters which can reduce the sub-
optimality of using the outer-loop control signals.

Finally, we validate our algorithm performance through both
theoretical analysis and simulations on 5G data usage traces
(Section V). Our analysis proves that the performance gap
against the optimum increases with time in a poly-log scale.
Although the gap is larger than conventional C-MAB [18],
[21], unlike these algorithms ours does not need fine-grained
semi-bandit feedback for each type of resource and integrates
an inner loop to reduce the gap in practice. Our approach there-
fore provides a new perspective on utilizing side information
to mitigate the effects caused by low-quality reward feedback.
We further verify that our algorithm dramatically increases the
total QoS compared with using various heuristics or standard
MAB decisions, demonstrating the value of using our two-
timescale method in latency-sensitive RAN systems.

We survey related works in Section II before outlining our
novel control framework (Section III), learning algorithms
with theoretical guarantees (Section IV), and empirical val-
idation (Section V). We finally conclude in Section VI.

II. RELATED WORK

Optimizing 5G/6G resource allocations with new tech-
nologies like edge computing and millimeter-wave interfaces
has been one of the major objectives of 5G and 6G [6], [7],
[10], [26], [27], driven by the increasing volume of traffic and
computation demands. At the core of achieving this goal is
more efficient and intelligent radio resource management [5],
[6], [28] that can handle multi-access and multi-dimensional
resources. Extensive studies have proposed to improve pro-
visioning the RAN resources with goals of maximizing the
total/mean throughput [29]–[31] or energy efficiency [32]–
[34] of 5G/6G cellular networks by optimizing the allocation
of spectrum blocks and/or transmit power. These approaches
pre-specify fixed objectives and rely on classic optimization
methods such as matching and water-filling, which cannot
learn and adapt to uncertain resource demands or user QoS
metrics. To this end, allocation problems in both offline and
online scenarios have been extensively studied [35], [36]

Multi-armed bandits (MAB) can balance the exploration-
and-exploitation trade-off that arises from our need to adapt
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allocations to uncertain demands and QoS needs. Resource
allocation problems, at their core, concern the strategic dis-
tribution of a finite set of resources among competing enti-
ties or tasks to optimize a specific performance metric. The
inherent capability of the MAB model to strike a balance
between exploration (assessing different allocation strategies)
and exploitation (adhering to the most efficacious known
strategy) makes it especially pertinent to such challenges.
Recent works have proposed different MAB algorithms for re-
source allocation in communication networks such as wireless
channel access scheduling [37], [38] and cloud resource pro-
visioning [16]. However, these do not consider dual-timescale
allocation structures, as we observe in the O-RAN intelligent
controllers. Another line of works introduce contextual data
into the MAB problem, leading to the development of con-
textual bandits for resource allocation; these have furthered
the granularity of resource allocation, enabling more tailored
decisions based on factors such as user profiles or system
states [39]. Unlike the classic bandits for resource allocation
schemes, our problem model falls into the category of com-
binatorial MAB (C-MAB), which has a much larger solution
space than conventional MAB models. A few works devise
new C-MAB frameworks by considering correlated bandits
for general online resource allocation problems [40], [41].
Contrary to their semi-bandit feedback approach, we employ a
bandit-feedback mechanism and leverage side information to
expedite the learning process. In addition, although pioneering
C-MAB works [18], [20], [21], [42] have offered algorithms
with provable performance guarantees and good scalability, we
target a different C-MAB setting for better capturing the struc-
tures of application feedbacks and O-RAN two-tier controllers.
Namely, users may infrequently submit aggregate QoS scores
(reward) over all types of received resources rather than fine-
grained feedbacks (see the second contribution in Section I),
but the controller needs to adjust multi-resource allocation
in near-real time. Some works that propose two-timescale
learning-aided methods are similar to our method [17], [43]
but cannot handle the multi-dimensional resource allocation
in a bandit-feedback scenario, where only a scalar feedback is
revealed each time infrequently for allocation decisions made
for each type of resource. In [44], a two-tier CMAB algorithm
is devised to co-optimize the mode and resource allocations
for both cellular user equipments (UEs) and device-to-device
(D2D) UEs. Different from their definition of “two-tier”,
which selects the resource allocation for cellular and D2D
UEs separately, ours is a two-timescale learning algorithm
which leverages carefully abstracted side information in a
finer timescale to help estimate latent, yet still uncertain,
information about the rewards received in the longer timescale.
Existing literature on MAB with side information mainly fo-
cuses on contextual bandits [22]–[24], [45], requiring stronger
observation capabilities or assumptions on the context-reward
mapping, e.g., observing a context before playing arms and
knowing the reward function w.r.t. the context. We instead
exploit indirect knowledge of demand-reward relationships to
accelerate learning of the optimal control signals.

We finally note that reinforcement learning (RL) has been
proposed to optimize several decisions in 5G or edge net-

works [43], [46], including optimization of prices (e.g. [47]),
which are conceptually similar to our regulation signals. Their
methods do not permit provable performance guarantees or
often require significant and frequent user feedbacks that can
be very costly to obtain in 5G/6G RAN systems.

III. PROBLEM MODEL

As shown in Figure 2, the outer-loop controller resides in
the non-real-time RAN intelligent controller (non-RT RIC) and
computes the control signals sent to users. The near-real-
time RAN intelligent controller (near-RT RIC) learns real-
time side information to improve the outer-loop and also
computes the resources allocated to each user. Users complete
the two control loops by sending their realized demands and
satisfaction scores (feedback) to the controllers.

We consider that K types of cellular blocks (resources)
are allocated to N users within the network over T evenly
split time slots. Let [X] denote the set {1, 2, · · · , X}. Each
user i ∈ [N ] can initiate an application session with arbitrary
start and end times, between which it sends a request to
the near-RT controller for dikt amount of type-k resource in
each t ∈ [T ]. These resource types can represent different
5G/6G cellular blocks that are shared by users with the help
of advanced multi-access technologies [11]. They can also
include transmit power, spectrum, code domains or shares
of multiple network “slices”, each providing a different QoS
guarantee [4], [48]. Another example that may be realized
in the future is that of augmented/virtual reality [49] or
similar applications requesting both computing resources from
edge servers and bandwidth/cellular resources on the 5G/6G
connections to these edge servers, although the 5G RAN does
not currently control edge server resources. Our framework
is agnostic to the specific resources considered; thus, while
we give several different examples here of possible resources
that the RAN intelligent controllers might allocate, we use
the generic term “resources” in the remainder of the paper.
In Section V, we consider a scenario in which there are
two “resources” representing the uplink and downlink cellular
blocks.

We propose an online learning module at the non-RT
RAN intelligent controller that computes the offered control
signals every χ ∈ [1, T ) timeslots, which not only allows the
controller ample time to complete its computations but also re-
quires a lower frequency of collecting feedback from users, as
we elaborate below. In each time t = 0, χ, 2χ, · · · ,

⌊
T
χ

⌋
χ, the

non-real-time controller computes a control signal pkt for each
type-k resource and posts it for the subsequent χ timesteps to
each user i, who submits the demands {dikt(pkt)}k∈[K] to the
near-RT controller as responses to pkt.

