
1

MoDEMS: Optimizing Edge Computing Migrations
for User Mobility

Taejin Kim∗, Sandesh Dhawaskar Sathyanarayana†, Siqi Chen†, Youngbin Im‡, Xiaoxi Zhang§,
Sangtae Ha† and Carlee Joe-Wong∗

∗Carnegie Mellon University, †University of Colorado Boulder, ‡UNIST, §Sun Yat-sen University
{tkim2, cjoewong}@andrew.cmu.edu, {sadh0344, siqi.chen, sangtae.ha}@colorado.edu, ybim@unist.ac.kr,

zhangxx89@mail.sysu.edu.cn

Abstract—Edge computing capabilities in 5G wireless networks
promise to benefit mobile users: computing tasks can be offloaded
from user devices to nearby edge servers, reducing users’ expe-
rienced latencies. Few works have addressed how this offloading
should handle long-term user mobility: as devices move, they
will need to offload to different edge servers, which may require
migrating data or state information from one edge server to
another. In this paper, we introduce MoDEMS, a system model
and architecture that provides a rigorous theoretical framework
and studies the challenges of such migrations to minimize the
service provider cost and user latency. We show that this cost
minimization problem can be expressed as an integer linear
programming problem, which is hard to solve due to resource
constraints at the servers and unknown user mobility patterns.
We show that finding the optimal migration plan is in general NP-
hard, and we propose alternative heuristic solution algorithms
that perform well in both theory and practice. We finally validate
our results with real user mobility traces, ns-3 simulations,
and an LTE testbed experiment. Migrations reduce the latency
experienced by users of edge applications by 33% compared to
previously proposed migration approaches.

Index Terms—Mobility, edge computing, cloud computing,
migrations.

I. INTRODUCTION

Cloud computing is a popular way to access computing
resources and generated 20.6 Zettabytes of traffic in 2021,
compared to 6.8 Zettabytes in 2016 [1]. While it offers flexible
and scalable access to plentiful resources, sending data to
and from remote cloud servers may incur unacceptably high
latencies. For example, augmented reality (AR) on mobile
devices requires remote computing for compute-intensive tasks
[2] that must be completed quickly.

The ongoing deployment of 5G technologies will soon allow
cellular service providers to offer low-latency edge computing
services that can supplement cloud computing. By separating
the user plane from the control plane function, a 5G network
now explicitly supports edge services by using a unified
gateway called UPF (User Plane Function) [3] that can be
integrated with MEC (Multi-access Edge Computing) [4] near
or co-located with a 5G base station distributedly [5], [6]. Such
systems have been proposed to reduce latency and bandwidth
consumption in offloading computations from mobile devices
to nearby servers [7]–[9] and reducing mobile device battery
consumption [10], leading to a multi-tier computing system
with both edge and cloud servers. A simple diagram of such

Fig. 1: A multi-tier system with cloud, edge, and user compute
resources. A mobile user’s task is migrated between edge
servers as it moves along a road.

a system is shown in Figure 1. The mobile user in the vehicle
offloads computations to the nearest edge server, which is
geographically closer than the cloud server. However, to main-
tain their geographical advantage over cloud servers, multiple
edge servers should be deployed across the service region, like
the servers in Figure 1. Applications such as augmented and
virtual reality (AR, VR) [2], as well as streaming-based cloud
gaming services [11] greatly benefit from reduced battery con-
sumption and the low latencies provided by edge computing.
Furthermore, autonomous vehicles greatly benefit from edge
computing to process the plethora of data collected during
driving, as well as make quick-response decisions including
obstacle avoidance and breaking [12]. The aforementioned
use cases often pertain to highly mobile users in vehicles
or in public transportation, requiring multiple edge servers to
service from a close distance a single user.

A. Challenges: Edge Computing and Migrations

Despite latency benefits, multi-tier computing systems
raise research challenges. Figure 2 depicts various research
challenges listed below. Edge servers generally have fewer
available resources and higher operating costs than cloud
servers [7]; for example, in the figure, a migration of user 1’s
application from server A to server B is impossible as another
user has already occupied the latter server’s resources. Edge
computing solutions must also handle user mobility [13]–
[15]: as users move, their applications should be serviced
at a different and closer edge server to minimize latency.
However, migrating an application’s virtual machine (VM) or
container from one edge server to another utilizes potentially
limited bandwidth on links between the edge servers, and

2

Fig. 2: Challenges of migrations include misplaced migrations
due to uncertain mobility, and resource coordination with other
users. For example, user 1 may have equal probability of
moving close to either servers B or C, while user 2 has
occupied resources at server B. Thus, it is optimal to migrate
user 1’s VM to server D, to avoid resource conflicts with user
2 and high latencies if the user moves to server B but its VM
is migrated to server C.

occupies resources on both the source and destination servers
since applications need to maintain an active edge server
connection during migration. Finding the optimal placement
of applications on edge and cloud servers that balances these
constraints with user needs is then difficult: user applications
should coordinate to avoid overwhelming edge server and link
capacities.

Placing applications on edge servers becomes even more
difficult when user mobility is not fully known: application
migration takes time, making reactive solutions that migrate
only after a user has moved ineffective [13]–[15], and a
misplaced migration may incur a higher cost than no migration
at all. In Figure 2, given that a user can move to one of
two locations with equal probability from time t = 1 to
t = 2, migrating a VM from server A to C only provides
satisfactory performance for one of the two locations a user
can be in the future time t = 2. Users with different mobility
patterns, e.g., car drivers versus pedestrians, may then need
different migration plans, greatly enlarging our plan search
space since users should also coordinate to respect capacity
constraints. Machine learning algorithms embedded in 5G
networks may predict short-term user movement [16], [17],
but long-term patterns may not be known in advance. Simple
solutions to alleviate uncertain mobility predictions, such as
continuously replicating applications across multiple servers,
require prohibitive amounts of edge resources. We address
these challenges.

B. MoDEMS: Mobility Dependent Edge Migration System
In this paper, we propose MoDEMS (Mobility Dependent

Edge Migration System) for generating migration plans. In
more detail, our technical contributions are as follows:

• We design the first system that optimizes edge computing
deployments using a rigorous theoretical framework to
jointly address practical deployment challenges of re-
source constraints, mobility uncertainty, concurrent mi-
grations for multiple users, and implementation overhead.

• We formulate a linear integer optimization problem to
optimize latency and resource costs given diverse user-

specific mobility models. We show the problem is NP-
hard due to the concurrent service of users despite re-
source constraints. We propose a distributed heuristic that
optimizes over user-specific mobility and intelligently
minimizes users’ coordination across different resources,
showing analytically that it performs and scales well.

• We perform extensive experiments to evaluate the linear
integer optimization solution and variations of our pro-
posed heuristic on real user mobility traces [18], ns-3
simulations, and an LTE testbed. The heuristic outper-
forms previous methods that do not consider mobility
prediction or resource constraints by 18 to 33% .

• We build upon the previous versions of this work [19],
[20] with an updated system architecture and model,
extended proofs and extended formulation of the trun-
cation method presented. Further experiments have been
performed regarding migration policies given emphasis
on specific sub-costs, and different system settings in-
cluding an increased number of users relative to servers,
performance in different density of servers in physical
space, and deployment overhead in a realistic test bed.

The remainder of this paper is organized as follows. Sec-
tion II contrasts MoDEMS with related works. Section III
presents the system model and MoDEMS architecture. We
then show in Section IV that the MoDEMS model allows us
to formulate a linear integer optimization problem for edge
migrations. Section V analyzes the complexity of this problem
and theoretically examines our proposed scalable heuristic so-
lution. Finally, we experimentally validate our work compared
to prior approaches in Section VI. We conclude in Section VII.

II. RELATED WORK

Virtual machine (VM) migration is a major research chal-
lenge in edge computing [15], [21], [22]. Prior works of [23]
and [24] develop integer programming problems similar to
ours. However, these works propose reactionary migration
policies that do not utilize user mobility predictions [23]–[27].
Other works have proposed dynamic policies given unknown
costs of migration that follow Markovian user mobility pat-
terns [28] or use Markov decision processes [27], [29]. How-
ever, such works generally do not consider resource capacity
constraints at edge servers, which may force applications onto
the cloud if resources run out. They also do not predict
individual user movement, imposing the same migration policy
on all users at the same location. Our evaluation shows that
MoDEMS significantly (by > 20%) lowers costs by consider-
ing both these factors. Lyapunov optimization frameworks are
used as well [30], [31], while [32] simultaneously allocates
bandwidth and compute resources to different users.