The goal of creating pkt is to indicate the current con-
gestion at each resource, so that each application API can
automatically moderate its demands accordingly. In practice,
however, the reactions to the control signals may vary across
applications, or even across users using the same application
but in a different status. We thus treat resource demands
as the outputs of a private response function of each user’s
application to the current signals and do not impose any
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Fig. 2: Overview of our system, showing control signals
{pkt}k∈[K] for each resource k generated every χ timesteps
on the outer loop at the non-real-time controller and near-
real-time resource allocations d̃t computed by the inner loop.
Users’ application APIs respond with their resource demands
dt for each t and an aggregate score

∑
τ∈[t−χ,t−1] Uiτ every χ

timesteps, since our outer loop only needs this coarse-grained
feedback. The orange blocks denote RAN modules that are not
directly involved in the control logic, but convey information
between the users and RICs.

structure on these functions. We associate each user with a
single application; multiple applications at the same user may
be modeled as separate users.

Formally, we aim to learn the optimal pt = {pkt}k∈[K]

that can induce each application i to submit a demand dit =
{dikt}k∈[K] that maximizes the quality-of-service (QoS) of all
users under the inner-loop allocation rule, and we update pt

every χ timesteps. In practice, the software agent of each i
sends a demand vector dit each timestep t and an aggregate
satisfaction score

∑
i,τ∈[t−χ,t−1] Uiτ every χ timesteps to the

near-RT RIC, which will decide the allocation results and
transmit

∑
i,τ∈[t−χ,t−1] Uiτ to the non-real-time controller.

More frequently submitted satisfaction feedbacks will not
harm the outer-loop or inner-loop efficiency, and practically
the parameter χ is tunable according to the computation over-
head, solution optimality, and users’ willingness to provide
feedback. We refer to Uit as the user utility in the rest of
the paper. The optimization problem that we seek to solve is
defined as follows:

maximizept,∀t
∑
i,t

Uit(dit(pt), d̃it(pt)), (1)

with O :
(
{dit(pt)}i∈[N ], ft

)
→ d̃t(pt) (2)

Here, the utility function Uit(·, ·) takes as inputs the submitted
demands dit(pt) from application APIs and the realized
allocation d̃it(pt) from the near-RT controller. The main
challenge in solving (1) is to simultaneously learn the effects
on Uit of the demand response functions dikt, allocation rule
O, and the network conditions ft.

The near-RT controller runs a pre-determined, efficient

oracle O1 in each t ∈ [T ] to realize a resource allocation
d̃t = {d̃ikt}i∈[N ],k∈[K]. The oracle O takes as input user
demands dikt induced by our current control signals pkt
(Figure 2) and the network’s feasible performance region
(abstracted by ft). For instance, ft ≤ 0 can include linear
constraints that the total allocation of each type-k resource
should not exceed the capacity Ckt, namely,

∑
i d̃ikt ≤ Ckt;

or non-linear ones, such as that the latency Li of each user i
who occupies an MIMO channel should not exceed a threshold
Lmax
i , i.e., Li = 1/ (

∑
n Bin log(1 + SNR(pin))) ≤ Lmax

i [50],
with non-linear dependency between the allocated bandwidth
Bin and power pin on the nth channel incorporated in the
signal-to-noise ratio (SNR(·)).

To this end, allocation problems in both offline and online
scenarios have been extensively studied [35], [36] (e.g., casting
the allocation problem into an NP-hard combinatorial or a
convex optimization problem). The allocation can be decided
by rule-based [51], [52] or learning-based (e.g., reinforcement
learning [16], [36], [46]) schemes, taking users’ finally sub-
mitted demands dit(pt) as inputs. The focus of this work is
instead on learning the optimal interaction signals between the
two time-scale controls under coarse-grained feedback from
application APIs.

Each application agent of user i completes the inner and
outer control loops by computing its demands dit(pt) each t
and an aggregate satisfaction score periodically. We emphasize
that, although the true user QoS may depend on the (human)
user’s intrinsic preferences, these responses could be computed
automatically by a SDK (software development kit) running
in the background of the user’s application without human
involvement. Human users would then not need to spend
time and energy on specifying their demands and utilities.
Users’ utility scores, for example, could be computed as a
combination of various quality-of-experience metrics [53].

In practice, since user demands and utilities can be auto-
matically calculated by an application SDK, user truthfulness
in reporting their satisfaction is not a primary concern, as
human users do not directly control the reported demands and
utilities. When considering adapting our framework to other
resource allocation problems facing human users’ submitted
demands, our framework guarantees truthfulness if the control
signals represent prices that impose a cost on users, since our
proposed logic becomes a posted-price mechanism [54], under
which truthful user demands are provably optimal. Besides,
while our framework for setting the control signals pt does
not make any assumptions on the demand functions dit(pt),
many prior works make the reasonable assumption that users
select dit so as to maximize their own utilities or QoS [54],
[55]. We omit a full discussion of this point since it does not
directly impact our design goal of achieving automatic and
optimal interaction between RAN controllers and application
APIs.

1Picking an efficient allocation rule O completes the proposed framework
but is not our research contribution and thus not discussed. In Section V, we
show that our learning algorithm can improve the resource allocation for a
variety of oracle choices.
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IV. A NEW COMBINATORIAL-MAB FRAMEWORK

To adaptively learn the outer-loop optimal control signals,
we utilize the multi-armed bandits (MAB) framework, where
an agent learns the optimal (i.e., maximizing the accumulated
reward) decision (arm) out of a given set of possible arms,
through carefully selecting arms in sequential trials. Variants
of classical MAB frameworks, however, either require more
information on the chosen decisions than is available in our
problem or scale poorly with the resource dimensions due
to regarding the decision vectors as independent arms. We
propose a novel learning method to learn the optimal signals
in our outer loop by incorporating an iterative gradient-based
algorithm that carefully abstracts side information from the
inner loop into a combinatorial MAB (C-MAB) framework
with minimal feedback, (c.f. bandit feedback C-MAB). It is
different from linear bandits [18] or semi-bandits C-MAB [20],
[21] since we only access an aggregated feedback of all
base arms [14]. Our novel use of inner-loop side information
provides a new perspective of speeding up online learning
using offline learning from indirect information.

A. Bandit-feedback C-MAB with Side Information

Solving (1) via multi-armed bandit algorithms introduces
additional challenges from the continuous choice of control
signals pt. Most MAB algorithms assume a discrete, finite set
of decisions rather than a continuum. While one can adapt
MAB techniques to search through a continuum of decisions,
e.g., through adaptive discretization of the decision interval in
Lipschitz bandit frameworks, such algorithms scale poorly as
the dimension of the decision space (here, K, the number of
resources) increases [25]. Thus, for ease of presentation, we
consider that each control signal pkt is discretized to Q distinct
candidates values and refer the readers to existing work [56]
on optimizing Q and analyzing the effect of this discretization
on the achieved MAB reward. In general, a careful choice of
Q can nearly match the performance of the offline optimum
selection of pt from the original continuous range, with the
performance gap approaching zero as the number of timeslots
T → ∞ [56]. In our scenario, discretizing the signal values
has an additional practical benefit: by limiting ourselves to Q
signal values instead of a continuum, we may make it easier
for users and application APIs to comprehend differences
between the control signal values, and thus to react to them
appropriately by adjusting their demands.