As we show in Section V, resource constraints make the
optimal migration problem considerably more difficult. Works
accounting for resource constraints that allow VMs to con-
currently run on multiple edge servers simplify the optimal
migration problem and may not be practical [33], [34]. Other
works analyze the allocation of computation and bandwidth
at an operating system level, dividing tasks between local
devices and edge servers [26], [35]. In comparison, we present

3

Rs n× 1 vector for capacities of n resource types at server s #»cs n× 1 vector of each unit resource cost at server s

hu,t1,t2
s1,s2

Decision variable returning 1 for migration for user u between
time steps t1 and t2 from server s1 to s2 and 0 o.w

»wu
n× 1 vector representing the amount of resources required
of each type for user u’s process

qtu,s
Binary indicator variable that returns 1 if the process for user
u is at server s at time t and 0 otherwise ϵu

Migration amount for the VM of user u in terms of total
bandwidth consumption

ju,ts1,s2
Migration rate fraction ([0, 1]) that returns the portion of the
VM migrated for user u at time t from server s1 to s2

Wu
Consumption of service bandwidth per unit time step between
user and process VM for user u

gtu,s
Variable that returns 1 if a VM migration is taking place
to server s at time t for user u and 0 otherwise Zs1,s2

Cost of using unit amount of bandwidth for single time step
between servers s1 and s2

B S × S vector of bandwidth capacity between servers Y u,t
r Actual latency experienced by user u at time t

itu,s Binary indicator of 1 if user u at server s at time t and 0 o.w. Y u
x Maximum latency limit for user u

P [itu,s] Probability ([0,1]) of user u being at server s at time t Du
Y Monetary value of latency violation per unit for user u

TABLE I: Physical system variables (left), cost and migration graph variables (right).

the first theoretical framework and algorithms that (i) con-
sider resource constraints, long term migrations, and variation
between individual users, (ii) validate its effectiveness with
realistic network experiments and (iii) design a distributed
method to navigate the larger search space that results from
individualized mobility predictions instead of uniform ones.

Migration in edge computing has also been studied in the
context of complex event processing (CEP) applications [36],
[37], in which streams of information from multiple mobile
sources must be jointly analyzed at an edge server. However,
that work does not use formal mobility models or optimization.
Network function virtualization (NFV) and software-defined
networks (SDN) similarly aim to deploy service chains inside
VMs hosted on geographically advantageous edge nodes to
decrease bandwidth usage and latency [38], [39]. However,
the middleboxes do not migrate according to user mobility.

This work has previously been presented as a poster paper
at IEEE/ACM IWQoS 2021 [19], where the migration graph
framework is introduced alongside a brief complexity analysis
and performance analysis of different heuristic algorithms.
This work has also been presented at IEEE INFOCOM 2022
[20], with an in-depth system architecture, formulation, com-
plexity analysis and experimental evaluation.

III. MODEMS SYSTEM MODEL AND ARCHITECTURE

This section builds a system model that depicts the physical
system of edge nodes and users (Section III-A). We formalize
data migrations within this model in Section III-B.

A. Physical Model

We consider an edge computing service provider with
multiple edge servers, e.g., located at mobile base stations, as
well as a cloud server. The provider has S servers to service
U users, each with one process request, who can offload com-
putation tasks to any of the edge or cloud servers by opening a
personal VM or container on that server (our framework can
model either), each of which serves one process at a time.
Although we associate each user with a single process (e.g.,
one mobile application), our model can be easily extended to
multiple processes per user.

We let [X] represent the set {1, 2, ..., X}. We consider
discrete time steps t ∈ [T]. While our model is agnostic to the
exact time step length, in practice, the time steps would likely
last a few minutes. At this granularity, we can meaningfully

Fig. 3: Links between servers deployed at different levels of
of an edge computing system with hierarchical topology.

represent user movement around a city via their locations
at different times, while ensuring that migrations complete
within a single time step. For simplicity and following prior
work [40], all users enter the system at time t = 1 and exit
at t = T , though their requests may start after t = 1 and end
before t = T . Table I summarizes our notation.

Servers and links. We suppose that the edge servers are
dispersed across a given geographical region. Each server s
has its resource capacity defined by the vector Rs, which may
include CPU, RAM, and storage provided to process VMs.

We assume that servers will have wired connections with
one another following a given network topology. For example,
edge servers may be connected to regional controllers in a
hierarchical topology or with direct-wired links to each other
[36]. For simplicity in presentation and analysis of the system
model algorithms, we assume that all servers are connected
directly with one another. All communication between any
two servers (migrations and service) occurs only through the
link directly connecting the two servers. Our system set up
and analysis can easily extend further to scenarios with more
realistic topologies as well. During evaluation in Section VI,
a more realistic topology is used, as depicted by Figure 3.
Here, each server is part of a hierarchy as either a cloud,
aggregator, or edge server. Aggregator servers have more
available resources than edge servers and have links to one
another and the cloud. Edge servers connect to the closest
aggregator, as well as nearby edge servers. We model the cloud
server as an “edge” server with infinite resources but higher
user latency (described in Section IV).

User mobility. If we know how users will move over time,
or if we are only concerned with past locations, we use the
variable

{
itu,s; t = 1, 2, . . . , T

}
, a binary indicator of whether

user u is closest to server s at time t. If user mobility is
being predicted for future time steps and not known with full

4

Fig. 4: Flowchart of the centralized approach on solving the
edge computing migration problem via MoDEMS.

confidence, we set the variable itu,s = P [itu,s] to indicate the
probability that user u is at server s at time t; thus P [itu,s] is a
continuous variable in [0, 1]. This model is quite general and
can represent individual user movement that follows a range of
typical mobility models, e.g., Markovian mobility as in [40].

User service. We use qtu,s to indicate at which server a
VM for user u is located. Note that this is not necessarily the
closest server to the user u’s location. Users at any location in
the region will always connect to the geographically closest
server, captured by the variable itu,s and predicted by P [itu,s].
From there, the user will pull data as needed from the VM at
the server indicated by qtu,s over the network backbone.

B. MoDEMS Architecture

System Modules. Figure 4 displays a flow diagram of
MoDEMS’ system modules, implemented in a centralized
manner. The process begins with the user spawning a VM
at the closest available edge server. The central controller,
e.g., the 5G Radio Intelligent Controller [16], potentially
located at a cloud, coordinates access to multiple 5G base
stations, each equipped with an edge server. Using the resource
tracker and mobility data, the controller gathers compute and
bandwidth resource availability as well as user movement
patterns by communicating with the edge servers. The mobility
predictor uses the stored mobility data to generate probabilis-
tic predictions of future movements for specific users. This
information is then sent to a plan generator, where it is used
to generate migration plans. The potential long communication
times between the central controller and the edge servers
may influence the age of the information in the resource
tracker, causing performance issues due to stale information
being inputted to the plan generator. By splitting and moving
components of the central controller from the cloud to the VMs
of users at the edge, as seen in the distributed implementation
of MoDEMS in Figure 5, the issue of long communication
times between the edge to the cloud is mitigated. Here, when
the resource tracker placed at an edge server queries other
nearby edge servers, the communication delay is reduced. Our
goal is to develop an effective and efficient plan generator that
functions for both the central and distributed implementation
of MoDEMS, which can be understood as optimizing over a
migration graph, as we discuss below and in Section IV

Migration Plan Generation. The migration graph data
structure visualizes a process’s migration decisions and associ-
ated costs [19], [36]. It has a start and end node before the first

Fig. 5: Flowchart of the distributed approach to solving the
edge computing migration problem via MoDEMS.