Given there are Q choices for each type of resource k ∈ [K],
we can certainly apply classic MAB framework by defining
the arms as all feasible K-dimensional signal vectors. We then
observe Uit as the reward of the chosen vector at t. However,
this direct adoption leads to a total of QK arms and thus
slow convergence to the optimum (see the lower-bound results
in [14]).

Arm space reshaping. To enable efficient learning that
scales better with the size of solution space, we expand our
K-dimensional decision p into a QK-dimensional indicator
vector. More specifically, we define a set of binary vectors
as our super-arms, i.e., pt ∈ P ≜ {0, 1}QK×1, where each
element pl ≜ pkqt with l = Q(k − 1) + q represents whether

to choose (= 1) or not (= 0) a base-arm of the qth signal
candidate for resource k at timestep t. Our learning framework
then falls into the category of combinatorial MAB [20] under
bandit-feedback [14]. Unlike [18], [20], [21], we only observe
an aggregated utility

∑t−1
τ=t−χ Uiτ every χ timesteps, not the

utilities from each individual base-arm in the chosen super-arm
pt each t.

We then need to learn the latent reward of each base-arm
from the aggregated reward. Given our expanded decision
pt, we then assume that the expected utility is a linear
combination of the corresponding pt and a latent utility vector
u ∈ RQK×1, namely, E[

∑
i Uit(p)] = uTp =

∑
k,q ukqpkq

(bold superscription T denotes transpose), where ukq denotes
an unobserved, arbitrary expected utility gained by the total
allocation of type-k resource under the signal pkq . Since our
decision pt consists of a one-hot formatted vector pkt for
each k, we allow arbitrary functions of Uit with respect to
the value of the chosen decision: e.g., if K = 1 and we
discretize the set of feasible arms p as {0, 0.1, 0.2, . . .}, then
choosing a signal of 0.1 means pt =

[
0 1 0 . . .

]
. The utility

vector is defined u =
[
U(0) U(0.1) . . .

]
no matter what

the values U(0), U(0.1), . . . are. We can further interpret the
ukq as unknown weights on each resource or performance
metric, e.g., if we use linear regression to predict the aggregate
utility from the control signal indicators pt. For example, if
the utility is the negative of the end-to-end session latency,
then it is simply the (negative) sum of the latency allocated
on each link in a session path.

We then propose an Online Learning Algorithm for
choosing the optimal control Signals (OLAS) to learn the
optimal p. The idea is to first construct a confidence region that
contains u with high probability and then solve for the optimal
p given the region of u. Some combinatorial UCB algorithms
also construct confidence regions/bounds for estimation [14],
[20], [42], but ours is different in first constructing one
initial confidence region of the K-dimensional latent vector
using the aggregated reward of chosen super-arms, and then
shrinking the region in a sub-routine (GASH) that exploits side
information aggregated by the resource allocator: an uncertain
inference mapping between the expected allocation E[d̃kq] and
ukq . Intuitively, we translate our estimated u in the initial
region to a range of estimated E[d̃kq], so that the resource
allocator can correct our estimated u using the inference
mapping, since it knows better the real E[d̃kq] from historical
samples and can learn faster than we learn in the outer loop.
Prior contextual MAB works consider side information as
context [22], [23], but differ from ours in that: (i) the context
is provided for each base-arm each time before taking the
actions, (ii) the reward uikt of each base-arm is observable,
and (iii) uikt follows a pre-specified function of the context.

Algorithm interpretation. As in Algorithm 1, every χ
timesteps, we update our estimated latent utility vector u to
be a linear least squares estimator ût, with the intuition that
ût minimizes the empirical prediction error of the observed
aggregate utilities across all users i:

ût = argminu
∑t−1

τ=1(u
Tpτ − Uτ )

2, where: Uτ ≜
∑

i Uiτ
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from which ût can be computed as in line 7 of Algorithm
1 and

∑t−1
τ=t−χ Uτ is available each χ timesteps. Further, we

construct a confidence region E0,t of u, so that each point
v ∈ E0,t has a bounded empirical prediction error with respect
to the error incurred by ût, namely,{

v
∣∣∑t−1

τ=1(v
Tpτ − Uτ )

2 −∑t−1
τ=1(û

T
τpτ − Uτ )

2 ≤ βt

}
,

(3)

which can be rearranged to be the ellipse E0,t formulated in
(4) below, given the expressions of At and ût shown in lines
6-7 of Algorithm 1.

E0,t =
{
v|(v − ût)

TAt(v − ût) ≤ βt

}
(4)

The intuition on the choice of parameter βt in each timestep t
(line 9) is that βt should be high enough such that the utility
parameter vector u lies in E0,t with high probability, but also
low enough to ensure fast convergence since the regret bound
(i.e., the difference between our achieved reward and the
optimal reward) of timestep t can be shown to monotonically
increase with βt (Theorem 1). Given the initial confidence
ellipse E0,t (updated every χ timesteps), we call Algorithm 2
(GASH) to shrink E0,t to be Ej in each subsequent timestep
j ∈ [t + 1, t + χ). To distinguish from the notation t in
the outer-loop, we use j instead of t to denote the timesteps
when we explain the inner-loop GASH algorithm. In the final
step (line 4), pt can be exactly solved by an offline oracle.
For computation efficiency, an α-approximate solution of p
may be preferred for large K, which yields similar algorithm
regret as that shown in Theorem 1 when compared with an
α-fraction of the offline optimum that always chooses the best
p [20]. An illustration of the algorithm workflow is shown in
Figure 3. Similar to the ConfidenceBall algorithms in [38], the
main computational difficulty of Algorithm 1 comes from the
optimization of the control signal pt (line 4). As suggested
by [30], if |P| is small, we can enumerate all possible
p and solve maxv∈Et−1

vTp that is a linear programming
problem, and total time complexity is |P| · poly(QK). On
the other hand, based on the discussion of ConfidenceBall2 in
Section 3.4 of [38], this optimization problem can be seen as
polynomial-time equivalent to the NP-hard negative definite
linearly constrained quadratic programming problem, which
might be computationally practical for large Q,K. However,
compared with ConfidenceBall2, we shrink the confidence
ellipse Et−1 using Algorithm 2 and we search for the optimal
solution in a smaller feasible region. Thus, the computational
complexity of Algorithm 1 can be further reduced, i.e., the
factor absorbed in the poly(QK) is smaller.