Fig. 6: Simple migration graph used to capture physical model
and cost of edge computing system. A migration plan is
extracted from the dotted path in red. The migration plan is
also described in terms of the optimization variable hu,t1,t2

s1,s2 .

time step and after the last time step respectively. For notation,
we set the server index for both the start and end nodes as
s = 0. We define the other nodes in the migration graph as
server-time pairs, representing the possible placements of a
VM at every time step. An edge between the vertices (s1, t1)
and (s2, t2), s1 ̸= s2, represents a migration from server s1 to
server s2 that starts at time t1 and ends at time t2 > t1. During
a migration, the process remains at the source server, while a
copy VM is built at the destination. Unlike prior work [28],
[40], [41], we may have t2 > t1 + 1, i.e., migrations may
take place over multiple time steps. This ability may allow
more migrations to take place if there is limited bandwidth
to migrate. If s1 = s2, the edge represents simply staying at
server s1. Such edges only last one time step since long-term
edges are redundant. We associate each edge with a weight
that represents the per-unit costs of taking that path on the
migration graph, as defined in Section IV. Figure 6 depicts a
migration graph over three time steps in a two-server system.

For each VM of user u, we define a feasible migration
plan as any path, or continguous sequence of edges, from
the start node to the end node in the migration graph. Thus,
VMs can only migrate to one server at any time. We represent
a migration plan for user u’s VM by defining the indicator
hu,t1,t2
s1,s2 as equal to 1 if the path from server s1 to s2 and

from time t1 to t2 is included in the migration plan, e.g., the
dashed migration plan in Figure 6, and 0 otherwise.

We ensure the feasibility of the chosen migration plan by
constraining

{
hu,t1,t2
s1,s2

}
to ensure that (i) every entry to a

node on a migration graph must have a departure, and (ii)
a migration plan leaves the start node exactly once while
arriving at the end node exactly once. In terms of notation,
x ∈ ([X] > xo) indicates the set {xo +1, xo +2, ..., X}, with

5

analogous definitions for x ∈ ([X] ≤ xo) and x ∈ ([X] ̸= xo).
Furthermore, s ∈ {0, [S]} represents a set {0, 1, ..., S} to
include the server index for the start and end node. Formally:∑
t1∈([T]<t)

∑
s1∈(0,[S])

hu,t1,t
s1,s =

∑
t2∈([T+1]>t)

∑
s2∈(0,[S])

hu,t,t2
s,s2∑

s∈[S]

hu,0,1
0,s =

∑
s∈[S]

hu,T,T+1
s,0 = 1.

(1)

To ensure that edges that do not exist cannot be taken, we
constrain hu,t1,t2

s1,s2 ≤ Hu,t1,t2
s1,s2 . Hu,t1,t2

s1,s2 returns 1 if an edge
from s1 to s2 and from t1 to t2 is viable, and 0 otherwise.

We can now define qtu,s in terms of the migration plan
variables hu,t1,t2

s1,s2 . If a process for user u is being migrated
from s1 to s2, it is serviced by s1 until the migration finishes.

qtu,s =
∑

s1∈[S]

∑
t1∈([T]<t)

∑
t2∈([T]≥t)

hu,t1,t2
s1,s

−
∑

s2∈(0,[S])

∑
t3∈([T]<t)

∑
t4∈([T]≥t)

hu,t3,t4
s,s2

(2)

We can then define the variable ju,ts1,s2 ∈ [0, 1] as the rate
of transfer at time t during a migration from s1 to s2. For
example, if hu,t,t+1

s1,s2 = 1, then ju,ts1,s2 = 1 as the entirety of the
process has been migrated between time t and t+ 1.

ju,ts1,s2 =
∑

t1∈([T]≤t)

∑
t2∈([T]>t)

hu,t1,t2
s1,s2

t2 − t1
(3)

For convenience, we also define gtu,s to equal 1 if the
process of user u at time t is in the midst of a migration
to server s, and 0 otherwise. Thus, gtu,s = 1 if and only if
hu,t1,t2
s1,s = 1 for some server s1 ̸= s, and time t1 ≤ t < t2:

gtu,s =
∑

s1∈([S] ̸=s)

∑
t1∈([T]≤t)

∑
t2∈([T]>t)

hu,t1,t2
s1,s (4)

IV. OPTIMIZATION PROBLEM FORMULATION

In this section, we show that finding the migration plan
in the centralized MoDEMS scenario can be formulated as a
linear integer program. We consider two types of costs: the
operational cost, which is incurred by the service provider of
operating the edge servers and links; and the user dissatisfac-
tion cost, the compensation required when the service provider
cannot meet users’ quality-of-service (QoS) requirements, e.g.,
if it incurs high latencies. This compensation may be enforced
via service level agreements between users and the edge
provider. In order to formulate the problem, we assume known
arrival and departure times of all processes, which we relax
in Section V. Table I summarizes our notation.

Operational Cost. The operation cost includes both place-
ment and bandwidth cost. The placement cost incurred for a
single user during a single time step is the sum of the costs
of using each type of resource at an edge server s. With #»c s

and # »wu as the cost and demand vectors of each resource at s
for user u respectively, the placement cost is:

CP =
∑
t∈[T]

∑
u∈[U]

∑
s∈[S]

(gtu,s + qtu,s)(
#»w⊺

u
#»c s), (5)

since user u utilizes resources at s both when it is located at
s
(
qtu,s = 1

)
and in the process of migrating to s

(
gtu,s = 1

)
.

The bandwidth cost includes the cost of migrations, CBm ,
and the use of network bandwidth to service processes, CBs

(e.g., for conveying the results of edge server computations to
the user device). The amount of bandwidth used for migration,
Bm, is then defined as

∑
t∈[T]

∑
u∈[U] B

u,t
m where:

Bu,t
m = ϵu

∑
s1∈[S]

∑
s2∈([S] ̸=s1)

ju,ts1,s2 (6)

, i.e., the migration size ϵu multiplied by the rate of migration(
ju,ts1,s2

)
. The cost of bandwidth used for migrations is CBm

=∑
t∈[T]

∑
u∈[U] C

u,t
Bm

, where Cu,t
Bm

is the sum of each term in
Bu,t

m multiplied by the link cost Zs1,s2 .
Similarly, the amount of bandwidth used for service Bs is

defined as
∑

t∈[T]

∑
u∈[U] B

u,t
s where:

Bu,t
s = Wu

∑
s1∈[S]

∑
s2∈([S] ̸=s1)

iu,ts1 q
u,t
s2 . (7)

Here, Wu is the throughput of the service bandwidth de-
manded by u that travels to and from the user

(
iu,ts1

)
and VM server

(
qu,ts2

)
. The resulting cost is CBs =∑

t∈[T]

∑
u∈[U] C

u,t
Bs

, where Cu,t
Bs

is the sum of the terms
of Bu,t

s multiplied by the link usage cost Zs1,s2 . When the
bandwidth is owned and allocated by the operator [32], it is
possible to omit the costs related to bandwidth.

User Dissatisfaction Cost. We measure user dissatisfaction
by the latency of user’s experienced service, i.e., the time of
communication between the user and the server hosting its
process. We suppose that each user u specifies a threshold of
maximum latency Y u

x , with an increasing user dissatisfaction
cost at latency above Y u

x . For example, this cost may represent
a user’s future unwillingness to use the edge system or
monetary compensation for the system being unable to provide
the specified maximum latency. VR and AR applications, for
instance, may have such costs when the latency rises above
a user perception threshold [2]. The latency violation cost
CY =

∑
t∈[T]

∑
u∈[U] C

u,t
Y is defined as:

Cu,t
Y = max(0, Y u,t

r − Y u
x)Du

Y . (8)

The value Y u,t
r is the actual latency experienced by user u at

time step t, which depends on the physical distance between
the VM server and the server to which a user connects:

Y u,t
r =

∑
s1∈[S]

∑
s2∈([S]̸=s1)

L(s1, s2)i
u,t
s1 q

u,t
s2 . (9)

The value of L(s1, s2) represents the latency incurred over
a direct link between servers s1 and s2. Since cloud servers
induce greater latency than edge ones due to their physical
distance from users, we suppose that L(sc, s2) > L(s, s2) for
any servers s2 and s ̸= sc, where sc indexes the cloud server.
In the evaluation in Section VI, the latency incurred is based
on the distance of links traversed in the deployed network
topology, similar to Figure 3. The constant Du

Y represents the
monetary value of the usability the user has lost.

6

Formulation. Given the placement, bandwidth, and user
dissatisfaction costs, we wish to solve the problem:

min
h∈H

Ctotal = CP + CBm
+ CBs

+ CY (10)

s.t. (1),
∑
u∈[U]

(gtu,s + qtu,s)(
#»wu) ≤ Rs∀s, Bm +Bs ≤ B

where we have imposed server and link capacity constraints.