B. GASH: Shrinking the Confidence Region

Inspired by the classic ellipse algorithm for solving convex
optimization problems [57], we design a subroutine algorithm
GASH that searches for the maximizer u of some concave
objective function G by: 1) initializing an original ellipse that
contains u with high probability and 2) iteratively updating
Ej to be an ellipse with the least volume that contains a half
ellipse cut by an hyper-plane orthogonal to a (sub)gradient gj
of G at the center of Ej [57], formalized as (5). Step 2) is re-

OLAS (Algorithm 1) run at the non-RT RIC

GASH (Algorithm 2) run at the near-RT RIC  

…
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Fig. 3: Illustration of the workflow of our proposed Algorithms
OLAS and GASH. The steps numbered from 1 to 9 show how
the confidence region (ellipse) is updated at the near-RT RIC
and non-RT RIC between two successive updates of the outer-
loop OLAS algorithm.

alized in GASH similar to the classical ellipse algorithm [57]:
moving the center of the ellipse in the direction of gj (line 7
of Algorithm 2) and updating βj to be smaller (line 8); Step
1) is satisfied by using E0,t in our Algorithm 1, which we
show in Theorem 1. Algorithm 2 continues shrinking Ej in
each iteration j until either Ej converges (|ûj,t− ûj−1,t| ≤ ϵ),
or a pre-set maximum algorithm runtime in each timestep is
reached or gj = 0. The challenge is in fact to obtain gj as
side information from our resource allocator.

Intuition to re-design gj . As explained in Sec. IV-A, each
element ukq of u represents the (latent) expected utility gained
from the total allocation d̃kq under the qth control signal
candidate, which intuitively is determined by the expected
allocation E[d̃kq]. Suppose that the resource allocator’s oracle
O solves for d̃kqt by maximizing some estimated total utility
function Ĝ given the realized user demands {dikqt}i∈[N ] under
our chosen qth control signal candidate, and let G represent the
deterministic certainty equivalent problem [58] of Ĝ, of which
E[d̃kq] is the optimal solution. Note that Ĝ, however, may not
be known, even to the network operator. Therefore, getting
a valid gradient of ûj,t to correcting the estimation of true
expectation u is impossible. To tackle this, we show in Lemma
1 that it suffices to know the sign of gj in each dimension.
While existing works [57] have proved the convergence of the
ellipse algorithm and adopted it to solve linear programming,
we are the first to integrate it into a learning framework with
simplified gradient required by the learning algorithm.

Lemma 1. Conditioned on the event that the true expected
latent vector u lies in E0,t, in each subsequent timestep j +
1 (j ≥ t), our shrunk ellipse Ej+1 is a sub-region of the
confidence region Ej and can be formulated in (5) below:{

v|(v − ûj)
TA(v − ûj) ≤ βt, gj · (v − ûj) ≥ 0

}
, (5)

if we use gj defined in (6) below, where sign(·) is a sign
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Algorithm 1: Outer-loop algorithm run at the non-
real-time RIC: An Online Learning Algorithm for
Optimizing the Control Signals (OLAS)

Input : σ, K, Q, ϵ, χ, P
Output : pt, ∀t
Initialize: û0 = 0, p0 = 0

1 while each time t = χt̂, t̂ = 1, 2, · · · , ⌊T
χ ⌋ starts do

/* Solve for the optimal pt given
updated predictions */

2 Get the updated feasible region P of pt and collect
utility

∑t−1
τ=t−χ Uτ under pt−τ ;

3 Get the shrunk ellipse Et−1 from Algorithm 2;
4 Solve for the control signals

pt = argmaxp∈P,v∈Et−1
vTp;

5 Broadcast pt and use it for the next χ timesteps;
6 Update the parameters of initial confidence region

E0,t: At = I +
∑

τ<t pτp
T
τ ;

/* Estimate the latent utility
parameter vector */

7 Update the center of E0,t: ût = A−1
t

∑
τ<t Uτpτ ;

8 Get an aggregate utility score Ut from the
near-real-time RIC;

9 Update the parameter of E0,t:
βt = max

(
128QK ln t̂ ln

(
t̂2

σ

)
,
(

8
3 ln

(
t̂2

σ

))2)
;

/* Construct the initial confidence
region of time t. */

10 E0,t =
{
v|(v − ût)

TAt(v − ût) ≤ βt

}
;

11 Call Algorithm 2 to start to shrink E0,t:
GASH(pt, At, βt, ût, Q,K, ϵ);

function:

∃ αkq > 0, gjkq = αkq · sign(ukq − ûjkq), ∀k, q. (6)

Besides, each updated confidence region Ej+1 must contain
u = {ukq}k∈[K],q∈[Q] given that u ∈ E0,t and is the least
volume of ellipse that contains the sliced half ellipse Ej .

Proof of Lemma 1. First, based on the expression of the initial
ellipse E0,t and our expression of updating ûj+1 and parameter
βj+1 in lines 7–8, one can verify that the ellipse Ej is
formulated as

{
v|(v − ûj)

TA(v − ûj) ≤ βt

}
. Hence, Ej+1

defined in (5) is thus the joint region of Ej and the half space
{v|gj · (v − ûj) ≥ 0}. Next, (6) means that gi is a vector,
where each element indicates the direction of ukq − ûjkq .
Taking (6) and v = u into (5), it’s easy to verify that the
inequalities of (5) hold, which proves that Ej+1 contains u
as Ej . Finally, lines 7–8 combined with condition (5) yield
that GASH inherits the property of the ellipse algorithm [57].
Therefore, Ej+1 is the least volume of ellipse containing half
ellipse of Ej .

Estimating the gj defined in (6). Given Lemma 1’s results,
we now discuss how to get the indicator sign(ukq − ûjkq)
for each k, q in any iteration j of Algorithm 2. Theoretically,
the side information of such sign(·) does not require the

Algorithm 2: Inner-loop algorithm run at the real-
time RIC: A Gradient-based Algorithm to Shrink the
Confidence ellipse (GASH)
Input : pt, At, βt, ût, Q,K, ϵ,O
Output : Et+χ−1

Initialize: p = pt, A = At, û0 = ût, j = 0, β0 = βt

1 Broadcast p to application APIs and receive their
real-time demands;

2 while each timestep j ∈ {t, t+ χ− 1} starts do
3 Conduct resource allocation using a pre-defined

solver O;
4 if |ûj,t − ûj−1,t| > ϵ then
5 Calculate our simplified gradient gj using (6)

and break if gj = 0;
6 Normalize the simplified gradient:

g̃j = gj/
√
(gj)TA−1βjgj ;

7 Update the predicted center:
ûj+1 = ûj +

1
(QK+1)A

−1βj g̃j ;
8 Update the parameter: βj+1 =

Q2K2

Q2K2−1

(
βj − 2

QK+1βj g̃j (g̃j)
T
A−1βj

)
;

9 Update the timestep of the inner-loop:
j = j + 1;

10 Define βmin
t to be the smallest βj over all j;

/* Choose the ellipse with the
smallest width */

11 Return the refined confidence region
Et+χ−1 =

{
v|(v − ûj)

TA(v − ûj) ≤ βmin
t

}
;

knowledge on the exact value or range of the ukq that we
need to estimate, but instead only requires that the system
can answer queries that indicate whether our estimated ûkq

is larger or smaller than ukq . This requirement is much weaker
than that of knowing the true value of ukq . It can, for example,
be thought of as analogous to relative feedback models in other
learning scenarios such as recommendation systems, where it
is much easier for the user to tell us whether our estimated
score of each item is higher or lower compared to that of
another item than to directly tell us the absolute score of the
item [59], [60], although our overall method and problem are
very different from those of recommendation systems. Below,
we provide two specific methods to design such queries in
practice. We also show in the proof of Theorem 1 that the
estimation error of gj does not change the order of the overall
performance gap (regret) of Algorithm 1.