V. SOLVING THE OPTIMAL MIGRATION PROBLEM

In this section, we discuss solution algorithms for problem
(10). We show that the problem is NP-hard and propose heuris-
tic solution algorithms that have only quadratic complexity. We
then analyze our algorithms’ ability to handle the challenges
of resource constraints and unknown user mobility.

A. Complexity Analysis

We begin by establishing the complexity of the migration
graph that we define in Section III-B.

Proposition 1 (Number of migration paths). The number of
migration paths for a process grows at least as fast as O(ST).

Proof: For each t ∈ [T], there are S possible locations
for a given process. Since a migration plan must place the
process at a server at each time step, the result follows.

As we might expect from Proposition 1, the optimization
problem of finding the best path for each process is NP-hard:

Proposition 2 (NP-hardness). Solving (10) is NP-hard.

Proof: The generalized assignment problem, which is NP-
hard [42], is a special case of (10).

Despite the exponential growth of the migration graph with
respect to the number of time steps, the proof of NP-hardness
considers only a single time step. The main difficulty in
solving this problem arises from the need to concurrently
determine migration plans for multiple users.

Choosing the migration plan for a single user in isolation
is similar to finding the shortest path through the migration
graph, which is solvable in polynomial time [43]. This intu-
ition informs our proposed solution heuristic, Seq-Greedy.

B. Seq-Greedy Solution Heuristic

Our proposed Seq-Greedy method can be run in either a
centralized or distributed (Figure 5) MoDEMS deployment.
The distributed Seq-Greedy method begins by generating a
migration graph for each process at the edge server that is
available and initially closest to the user. Once migration
graphs are created for all processes in the system, migration
plans are generated by optimizing over the migration graph.
Unlike the linear integer programming approach, the Seq-
Greedy approach generates one migration plan at a time, and
thus does not require knowledge of the arrival and departure
times of processes in the system. The shortest path is found
along the migration graph and is set as the temporary migration
plan. The plan is then broadcast to the central controller. If
there are enough computation and bandwidth resources to
support it, the necessary resources are reserved by the central

controller. Otherwise, the migration graph is edited to remove
the nodes and edges with no resources and the sequence is run
again. Unlike the static optimization approach, Seq-Greedy is
a dynamic algorithm that solves for jobs arriving in real time.
This method is much more scalable than outright solving the
migration optimization problem:

Proposition 3 (Complexity of Seq-Greedy). The number of
edges and vertices in the migration graph grows as O

(
S2T 2

)
for large numbers of servers and time steps. The complexity
is equal to O

(
D(S2T 2)

)
, where D(x) denotes the complexity

of finding a shortest path in a graph with x vertices.

This result implies that generating the migration graph
incurs a cost that grows quadratically with the numbers of
servers and time steps. Finding a migration plan given the
migration graph, on the other hand, is simply equivalent
to finding the shortest path for each process in sequence.
Djikstra’s algorithm, for instance, runs in O

(
S4T 4

)
time

[43]. We further note that the shortest path algorithms can be
implemented distributedly across the different vertices. Thus,
the edge servers can solve the migration plan with only the
resource information from the cloud controller. This property
is particularly useful when users cross from one controller
domain to another, as it removes the need for complex handoff
mechanisms. The distributed method also leverages existing
computation resources at the edge to compute migration plans.

Next, we introduce in Algorithm 1 the batch method that is
designed to handle stochastic and individualized user move-
ment. The algorithm depicts the batch method as implemented
in a distributed architecture of MoDEMS, as seen in Figure 5.
A single user generates a migration plan by using Seq-Greedy
for each short time window and executes the plan. We expect
this approach will yield better plans, as the user mobility
predictions are improved by conditioning on the user’s location
at the end of each time window, as seen in line 3.1 of
the algorithm. Like Seq-Greedy, the batch method is also a
dynamic algorithm that further reduces the time horizon for
which the migration problem is solved. Although the batch
method makes long-term migrations spanning time lengths
greater than the windows impossible, it limits the complexity
of the Seq-Greedy method by limiting the number of time slots
considered within time window.

We finally note that reducing the number of servers pro-
vides an equivalent reduction in Seq-Greedy’s complexity as
reducing the number of time steps (Proposition 3). Indeed, if
resources are not too constrained, then a server far away from
a user is unlikely to be optimal due to high latency costs. Since
Seq-Greedy considers each user individually, we can remove
servers from migration graphs depending on our predictions of
individual users’ movements. Specifically, we introduce a new
parameter γ such that if the probability that a user lies in server
s’s coverage area at time t is at least γ, then we include that
server in the appropriate place in the user’s migration graph,
and otherwise we do not. We evaluate this truncation method’s
impact on the system complexity in terms of γ in Section VI.

Deciding which servers to truncate then lies in determining
the probability that the user will lie in each server’s coverage
area at a given time. To do so, we define Xt

u as user u’s

7

Algorithm 1: Batch method of the Sequential-Greedy
algorithm for user u ∈ [U] in the system

1 Input: For user u ∈ [U], note requested service time
steps {Tu} ∈ [T], batch size bu, placement resource
demands #»wu, migration size ϵu, service bandwidth
throughput Wu, latency penalty Du

Y , and latency
threshold Y u

x .
2 Batch Initialization: Based on service request time

steps {Tu} and batch size bu, calculated the number
of batches the user will divide their plan into
num batch, and set batch id← 0.

3 For each batch batch id ∈ [num batch]
1) Mobility Prediction Update: Based on the current

and past locations, update future location prediction
P [itu,s] for the time steps in the current batch.

2) Generate Batch Migration Graph: Create the
migration graph for the time steps within the current
batch by populating it with nodes of server-time step
pairs. The edge weights (estimated costs) are
estimated from known VM deployment costs,
migration costs, and location prediction P [itu,s].

3) Migration Plan Phase: Using Dijkstra’s algorithm
on the migration graph, select a migration plan.

a) Check with destination servers if the plan is
viable with regard to placement and bandwidth
resource constraints.

b) If constraints exist, eliminate resource
constrained edges and nodes from the
migration graph and repeat until a viable
migration plan is found.

c) When the viable plan is found, reserve the
placement and bandwidth resources of servers
for the relevant time steps.

4) Plan Execution: Execute the migration plan for the
current batch.

location after t time steps, given a stochastic mobility model.
Using [44]’s results on two-dimensional random walks, we can
find the cumulative distribution function of ∥Xt

u∥, the probable
upper bound on the magnitude of travel for user u at time t:

F∥Xt
u∥(v) = 2−

t
2

(
2t/2Γ

(
t

2

)
− 2(λv)t/2K t

2
(vλ)

)
/Γ

(
t

2

)
.

(11)

The function K 1
2

refers to the modified Bessel function of the
second kind [45], and λ is the parameter of the exponential
distribution user movements are drawn from. Next, we observe
the resulting change in Seq-Greedy’s complexity. Letting the
function ϕ(r) denote the expected number of servers whose
coverage areas intersect a circle of radius r, the expected edge

Fig. 7: The truncation method is used to disregard servers
when generating the migration graph based on user movement
distribution. We include servers that are within the user
movement radius (ϕ1(r)), and those that are outside but have
service areas overlap with the user movement area (ϕ2(r)).

count in a user’s migration graph after truncation is:

E[N] =

T−1∑
i=1

ϕ
(
F−1
Xi

u
(γ)
)

(
ϕ
(
F−1

Xi+1
u

(γ)
)
+

T∑
t=i

(
ϕ
(
F−1
Xt

u
(γ)
)
− 1
)) (12)

We finally examine the expected number of servers ϕ(r)
included in the migration graph, which will allow us to
estimate the reduction in complexity.

As seen in Figure 7, if a server’s coverage area intersects a
circle of radius r, then it must include at least one point on the
circumference of this circle. We can then define the probability
distribution of the expected distance from each point z to
its closest server, Fl = mins=1,2,...,S {∥ls − z∥2} where ls
denotes the location of server s and is uniformly distributed
over the region. The point z represents one point of possible
points of intersection between a server’s coverage area and
the probabilistic radius of user travel ϕ1(r), as seen with the
intersection of the server 1 service area with ϕ1(r) in Figure 7.
Then with probability Fl(ρ), all servers included in our trunca-
tion lie within a larger circle of radius ρ+F−1

Xt
u
(γ) around the

user’s location, i.e., E
[
ϕ
(
F−1
Xt

u
(γ)
)]
≤ π

(
F−1
Xt

u
(γ) + ρ

)2
S
A

with probability Fd(ρ), if the servers are uniformly distributed
throughout the service region. Here, A represents the total
physical area of consideration. In Section VI, we show that
taking γ = 0.9 leads to a 25% reduction in the number of
edges generated in the user migration graphs, significantly
reducing Seq-Greedy’s complexity with little increase in cost.