The first method leverages the monotonicity of some mea-
surable performance metric with respect to the utility score
U(p). More specifically, we assume that certain applications
(denoted as a set ϕ) achieve some performance using their
allocated resources under p is monotonic w.r.t. U(p), such
as the throughput, a common performance metric in RAN
resource allocation [6], [51]. In some cases, the throughput
itself may be the user utility function, though in general
we cannot simply maximize throughput as some users may
have utilities that are more complex functions of throughput
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or other directly measurable performance metrics. We note
that knowing the allocation of each type of resource or the
measurable performance is far from knowing the actual value
of the utility gained by getting each type of resource; instead,
we are only able to compare two aggregated application utility
scores, based on the relative difference of the measurable
performance. Then, we can obtain sign(ukq − ûjkq) as long
as the RIC or application side can measure the performance
of applications in set ϕ and compare their (a) expected
measurable performance achieved using the expected type-k
allocated resource each time under the qth price; and (b) the
mean performance in those historical timesteps over which
the average received utility score equals ûjkq , or the average
of measurable performances in two groups of timesteps when
the received average utility scores constitute the smallest range
containing ûjkq .

We can design another method to find sign(ukq−ûjkq) for
our Algorithm 2 if we can infer (e.g., from prior knowledge
or historical samples) a range2, denoted by [u−

kq, u
+
kq] of

each expected utility entry ukq of the utility vector. With
[u−

kq, u
+
kq] obtained, we replace the function sign(·) by

signapprox defined below, which guarantees that Lemma 1 is
still satisfied. The only difference is that when the last case
of (7) occurs, sign (ukq − ûjkq) could be −1 or 1 while
signapprox (ukq − ûjkq) = 0, meaning that GASH could stop
updating earlier if we use signapprox(·) instead of sign(·).

signapprox (ukq − ûjkq) =


1 if u+

kq < ûjkq

−1 if u−
kq > ûjkq

0 Otherwise
(7)

Intuitively, a smaller inference range can lead to a smaller
confidence region since we might have more iterations to
correct our estimated ûjkq . However, a smaller inference
range in turn imposes a stronger assumption on the real-time
allocator, e.g., using more historical samples to obtain such
inference ranges. We test their impact on the performance of
our OLAS and GASH algorithms algorithm in Section V-B. In
the following, we also discuss potential methods for computing
the inference range of each ukq but leave systematic methods
as our future work. For each k, q, the larger end point u+

kq , of
the inference range of ukq , can be obtained in three steps.
(i) We discretize historical Ut’s to certain levels, denoted
as U ′

l (l indexes the level). We associate each U ′
l with the

average corresponding allocated resource d̂kqt over historical
timesteps. (ii) We estimate the expected allocation d̂kq by its
upper confidence bound (UCB) [20], [38]. (iii) Then u+

kq is
approximated by the U ′

l that has the associated d̂kqt closest to
the UCB of d̂kq . The choice of using U ′

l as an upper-bound
of u+

kq is natural as U ′
l s are the total utility scores achieved by

all the types of allocated resources which is larger than that
gained by the single type associated with d̂kq . The smaller end
point of the interval, u−

kq , can be approximated by zero.
We next analyze the regret of Algorithms 1 and 2, given

that we have a method to estimate the subgradients gj in
Algorithm 2’s inner loop.

2We call the obtained range of each utility ukq inference range and show
its impact on our algorithm performance in Section V.

C. Regret Analysis
Every χ timesteps, our Algorithm 1 produces a signal

vector pt which is used by the inner-loop Algorithm 2 for
the subsequent χ − 1 timesteps, given that Algorithm 1 is
only able to receive one utility feedback every χ timesteps.
To theoretically analyze the performance of our Algorithm 1
with subroutine Algorithm 2, we adopt the classic metric in
online learning, the regret [14], which is defined as the gap in
expected total reward between using the optimal super-arm p
and our chosen pt,∀t:

Regret = T max
p

uTp−
∑
t∈[T ]

uTpt

We prove in Theorem 1 that the regret is sub-linear with the
time-horizon.

Theorem 1 (Regret Bound). Suppose the minimum gap of
the utility per time between using the optimal control signal
vector and any sub-optimal one is ∆, and the maximum total
utility per time is Umax. Then our online learning algorithm
OLAS achieves a polylog(T) regret, more specifically, a regret
at most O

(
χ
∆QKΛβT ln(T/χ)Umax

)
, where:

βT = max

(
128QK ln

T

χ
ln

(
T 2

σχ2

)
,

(
8

3
ln

(
T 2

σχ2

))2
)
,

Λ = max
t

min

1,max

χ−1∏
j=0

1 + (QK − 1)Γjt

Q2K2 − 1
, 0


Γjt =

gj√
gT
jA

−1
t gj

 gj√
gT
jA

−1
t gj

T

A−1
t (8)

The regret bound is polynomial in Q and K, in contrast to
O(QK) if using conventional MAB algorithms that ignore the
combinatorial structure of the control signal decisions [61].
Note that Λ is smaller than 1 by design and denotes the
multiplicative factor of the regret reduced by our Algorithm
2. Moreover, a larger χ, the number of timesteps within each
outer-loop duration, leads to a higher regret, compared to
an optimal algorithm that can adjust its decisions in each
timestep. This dependence on χ can be explained as that
more frequent feedback leads to a higher learning efficiency
but also greater burden on the user’s application to provide
such feedback. Our regret does not increase dramatically with
infrequent feedback, due to the fact that: although each mistake
OLAS makes at any t = ⌊T

χ ⌋ (a played sub-optimal super-
arm) will incur χ mistakes since we do not change pt in the
subsequent χ − 1 timesteps, the diameter of the initial con-
fidence region updated by OLAS increases more slowly than
updating pt every t ∈ [T ], and it can be further reduced by our
subroutine GASH algorithm. In addition, the total number of
GASH iterations (within each χ-timestep duration), in which
the confidence region is successfully shrunk depends on the
inference capability that the real-time allocator provides. E.g.,
the number of inner-loop timesteps for which the system is
able to answer the query of getting sign(ukq − ûjkq) ̸= 0. We
leave how to improve the capability of the system to provide
such useful side information in realistic 5G and 6G O-RAN
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systems to our future work.

Proof of Theorem 1. The main idea is that with probability at
least 1− σ (the parameter σ is an input to define βt in Algo-
rithm 1) our regret is at most O

(
χ
∆QKΛβT ln(T/χ)Umax

)
in

the event that {ukq}k,q is within our confidence ellipse, and is
no greater than UmaxT with probability at most σ otherwise.
We can tune the parameter σ small enough so that UmaxTσ
can be ignored.