C. Optimality of Our Seq-Greedy Heuristic

We assess the optimality of our heuristic, focusing mainly
on how the presence of resource constraints and unknown user
mobility change the optimal migration plans and make finding
the optimal plans more difficult.

Effect of resource constraints. We first consider an al-
ternative method for solving (10): relaxing the integer linear
program and rounding the solution to an integer solution:

Proposition 4 (Optimality of the relaxed problem). Suppose
all bandwidth costs equal zero (CBs+CBm = 0), and network
resource constraints do not exist. Then if all processes have the

8

same size #»wu = #»w at every time step and the server capacities
Rs are integer multiples of #»w, the optimal solution of (10) is
the same as the optimal solution to the relaxed version of (10)
where we let hu,t1,t2

s1,s2 ∈ [0, 1].

Proof: We show that the solution to the relaxed problem
is integral, and thus solves the original problem (10). The key
step is to recognize that the cost of any fractional solution can
be reduced by shifting processes between servers.

The assumption that all processes have the same size may
hold if we consider a specific application from multiple
users, e.g., small VMs that store machine learning models
occasionally called by the application. In general, however, we
may consider heterogeneous applications, as in Section VI’s
evaluation. Thus, we next analyze Seq-Greedy. Proposition 1
suggests that the edge servers’ capacity constraints signifi-
cantly contribute to the complexity of solving the optimization
problem. We verify that intuition by showing that Seq-Greedy
is optimal with no resource constraints:

Proposition 5 (Seq-Greedy optimality with sufficient re-
sources). Given enough resources to serve all users simultane-
ously, i.e.,

∑U
u=1 2

#»wu ≤ Rs;∀s,
∑U

u=1 B
u,t
s +Bu,t

m ≤ B;∀t,
Seq-Greedy converges to the optimal solution of (10).

Proof: The assumption of sufficient resources allows us
to ignore the resource constraints; thus, (10) reduces to finding
the minimum cost migration path for each process. Since the
objective is additively separable across users, it decomposes
into minimizing each user’s cost, independent of the other
users. This is exactly our heuristic.

When resource constraints are effective, we do not expect
Seq-Greedy to generally find the optimal solution. However,
we can show that it out-performs a baseline algorithm that
does not take mobility into account:

Proposition 6 (Comparison with a naı̈ve baseline). Suppose
S = 2 and that #»c 1 = #»c 2. Then if Seq-Greedy finds migration
paths for users in descending order of Wu, the resulting total
cost is no greater than that incurred without migrations.

Proof: It suffices to consider only those users whose
server assignment deviates from the optimal migration path
without constraints. The result follows on observing that the
cost incurred in the timeslots with such a deviation is no larger
than that incurred when all users remain stationary.

Thus, at least when there are few servers present, Seq-
Greedy out-performs a naı̈ve static baseline, for any number
of users. The assumption that S = 2 is reasonable if users
have limited mobility, e.g., among students who stay on a
college campus; or if edge servers serve large areas, e.g., mini-
datacenters serving city neighborhoods. We numerically show
that this result still holds for S > 2 servers in Section VI.

Effect of movement uncertainty. We now consider our
algorithm performance in the context of our second challenge,
uncertain user mobility. While we might expect that a stochas-
tic formulation would help the migration plan better track user
movement, in some cases uncertainty can actually hurt:

Proposition 7 (Migrations with uncertain mobility). If user
movements are Markovian, then for T sufficiently large there

exists a time tu < T for each user u such that for t ≥ tu, the
optimal migration plan does not migrate u’s VM.

Proof: The result follows from the convergence of the
distribution of user locations to a steady state.

In essence, under a stochastic mobility model users’ move-
ment is eventually so uncertain that there is no value to mi-
grating. Thus, even when Proposition 6’s conditions hold and
the optimal migration plan should outperform the stationary
solution with known mobility, when mobility uncertainty is
introduced into the model the stationary solution becomes op-
timal. Our batch method avoids this result by re-optimizing the
migration every few time slots, and we show in Section VI that
it indeed outperforms Seq-Greedy given stochastic mobility.

VI. EVALUATION

In this section, we numerically evaluate MoDEMS, validat-
ing, and going beyond Section V’s results. Specifically, we aim
to show that we have solved the primary research challenges
introduced in Section I: designing a feasible migration algo-
rithm that (i) scales to realistic edge computing systems, (ii)
respects the lack of resources at edge servers and links, and
(iii) optimizes over uncertain user movement. After describing
our experimental setup, we examine the achieved scalability
and cost of Seq-Greedy and our proposed variants compared
to baseline algorithms, under different resource constraints
and mobility patterns. We finally evaluate the improvement in
edge user experience with Seq-Greedy in a realistic network
environment simulated by ns-3 [46] and a LTE testbed.

A. Numerical Analysis Setup

We use synthetic server locations spread out uniformly at
random within an area of 5 miles by 5 miles. We consider
a multi-tier system containing edge servers with limited re-
sources, aggregation servers with more resources, and a cloud
server with high resources and latency. All edge servers are
connected to the closest aggregation server, and all aggregation
servers are connected to the cloud server, as seen in Figure
3. Servers higher up the hierarchy are often more resource-
rich but incur higher latencies [47]. Initial locations of users
are drawn from a uniform distribution and Markovian user
movements are estimated from the Yonsei/Lifemap mobility
dataset [18]. The size of the simulation space is set based
on the area of downtown Seoul, South Korea (where the
traces are from), an urban area typical of edge computing
deployments [48]. Time steps are five minutes long unless
otherwise stated.

We predict user mobility with a Markov model that is con-
structed empirically from past realized movement patterns, as
recorded in the Yonsei/Lifemap mobility data. Table II shows
the accuracy of the user location prediction by the Markovian
model used for simulations. As we would intuitively expect,
predictions further into the future have lower accuracy. Higher
densities of servers make the prediction of the user location
more difficult as the user can move towards more servers.

To evaluate the effects of resource limitations, the simula-
tions are run with either limited or ample resources. Many

9

Time step 1 5 10 20
5 Servers 0.87 0.62 0.49 0.26
10 Servers 0.80 0.49 0.39 0.14
20 Servers 0.71 0.40 0.25 0.13

TABLE II: Average probability of the mobility model accu-
rately predicting closest server to user after a set amount of
time steps (20 users, 20 trials).

edge computing systems will have limited resources available
at individual edge servers, as seen in [33], [34], as endpoint
edge devices are often of limited hardware (i.e., smart cameras
and ruggedized laptops) [49]. In the limited resource setting,
resource capacities are drawn from uniform distributions such
that edge servers on average can service 2.5 to 4 processes
simultaneously based on the total number of users in the
system and each link can migrate six processes in a single time
step. Resource constraints do not affect migration decisions
with ample resources. Servers provide three resources: CPU
cores, RAM, and storage, with prices per five-minute time step
of $0.02 per CPU core, $0.01 per GB of RAM, and $0.02 per
GB of storage, following current cloud prices [50]. Process
sizes are chosen to simulate VR, AR, and personal assistant
applications as measured in [51], [52]. To conserve space, we
do not separately examine the effects of limited edge server
and link capacity resources. Processes that cannot be served
on edge servers due to a lack of resources are instead serviced
at the cloud, which have the resource cost set at a quarter of
those at the edge nodes, as well as a fixed latency value of 200
ms [7], [53]. Each user has an expected latency requirement
of at most 40 ms, and the experienced latency is measured
by the distance between the user and server. The mapping
between distance and incurred latency is scaled approximately
to reflect the results found in [54], where servers close by
(∼ 0.2 miles) incur approximately 5 ∼ 10 ms of latency, while
servers further away (beyond 5 miles) incur approximately 50
ms of latency. A latency penalty of $0.05 is applied for every
10 ms of latency above the threshold such that the latency
penalty is comparable to the placement and bandwidth costs.

We compare our proposed Seq-Greedy approach and its
batch and truncation extensions to the optimization approach
and three baselines. The naı̈ve approach minimizes the cost
with no migrations while choosing the closest server available,
as in SDN/NFV placement optimization [38], [39]. The myopic
approach migrates processes to the closest feasible server at
every time step, as in reactive migration frameworks [22]; this
comparison shows the value of predicting individual user mo-
bility. The cloud approach generates migrations that minimize
user costs without considering resource constraints, as in [29].
The cloud then serves processes violating resource constraints,
showing the value of accounting for these constraints in the
optimization itself.

Unless otherwise stated, we show the average and standard
deviation of results over 5 to 10 trials.

B. Comparing the Different Migration Plan Methods

We first compare Seq-Greedy and the batch method to
the optimal migration solution and our three baselines, under

our two resource scenarios. We then show how an operator
might choose the batch length and truncation parameters
before evaluating the effect of different user mobility patterns,
cost parameters, and user densities on Seq-Greedy’s cost and
recommended migrations.

Servers
5 10 15 20

Probability (γ)

1.0 TS 5 172 576 1305 2347
TS 20 2071 9166 16736 27624

0.9 TS 5 109 361 687 1198
TS 20 1628 5434 11420 19098

0.7 TS 5 87 224 509 696
TS 20 1554 4834 11202 15835

TABLE III: Average edge counts per user given 30 users for
Seq-Greedy migration graph as a function of radius truncation
probability levels and the numbers of time steps and servers.

t = 2 t = 3 t = 4
ILP SG ILP SG ILP SG

s=2 u=2 2.3e-2 2.9e-3 2.7e-2 3.5e-3 3.2e-2 4.2e-3
u=4 3.4e-2 5.3e-3 4.1e-2 6.3e-3 5.7e-2 8.4e-3

s=3 u=2 4.2e-2 4.6e-3 6.5e-2 6.7e-3 1.0e-1 8.6e-3
u=4 7.6e-2 9.0e-3 1.2e-1 1.2e-2 2.0e-1 1.6e-2

TABLE IV: Average run time (seconds) for the optimization
(ILP) method and Sequential-Greedy (SG) heuristic across
user count, server count, and time steps.

Comparison to optimal approach. We compare the cost
achieved by the optimization and Seq-Greedy approaches
under limited and ample resources in Figure 8a. Given limited
system resources available at the edge servers, the optimization
has a slightly lower cost by 10%, since the Seq-Greedy method
places processes sequentially. The placement, bandwidth, and
latency sub-costs are all slightly higher with our Seq-Greedy
method, indicating that greedy placement can affect all three
types of costs. Under ample resources, their performance
is equivalent (Proposition 5). As we would expect from
Section V-A’s complexity analysis (Propositions 1–3), the
number of edges in the migration graph grows approximately
quadratically with respect to the number of servers and time
steps (Table III), leading to a runtime for Seq-Greedy that is
two order of magnitude shorter than the optimization approach
(Table IV).

Comparison to heuristic baselines. As seen in Figure 8b,
all plan generation methods induce lower cost with ample
compared to limited resources, as low latency placements
are possible for every process. Seq-Greedy and the batch
method significantly outperform the naı̈ve and myopic baseline
algorithms due to less frequent misplaced VM migrations
compared to user location. Most notably, the batch method
saves 33% in cost compared to the naı̈ve method and 18%
compared to the myopic method under limited resources.
Under limited resources, the Seq-Greedy method outperforms
the cloud method due to lower latencies as processes are not
necessarily placed on the cloud given resource constraints,
while their performances are equivalent given ample resources
as no processes are sent to the cloud. Figure 8c shows the
sub-costs for the Seq-Greedy and batch heuristics without
truncation, as well as the three baseline algorithms. The

10

Total Placement BW UE0

2

4

6

8
M
on

et
ar
y
Co

st
 (D

ol
la
rs
) ILP and Seq-Greedy Sub-Cost

ILP Lim
SG Lim
ILP Ample
SG Ample

(a) Sub-cost comparison between opti-
mization (ILP) and Seq-Greedy approach
(6 users, 5 servers, 5 time steps).

(b) Cost incurred by different plan meth-
ods for limited and ample resources (40
users, 10 servers, 12 time steps).

(c) Sub-cost of the heuristic and baseline
methods presented (40 users, 10 servers,
12 time steps, limited resources).

Fig. 8: Our proposed Seq-Greedy and batch methods out-perform the cloud, myopic and naı̈ve baselines, though they are not
optimal. BW represents bandwidth cost, while UD represents user dissatisfaction (latency) costs.

(a) Number of servers available at each
time step for migration during truncation
of Seq-Greedy method (30 total servers).

(b) The cost generally decreases with
batch size (7 servers, 10 users, 12 time
steps, and limited resources).

(c) Migrations occur more with faster travel
and smaller batches (20 users, 8 servers, 12
time steps, ample resources).

Fig. 9: Effect of system settings such as batch length, truncation rates, and user speed in plan generation.

Fig. 10: Comparison of proposed heuristic approaches against
state-of-the-art mobility prediction plans (10 servers, 20 users,
12 time steps, limited resources, batch length = 2).

heuristic approaches outperform the baselines largely due to
closer process placements and less user dissatisfaction. The
naı̈ve approach does not perform migrations and suffers as
users move away from their original position, verifying that
Proposition 6 holds for more general scenarios. The myopic
method has a lower latency cost incurred than both the Seq-
Greedy and the cloud method (39% and 48%, respectively) due
to frequent migrations, but incurs higher placement (18% and
16%, respectively) and bandwidth usage cost (approximately
380% for both SG and cloud methods) in the process. The
batch approach outperforms the Seq-Greedy and the cloud
method by 10% and 15%, respectively, due to its superior
predictions of user mobility by updating its conditioning on
the Markov chain model of user mobility.

Effect of truncation and batch length parameters. We
next examine the truncation technique. Figure 9a shows that

as the truncation probability increases, more servers are in-
cluded for the migration graph. As we would expect, the
number of servers included increases over time for each fixed
truncation probability, as users move further distances from
their current locations. Even a high truncation probability of
0.9, however, reduces the optimization complexity by 25%
(Table III), indicating that truncation is an effective way to
decrease complexity without significantly increasing cost.

The choice of batch length also affects the cost and com-
plexity. As we increase the number of batches from 1 (Seq-
Greedy) to higher values, the migrations per user increases,
as seen in Figure 9c, as there is more certainty in user
locations. Figure 9b similarly shows that the cost falls as the
number of batches increases (which also reduces the algorithm
complexity, as in Table III). When there are more batches
present in the system due to shorter batch lengths, more
frequent updates to user movement predictions allow for better
and more frequent migrations. However, because shorter batch
lengths prevent longer migrations that cross batch windows,
the cost increases again when the batch length becomes too
small, indicating that it should be carefully chosen to balance
the cost effects, given the uncertainty present in user mobility
patterns. Shorter batch lengths also mean that our algorithm
cannot plan its migrations as far in advance (i.e., it cannot plan
placements according to users’ anticipated locations further
into the future), which could also increase the incurred costs
for shorter batch lengths. Our empirical results, however, show
that a relatively short batch length of 2 yields a sufficiently
far-off prediction to ensure low overall costs, recording a 28%
reduction in cost compared to a single batch of length 12.

11

5 10 15 20 25 30
Number of Users

4

6

8

10

12

To
ta

l C
os

t p
er

 U
se

r
Cost of User Density

Seq Greedy
Batch
Myopic
Naive
Cloud

(a) Total cost incurred per user given more
users in the system, compared across differ-
ent plans.

5 10 15 20 25 30
Number of Users

2

4

6

8

10

La
te

nc
y

Co
st

 p
er

 U
se

r

Latency of User Density
Seq Greedy
Batch
Myopic
Naive
Cloud

(b) Latency cost incurred per user increases
given more users in the system, compared
across different plans.

5 10 15 20 25 30
Number of Users

1

2

3

4

M
ig

ra
tio

ns
 p

er
 U

se
r

Migrations and User Density
Seq Greedy
Batch
Myopic
Cloud

(c) More migrations occur as the number of
users increase in the system.

Fig. 11: Increasing the number of users given fixed resource constraints increases overall cost per user due to VM placements
further away from users and more utilization of the cloud. Tests are run with 10 servers across 10 time steps.