More specifically, we first upper-bound the regret for the
event where {ukq}k,q lies in Et, ∀t, which happens at least
probability 1−σ. This can be proven in two steps. First, based
on Hoeffding-Azuma inequality [42], our prediction {ukq}k,q
lies in Et0, ∀t ∈ [⌊T

χ ⌋], with at least probability 1− σ̂, where
σ̂ is tunable parameter affecting the parameter βt in Algorithm
1. Second, for each iteration j of Algorithm 2, if we don’t have
a precise gj as Lemma 1 assumes, there exists a σ

′

j ∈ (0, 1]

so that with a probability of at least 1−σ
′

j , the shrunk ellipse
Ej still contains u, conditioned on that u lies in the ellipse
updated in j − 1 and Et0 updated by Algorithm 1. Therefore,
there exists a σ > 0 that 1− σ = (1− σ̂)

∏J
j=1(1− σ

′

j).
Below we then upper-bound the regret for normalized

Umax ≤ 1; the bound multiplied by the original non-normalized
Umax completes the proof. Let βj,t denote the βj in Algorithm
2 for time t. Below we upper-bound the regret per time,
defined as [U∗−Ut]

+ ≜ max
{
0,uT (p∗)− pt

}
, which is the

regret each time we choose a wrong decision pt,∀t ∈ ⌊T
χ ⌋,

if (U∗ − Ut) is non-negative. Since we do not change our
chosen signal pt for χ times, i.e., within each round of the
outer-loop, the regret each time is at most multiplied by χ.
Recall the ellipse structure of Et, our temporary assumption
Umax ≜ maxtUt ≤ 1, and the definition of ∆, we have
[U∗ − Ut]

+ ≥ ∆ if [U∗ − Ut]
+ > 0, and then we can upper-

bound [U∗ − Ut]
+, by:

(U∗ − Ut)
2

∆
≤ 4

∆

(
min{1,

√
βm,tpT

t A
−1pt}

)2

(9)

≤4βm,t

∆

(
min{1,

√
pT
t A

−1pt}
)2

=
4

∆
βm,t

(
min{1, pTt A−1pt}

)
(10)

≤8βm,t

∆
ln
(
1 + pT

t A
−1pt

)
. (11)

The first inequality (9) can be proved by upper-bounding the
per-time regret as follows.

[U∗ − Ut]
+ = uT (p∗ − pt) ≤ (u− v∗)Tpt (12)

≤|(u− û)Tpt|+ |(û− v∗)Tpt| (13)

≤2||A
1
2
t (u− û)|| · ||A− 1

2
t p|| ≤ 2

√
βmtptA

−1
t pt, (14)

where p∗ is the optimal solution and v∗ is the selected v in
line 4 of Algorithm 1. Therefore, (12) is due to the fact that
uTp∗ ≤ v∗pt according to the optimization in line 3. The
first inequality in (14) is due to that |(u− û)Tpt| ≤ ||A

1
2
t (u−

û)|| · ||A− 1
2

t p|| and |(û−v∗)Tpt| ≤ ||A
1
2
t (u− û)|| · ||A− 1

2
t p||,

which we prove as follows.

For any v in our confidence region ellipse Et including u,
since At is symmetric, we have:

|(v − û)Tpt| ≤||(A
1
2
t (v − û))T || · ||A− 1

2
t pt||

=||(A
1
2
t (v − û))T ||

√
pT
t A

−1
t pt. (15)

We can prove the upper-bound of |(û − v∗)Tpt| similarly.
Finally, combined with the definition of our ellipse Et, (15)
leads to the last inequality of (14) .

Further, we can upper-bound (11) by first analyzing the
parameter matrix At. We have:

trace (At) = trace

(
I +

t−1∑
τ=1

ptp
T
t

)
≤ QKt,

det (At+1) =

t∏
τ=1

(
1 + pT

t A
−1
τ pt

)
. (16)

Therefore, we have det (At) ≤ tQK . Based on (11), the total
regret over T timesteps is then

∑
t∈[⌊T

χ ⌋] χ[U
∗−Ut]

+ and can
be upper-bounded by:

8

∆
χmax

t
(βt)

⌊T/χ⌋∑
t=1

ln
(
1 + pT

t A
−1pt

)
=
8

δ
χmax

t
(βt) ln

⌊T/χ⌋∏
t=1

(
1 + pT

t A
−1pt

)
=

8

∆
χmax

t
(βt) ln (det(AT )) ≤

8

∆
χmax

t
(βt)QK ln ⌊T/χ⌋,

where maxt βt =
∏T+χ−1

j=T
βj+1

βj
. In order to maximize the

regret, we want to use the smallest βt in any χ-timestep
duration. We first examine if just using the confidence ellipse
shrunk in the last iteration j rather than using the ellipse with
the least βj . We then have that βt+χ−1

βt
equals:

t+χ−1∏
j=t

βj+1

βj
=

t+χ−1∏
j=t

Q2K2

Q2K2 − 1

(
1− 2Γj

QK + 1

)

=

t+χ−1∏
j=t

1 + (QK − 1)Γj

Q2K2 − 1
:=

t+χ−1∏
j=t

Λj

where: Γj =
gj√

gTj A
−1
t gj

 gj√
gTj A

−1
t gj

T

A−1
t (17)

Finally, the additional number of sub-optimal pt chosen due to
the mistakes in estimating gj by potential inference methods
discussed in Section IV-B is at most O(QK log T ), since we
can use the UCB algorithm in each near-RT timestep for
estimation in each corresponding method (e.g., throughput and
allocations d̂kq in our two methods to estimate gj). Thus, such
inference error does not increase the order of our regret shown
in (8).

Note that if QK, the dimension of our decision region is
sufficiently large, we will have Λj ≤ 1, which determines the
fraction of regret we can reduce by shrinking the confidence
ellipse. For small QK, we may encounter that the smallest
width of the ellipse is larger than the initial one and thus stop
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running Algorithm 2, leading to a regret with Λj = 1.

V. EXPERIMENTAL EVALUATION

We validate our algorithm performance with a 5G usage
dataset [62] and user demand and reward parameters drawn
from real traces [63].

A. Simulation Set-up

For our Algorithm 1 (OLAS), we choose K = 2 resource
types, e.g., two network slices, Q = 5 candidates of control
signals pkt, N = 5 user applications, and T = 500 timesteps
as defaults. The entire time span of our experiment can
simulate hours or days in the real O-RAN 5G system. Given
that each timestep of our Algorithm 1 can be much longer
than that of the near-real-time resource allocation, which is in
practice below 100ms, the processing time of each instance
of Algorithm 1 is negligible considering the length of each
outer-loop timestep.

Different environments. Since we assume that the dy-
namics of the network characteristics and users’ demands
are i.i.d. in Section IV-C to ensure an upper-bounded regret
for our Algorithm 1, we first simulate an environment called
Scenario I: the latent utility entries ukq are randomly selected
from a distribution of the utility coefficients extracted from
mobile usage traces in [63]. We simulate the user utility scores
by sampling the realized reward of each timestep from a
Gaussian distribution with mean equal to the sum of the (ukq)
of the chosen signal levels q over all k. For Algorithm 2’s
subroutine, we randomly generate the inference range of the
ûjkq for calculating the side information gi according to (6).

Our Scenario II is based on a real-world 5G usage
dataset [62]. We consider two types of resources (downlink and
uplink throughputs) and three different real applications (File
Download, Amazon Prime, and Netflix). Users’ (not necessar-
ily i.i.d.) demands are the downlink and uplink bitrates of these
applications provided in the dataset. We take Q = 10 control
signals to affect the final allocation d̂ikq = max(dik−η ·q, 0),
where dik is the raw demand of user i for resource k before
reacting to our control signals, η = 1 is a decay factor, and q =
0.2x is the control signal with x = 1, 2, · · · , Q. We consider
two types of utility functions: linear utility and α-fair utility.
For the former case, the utility of application i on resource k
is given by a simple linear function uikq = 5d̂ikq − q · d̂ikq .
For the latter case, the utility of application i on resource k is
given by an α-fair utility function uikq =

ck(d̂ikq)
1−αk

1−αk
−q·d̂ikq ,

with αk = 0.95 and ck sampled from a uniform distribution
U(2, 2.5) according to the data in [63]. The choices of the
resource allocation and utility functions are intended to test
the robustness of our assumption in Section IV that the near-
RT RIC allocates the resources by maximizing the users’ total
utility, while in this scenario we consider an allocation rule
that is agnostic to users’ utility functions.

Our last environment, called Scenario III combines the
5G usage dataset [62] and customized inner-loop resource
allocation rules. The utility function of resource k is still
uikq =

ck(d̂ikq)
1−αk

1−αk
− q · d̂ikq , while the final allocation d̂ikq

is not only affected by the control signal q but also inner-loop

allocation rules (e.g., the water-filling algorithm and others
elaborated later) under randomly generated resource capacities
in each inner timestep t. These allocation rules simulate the
near-RT RIC’s dynamic allocation of resources according to
capacity constraints.

B. Comparison to Other Bandit Approaches

We next compare the regret incurred by our Algorithm 1
to that incurred with heuristics and a classic MAB algorithm,
UCB, validating Theorem 1’s result. We omit the comparison
with contextual bandit algorithms as their rewards rely on
contexts (demands, allocations, etc.) accessed before playing
the arms in each timestep, which are not reasonable in our O-
RAN 5G environments. We consider regret in only Scenario
I as the optimal benchmark for calculating the regret is not
available for other scenarios where non-i.i.d. trace data is used.

Effect of Q and K. As shown in Figures 4a and 4b, our
Algorithm 1 achieves a regret sublinear with the number of
timesteps for various Q and K, with a larger regret for a
larger number of signal candidates Q (Figure 4a) or number of
resources K (Figure 4b), verifying Theorem 1. Larger values
of Q and K expand the dimension of the decision space, which
would intuitively increase the regret. A larger Q may also
admit higher overall reward (not shown) due to more flexibility
in the choices of control signals.

Superiority of our algorithms. We compare Algorithm 1
with four benchmarks: Random, which randomly selects pt

each t; Fixed, which uses a randomly selected p0 until the last
timestep; UCB [14], a classic MAB algorithm that requires
QK arms (explained in Sec. IV-A); and our Algorithm 1
without the Algorithm 2 subroutine (w/o GASH). Figure 5a
shows that Random, Fixed and UCB incur a higher regret by
273%, 305% and 55% compared to Algorithm 1 in Scenario I.
Figure 5b indicates a higher improvement in reward compared
to (w/o GASH) with a smaller inference range of ûjkq , i.e.,
more informative side information. Utilizing side information
from the near-RT controller thus allows us to achieve a higher
total utility (equivalent to a lower regret) in the long run,
compared to ignoring this information.

We then compare our Algorithm 1 to the fixed, random, and
UCB baselines in Scenario II, with demands taken from 5G
data traces [62]. Figure 6 shows that Algorithm 1 achieves sig-
nificantly higher reward than all three baseline algorithms for
both linear and α-fair utility functions. In fact, its cumulative
reward is briefly super-linear with the number of timesteps,
indicating that the algorithm successfully learns the control
signals that yield higher utility. Once it has learned these
signals, it extracts a higher reward per timestep than before,
as it no longer needs to explore suboptimal signal values.
The UCB algorithm achieves higher reward than Random or
Fixed, as we would expect since it can balance exploration
and exploitation of different control signals, but lower reward
than OLAS as it does not take advantage of side information.
Figures 7 and 8 indicate that Algorithm 1 outperforms other
baselines by achieving 8%-19% higher throughput and 10%-
18% reduced latency when measured with α-fair utility func-
tions. While all baselines show a rapid increase in throughput

10



(a) Varying Q (K = 2) (b) Varying K (Q = 2)

Fig. 4: Algorithm 1 (OLAS) achieves sublinear mean regret (lines) that increases with (a) Q and (b) K. Shaded regions show
one standard deviation of the regret.

(a) Comparison with baselines (b) Varying the inference range

Fig. 5: Algorithm 1 (OLAS) achieves achieves lower regret
than the baselines in Scenario I (5a) and lower regrets for
smaller inference ranges, which allow for more shrinkage of
the confidence region in Algorithm 2 (GASH)’s inner-loop
subroutine (5b). Changed (a) to average regret

in the initial timesteps, likely due to an increase in raw
demand from the data trace, OLAS ultimately learns a better
allocation than the Fixed and Random baselines that do not
learn or adapt. This distinction is particularly apparent in
Figure 8’s results with decay factor η = 0.5, for which the
control signal has less influence on user demand and it is
therefore more difficult to learn the optimal signals. Figure 9
details the cumulative rewards attained by each algorithm post
500 timesteps when considering 20, 60, 100 users for each
application type (resulting in total counts of 60, 180, and 300
users). The reward for each application aggregates the utility
for all its users. As user numbers rise, the reward gap between
Algorithm 1 and other baselines also widens.

Finally, we compare our Algorithm 1 to UCB under two
different inner-loop allocation rules in Scenario III, with
demands taken from 5G data traces [62] and utility coeffi-
cients taken from [63]. Different from Scenario II, we define
d̄ikp = max(dik − η · q, 0) as the requested demand of user
i to resource k under control signal q. For each resource k,
we consider a random capacity Bkq , which is 80–100% of the
total requested demand from all users (i.e.,

∑
i d̄ikp). Thus, the

final allocation d̂ikp depends on the requested demand d̄ikp, the
capacity Bkq , and the allocation scheme. We first simulate a
Proportional allocation scheme that allocates each type of re-
source in proportion to the users’ requested demands d̄ikp, i.e.,

(a) Linear utility (b) α-fair utility

Fig. 6: Algorithm 1 (OLAS) achieves higher rewards than
baseline algorithms on a 5G usage dataset [62] (Scenario II).
Shaded regions show one standard deviation of the reward.