2 4 6 8
Area Scaling

4

6

8

To
ta
l C

os
t p

er
 U
se
r

Cost of Service Area
Seq Greedy
Batch
Myopic
Naive
Cloud

(a) Total cost incurred given increased service
area by same number of servers.

2 4 6 8
Area Scaling

2

4

6

La
te
nc
y
Co

st
 p
er
 U
se
r

Latency of Service Area
Seq Greedy
Batch
Myopic
Naive
Cloud

(b) Latency cost incurred given increased
service area by same number of servers.

2 4 6 8
Area Scaling

0.5

1.0

1.5

2.0

M
ig
ra
tio

ns
 p
er
 U
se
r

Migrations and Service Area
Seq Greedy
Batch
Myopic
Cloud

(c) Migration rate given increased service
area by same number of servers.

Fig. 12: Increasing the area of service given a fixed number of users and servers has limited impact on overall costs and
latencies experienced by users. Tests are run with 20 users, 10 servers, across 10 time steps, and the smallest area size (×1
scaling) is 5 by 5 miles.

Effect of user mobility. To observe the impact of user
movement on migration plan generation, Figure 9c shows the
number of migrations a typical user undergoes for the lifetime
of the requested service against the average speed per time step
of users drawn from an exponential distribution. Users with
higher average speeds incur more migrations, since the closest
server to the user changes more frequently. Thus, MoDEMS
adapts to different mobility characteristics in different areas.

We separately analyze the impact of the accuracy of user
mobility prediction in Figure 10. For the Seq-Greedy, batch,
and cloud methods, we compare the performance of (i) an
idealized state-of-the-art (SOTA) mobility tracker that success-
fully predicts all future user movement to (ii) a more realistic
stochastic mobility tracker that has probabilistic predictions
of future user location. For both Seq-Greedy and the cloud
method, due to lower accuracy of mobility predictions for
users further in the time window, the realistic mobility methods
have lower performance compared to the SOTA mobility pre-
diction methods by 82% and 52%, respectively. For the batch
method, the performance of the realistic mobility prediction is
only 14% worse off than that of the SOTA mobility prediction
method. Thus, the proposed batch method effectively leverages
known probabilistic mobility predictions by updating mobility
predictions for each batch, and achieves close performance to

the SOTA mobility prediction method.

Effect of user density. Different plan generation schemes
are compared given a different number of users present in the
system. Intuitively, the presence of more users would make
resources relatively more scarce, leading to higher costs. As
seen in figure 11a and figure 11b, the total cost and latency
cost increase per user as more users are introduced in the
system. The latency costs increases as the closest servers will
not be available for use for some users due to high demand.
The batch, myopic, and Seq-Greedy methods exhibit similar
increases in cost as the number of users increase (19%, 15%,
and 37%, respectively), though the batch method performs
relatively better for larger numbers of users, due to a better
ability to plan for future user mobility, as well as higher
accuracy in mobility prediction. The cloud method exhibits
similar patterns to Seq-Greedy for a low number of users, but
incurs a spike in both overall cost and latency cost with more
users as users are increasingly served at the cloud with high
latency. The naı̈ve approach overall has unchanged values in
cost and latency as the number of users increase. Although the
initial placement of VMs in the naı̈ve approach may be sub-
optimal as the number of users increases, as users move away
from their initial locations, the incurred costs become similar.
The naı̈ve approach optimizes for all users at the outset, so the

12

impact of having an increased number of users is minimized
as well.

The migration rate per user given an increased number of
users in the system is examined in Figure 11c. The number
of migrations per user remains generally unchanged for the
Seq-Greedy, batch, and cloud methods. For Seq-Greedy and
the cloud method, as examined by Proposition 7, the number
of migrations is limited as knowledge regarding user location
is less certain for time steps further into the future. The batch
method displays a higher number of migrations in comparison,
but the migration rate remains consistent with respect to the
number of users in the system. However, for the myopic
method, the migration rate increases with the number of users
as the myopic method cannot plan for user movement or
resource constraints and thus may be forced to shift the user’s
process to new servers more frequently as the competing users
move and new resources become available.

Effect of deployment area. Different plan generation
schemes are compared for an increasing service area given
a fixed number of users and servers in the system. All tests
are run with 20 users, 10 servers, and 10 time steps, with
the smallest area size (×1 scaling) of 5 by 5 miles. As seen
in figure 12a and figure 12b, the total cost and latency cost
remain mostly consistent with respect to different area sizes
of service. The results indicate that the proposed Seq-Greedy
and batch methods perform well under different densities of
server and resource availability. The migration rate per user
slightly decreases as the area of service increases, as users
will less often move into an area closest to another server due
to the increased distances between servers. We note that the
latency cost is measured with respect to the latency incurred
between the server hosting a user VM and the server closest to
the user, as presented by equation (9). The last mile latency is
not included in the analysis as such latency cannot be avoided
regardless of VM migration policy.

Effect of weighting sub-costs. It is possible to alter the
formulation presented in equation 10 by scaling sub-costs
separately. For example, the placement cost CP and the
the latency cost CY can be scaled by weights αP and αY

respectively, and the objective can be rewritten as:

min
h∈H

Ctotal = αPCP + αBm
CBm

+ αBs
CBs

+ αY CY (13)

Figure 13 shows experiments where the placement cost weight
is increased to αP = 3 while all other cost weights are
fixed at α = 1, as well as when the latency cost weight
is increased to αY = 3 while all other cost weights are
fixed at α = 1. The legend indicates which cost weight is
emphasized (placement and latency respectively), while the
normal setting has all cost weights set to α = 1. The naı̈ve
and myopic methods are omitted from analysis as they do not
consider weighted costs when creating migration plans. The
normal setting achieves the lowest aggregate cost across all
plan generation methods. However, across all plan generation
methods, the placement sub-cost is lowest when the placement
sub-cost is heavily weighted (αP is increased). The latency
sub-cost is highest when the placement sub-cost is heavily
weighted (αP is increased), but is lowest when no cost is

emphasized under the normal setting (α = 1). The normal
setting may have lower latency than when αY = 3, as when
the latency weight is increased, the plan generation methods
behave more similarly to the myopic method that greedily
performs migrations that may prevent beneficial migrations
in the future due to resource constraints.

C. Network Simulator Experiments

We validate MoDEMS’ results by running our migration
plans in a ns-3 simulator that mimics realistic network
delays. Each user individually creates migration plans utilizing
the distributed controller as shown in Figure 5. We simulate
10 edge servers, each connected to a base station (e.g., eNB)
through a point-to-point connection, as seen in the example set
up in figure 14a. When a user sends a packet, it is received
by the virtual device and then forwarded by IP forwarding
to the edge server connected to the eNB, and then on to
another edge server if needed. All eNBs use the LTE socket
with Proportional Fair scheduling [55] to forward packets to
users. The users’ transmission mode is set to MIMO Spatial
Multiplexity (2 layers). There are 20 users over 10 discrete
time steps of 200s. We compare the performance of the
batch (with batches of 2 time steps each), myopic, and naı̈ve
methods when transferring 1MB of data, which could represent
computation results from the edge, from the VM to the UE
per time step. Low throughput levels between eNBs simulate
heavy traffic.

Figure 14b shows the resulting cumulative distribution of
the average request completion times of all 20 users for
each plan generation scheme, after removing outliers. As is
consistent with Figure 8c, the average transmission times
are the shortest for the batch method (31% less than the
naı̈ve method), followed by the myopic, Seq-Greedy, and
naı̈ve methods. The run time of different plan generation
methods per user is shown in Figure 14c. The naı̈ve method
on average takes 0.10s per user, as only a single placement
is made. The myopic method on average takes 1.74s per
user across all time steps, as at each time step the closest
server must be determined. The Seq-Greedy method takes on
average a longer 2.18s as traversing the migration graph and
navigating through resource constraints consumes more time.
The batch method takes on average 2.56s across all time steps
to generate a plan as multiple migration graph batches must be
worked with. However, the batch method only takes on average
0.51s per batch (batch length is set at 2). Compared to the
discrete time step sizes of 200s, the migration plan generation
time is minimal. The increased plan generation time of the
batch method leads to much better performance in terms of
transmission time.