(a) Throughput (b) Latency

Fig. 7: Algorithm 1 (OLAS) achieves higher throughput
and lower latency than baseline algorithms on a 5G usage
dataset [62] with α-fair utility (Scenario II). Shaded regions
show one standard deviation. New plots show network-related
metrics (Revision 1).

d̂ikp =
d̄ikp∑
i d̄ikp

Bkq . The second allocation scheme, Water-
Filling, allocates resource k to users with the objective of
maximizing

∑
i log(1+d̂ikp), while satisfying

∑
i d̂ikp ≤ Bkq

and d̂ikp ≤ d̄ikp for all i. We consider 10 inner-loop allocations
for each outer-loop step (i.e., χ = 10). Figure 10 shows that
our algorithm OLAS outperforms the UCB, fixed, and random
baseline algorithms under both allocation rules for 3, 000
inner-loop timesteps. Notice that the obtained reward under
the Water-Filling rule is less than that under the Proportional
rule, as Water-Filling puts more emphasis on fairness across
users and thus may decrease the allocation proportions of users
with higher demands and utility coefficients in our scenario.
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(a) Throughput (b) Latency

Fig. 8: (New results for Revision 2) Algorithm 1 (OLAS)
achieves higher throughput and lower latency than baseline
algorithms on a 5G usage dataset [62] with α-fair utility
and decay factor η = 0.5, which makes the learning task
more difficult (Scenario II). Shaded regions show one standard
deviation.

Fig. 9: Algorithm 1 (OLAS) achieves higher reward than
baseline algorithms on a 5G usage dataset [62] (Scenario II)
when varying the total number of users. New plot shows the
scalability of our algorithm.

C. Future Implementation Plan for the O-RAN Use-case

Our proposed model and algorithm can be implemented
using features in the O-RAN software community (OSC) [64]
Cherry (the third and latest version) software release from the
O-RAN alliance. As shown in Figure 11, the near-real-time
RIC in this implementation includes a KPIMON module that
collects the per-UE (user equipment) based metrics through the
E2 termination from the O-CU and O-DU, a shared data layer
(SDL) that stores these metrics, a QoS Prediction (QP) and a
QP-driver module that performs holistic utility estimation, and
the Traffic Steering module that performs resource allocation
(i.e., traffic engineering) based on the policy issued by the A1
policy coordinator in the non-real-time RIC. The UEs send
their demands and utility scores through the O-RU and then O-
DU to the near-real-time RIC controller, which pass the scores
with some aggregated side information to the non-real-time
controller. Our oracle function O in (1) will be implemented
as logic in the traffic steering module, and the inference
mapping function used in the non-real-time learning strategy
(Section IV-A) will be produced by the QP modules. The
non-real-time RIC can utilize the Operations, Administration,
and Maintenance (OAM) configuration, performance and fault

(a) Proportional (b) Water-Filling

Fig. 10: With (a) proportional and (b) water-filling inner-loop
allocation rules on 5G data traces (Scenario III), Algorithm
1 (OLAS) achieves higher rewards than baseline algorithms.
Shaded regions show one standard deviation of the reward.

KPIMON

SDL

Traffic Steering QP QP Driver

O-DUO-CU

RIC Message Router

E2 Termination

ML App
A1 Policy 

Coordinator

Carrier Network API 
Service

5G
5G

5G

Non-real-time RIC

Near real-time RIC

O-RU

A1 Mediator

CM/PM/FM Service

OAM

Codes that  
implements our
proposed solution

Fig. 11: Implementation roadmap of Section III’s framework
using OSC Cherry release software, showing the architecture
components where our proposed solution would reside.

management service to collect the resource allocation results
from the traffic steering module, and the side information from
the QP modules. A ML app running in the non-real-time RIC
platform creates a signal optimization problem instance as in
(1), and offloads it to an off-site ML cluster based on the
Linux foundation Acumos platform [65]. The results will be
collected by the ML app and later sent to the traffic steering
module through the A1 interface. Meanwhile, the control
signals will also be available to user applications through the
5G carrier’s network API service (e.g., Verizon Thingspace
API [66], AT&T API marketplace [67]).

VI. CONCLUDING REMARKS AND OTHER USE-CASES

Taking advantage of the new 5G O-RAN architecture with
disaggregated functionalities, we design a two-tier closed-loop
control framework that can learn the outer-loop signals to
adjust user behaviors and utilize side information from the
near real-time inner loop resource allocation routine, together
optimizing the long-term aggregate QoS performance. Our
design is among the first to embed this architecture logic into a
learning framework, with proved performance guarantees. We
propose a combinatorial multi-armed bandits algorithm, which
can learn the latent structure of the reward across different
resource dimensions from only the realized samples of the
total reward. A novel integration of a gradient-based subrou-
tine effectively improves the learning optimality by carefully
using the side information. In the future, we will adapt our
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combinatorial learning methods to optimize other types of con-
trols in various networks, where high-dimensional uncertain
inputs have latent effects on the optimization objectives and
arbitrary dependencies with the control variables, including the
optimiztion of taxi mobility and resource placement/planning
of the edge plus cloud network.

A. Other Potential Use-cases

Network slicing is one of the key techniques to provide
service-oriented architectures for 5G networks. A network
slice is typically a virtual network along with logically isolated
resources built on top shared physical resources [4]. Such
slicing then requires both inter- and intra-slice resource allo-
cation, which should satisfy a set of complex constraints that
characterize different requirements of both service providers
(e.g., low latency, high bandwidth, and ultra-high reliability for
a critical IoT application) and infrastructure providers (e.g.,
physical resource constraints) [68]. Our two-tiered learning
framework can simplify the bi-level inter- and intra-slice
management problem by providing an outer loop learning
algorithm for regulating the demands of different slices that
share the same physical infrastructure, with an inner loop
that schedules users within the slice and constructs side
information for the outer loop. To further decouple intra-
slice management across different slices, our method can be
extended to multiple inner loop controllers that run in parallel
at different slices.

Serverless computing technologies (e.g., Amazon’s AWS
Lambda3 and Microsoft’s Azure serverless4) enable today’s
cloud computing platforms to automatically provision and
scale resources for applications running in the cloud, ab-
stracting this infrastructure provisioning from application de-
velopers. Eliminating the overhead of users’ infrastructure
management allows serverless applications to run faster than
traditional cloud services. Realizing these benefits, however,
requires new control intelligence that can fit the dual timescale
interaction between the resource scaling run at a smaller
timescale for specific users and the platform improvement
(e.g., by adjusting the offered resource prices or performing
user admission control) run at a longer timescale. This outer
loop can further leverage event-triggered application feedback
on resource utilization from the inner loop [69]. Our proposed
control framework addresses these challenges: our control sig-
nals can be regarded as the real prices of serverless computing
resources. Cloud providers can apply any inner-loop resource
allocation rule, while our method designs the optimal pricing
strategy in the outer loop, using side information from the
inner loop resource allocation.
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