D. LTE Testbed Experiments

The importance of preemptive migrations is demonstrated
with LTE testbed experiments (Figure 15). The testbed has
two eNodeBs (eNBs), UEs (user equipment) in a shield box,
a signal attenuator, and edge servers. The Evolved Packet Core
(EPC, not shown for simplicity) manages the network, includ-
ing connecting to the Internet. We use two commercial indoor

13

Batch SG Cloud
Plan Method

0

50

100

M
on

et
ar
y
Co

st
 (D

ol
la
rs
) Total Costs Comparison

Latency
Normal
Placement

(a) Total cost incurred by different plan meth-
ods of weighting on placement and latency
sub-costs.

Batch SG Cloud
Plan Method

10

15

20

25

30

M
on

et
ar
y
Co

st
 (D

ol
la
rs
) Placement Costs Comparison

Latency
Normal
Placement

(b) Placement cost incurred by different plan
methods of weighting on placement and la-
tency sub-costs.

Batch SG Cloud
Plan Method

0

25

50

75

100

M
on

et
ar
y
Co

st
 (D

ol
la
rs
) Latency Costs Comparison

Latency
Normal
Placement

(c) Latency cost incurred by different plan
methods of weighting on placement and la-
tency sub-costs.

Fig. 13: Increasing the weight on a specific cost type (“latency” or “placement”) reduces the incurred relevant sub-cost compared
to the “normal” cost setting. Tests are run with 20 users, 10 servers, across 10 time steps.

(a) Setup of the ns-3 simulation with four
edge servers.

(b) CDF of each user’s average service
completion times in the ns-3 simulator.

(c) CDF of migration plan generation
times per user for the ns-3 simulator.

Fig. 14: Setup and cumulative distribution functions (CDFs) of measurement results for ns-3 experiments.

Fig. 15: Setup of the LTE base station experiments with
handover.

LTE small cell products, Juni JL620 [56], each connected to
an edge server. UEs inside the shield box communicate via
antennas connecting the eNBs and shield box. To emulate
various RF situations, including handover between two eNBs,
we install a signal attenuator between the eNBs and feed its
output to the shield box. By changing the input power of each
eNB, we can emulate a handover where a UE connects to
an adjacent eNB of more robust signals. The wired latency
between the two eNBs is set at 40ms, while wireless latency
between an eNB and UE is approximately 60ms.

We monitor round trip times (RTT) between the UE and
servicing VM over 120 seconds. The VM migration from edge
server 1 to server 2 always starts at time t = 0s, and completes
around t = 80s subject to network conditions. The UE moves

Fig. 16: CDF of user-VM round trip times for different
preemptive migration times.

from base station 1 to base station 2 at t = {0s, 40s, 80s}. User
movement at t = 0s represents a reactive migration scheme,
such as the myopic baseline, as the VM migration only begins
after the user has moved. The t = {40s, 80s} cases represent
preemptive migrations, such as the batch method.

Figure 16 shows the resulting cumulative distribution of
the round trip times between the UE and the servicing VM
given different migration times. Consistent with the user
dissatisfaction cost in Figure 8c and the service completion
times of Figure 14b, migration schemes that have preemptive
migrations (e.g. batch method) incur overall lower round trip
times than migration schemes with reactive migrations (e.g.
myopic method) by approximately 33%.

14

VII. CONCLUSION

While the use of cloud computing has grown in recent
years, the distance between the cloud and the user presents
issues of long latencies and limited bandwidth. Edge and
fog computing mitigate those issues but require the strategic
placement and migration of processes due to user movement.
In this paper, we introduce MoDEMS, the first system to opti-
mize edge computing deployments according to user mobility
with a theoretical framework that jointly addresses practical
deployment challenges, and experimental validation on real
mobility traces and an LTE testbed. We formulate a linear
integer programming problem and the Seq-Greedy heuristic
used to generate migration plans that minimize system cost and
user latency. Seq-Greedy saves orders of magnitude in terms of
overhead compared to the optimization approach. Compared
to a naı̈ve approach that does not migrate processes, a myopic
migration approach that does not attempt to predict user
movement, or a cloud-based approach that does not account for
resource constraints, we can save significant system cost and
improve user experience. Moving forward, we can examine
how migration plans can be generated for processes that serve
many users at once on multiple edge nodes.

ACKNOWLEDGEMENTS

This work was partially supported by the US Army Re-
search Office grant W911NF1910036, NSF CNS-2103024,
Cisco Systems grant 1368170, the NSFC grant No.62102460
IITP grant No.2021-0-01817 funded by the Korea government
(MSIT), and the National Research Foundation of Korea
(NRF) grant funded by MSIT No. 2021R1F1A1061346.

REFERENCES

[1] “Cisco global cloud index: Forecast and methodology, 2016–2021 white
paper,” 2018.

[2] GSMA, “Cloud ar/vr streaming:accelerate mass adoption and
improve quality of experience of ar/vr using 5g and edge cloud.”
https://www.gsma.com/futurenetworks/wp-content/uploads/2019/03/
Cloud-ARVR-booklet-for-MWC19.pdf, Mar 2019.

[3] 3GPP, “5G; System architecture for the 5G System (5GS),” 2019. http:
//www.3gpp.org/dynareport/23501.htm.

[4] ETSI GS MEC 003 V2.1.1, “Mobile Edge Computing (MEC); Frame-
work and Reference Architecture,” 2019. https://www.etsi.org/deliver/
etsi gs/MEC/001 099/003/02.01.01 60/gs MEC003v020101p.pdf.

[5] X. Wang, M. Chen, T. Taleb, A. Ksentini, and V. C. Leung, “Cache in the
air: Exploiting content caching and delivery techniques for 5g systems,”
IEEE Communications Magazine, vol. 52, no. 2, pp. 131–139, 2014.

[6] J. Lee, S. Moon, B. Bae, and J. Lee, “Local area data network for 5g
system architecture,” in 2018 IEEE 5G World Forum (5GWF), 2018.

[7] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a
cloud: Research problems in data center networks,” SIGCOMM Comput.
Commun. Rev., vol. 39, pp. 68–73, Dec. 2008.

[8] C. Martı́n Fernández, M. Dı́az Rodrı́guez, and B. Rubio Muñoz, “An
edge computing architecture in the internet of things,” in IEEE 21st
International Symp. on Real-Time Distributed Computing, pp. 99–102,
May 2018.

[9] S. Dustdar, C. Avasalcai, and I. Murturi, “Invited paper: Edge and fog
computing: Vision and research challenges,” in IEEE International Conf.
on Service-Oriented System Engineering, pp. 96–9609, April 2019.

[10] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
Elastic execution between mobile device and cloud,” in Proceedings of
the Sixth Conference on Computer Systems, EuroSys ’11, (New York,
NY, USA), pp. 301–314, ACM, 2011.

[11] A. D. Domenico, G. Perna, M. Trevisan, L. Vassio, and D. Giordano, “A
network analysis on cloud gaming: Stadia, GeForce now and PSNow,”
Network, vol. 1, pp. 247–260, oct 2021.

[12] S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang, and W. Shi, “Edge computing
for autonomous driving: Opportunities and challenges,” Proceedings of
the IEEE, vol. 107, no. 8, pp. 1697–1716, 2019.

[13] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, pp. 637–646,
Oct 2016.

[14] Y. Yu, “Mobile edge computing towards 5g: Vision, recent progress, and
open challenges,” China Communications, vol. 13, pp. 89–99, N 2016.

[15] S. Wang, J. Xu, N. Zhang, and Y. Liu, “A survey on service migration in
mobile edge computing,” IEEE Access, vol. 6, pp. 23511–23528, 2018.

[16] O-RAN Alliance, “O-ran: Towards an open andsmart ran.” https://www.
o-ran.org/, 2018.

[17] H. Gebrie, H. Farooq, and A. Imran, “What machine learning predictor
performs best for mobility prediction in cellular networks?,” in 2019
IEEE ICC Workshops, pp. 1–6, IEEE, 2019.

[18] Y. Chon, E. Talipov, H. Shin, and H. Cha, “Crawdad dataset yon-
sei/lifemap (v. 2012-01-03),” Jan 2012.

[19] T. Kim, S. Chen, Y. Im, X. Zhang, S. Ha, and C. Joe-Wong,
“Modems: Optimizing edge computing migrations for user mobility,” in
2021 IEEE/ACM 29th International Symposium on Quality of Service
(IWQOS), pp. 1–2, 2021.

[20] T. Kim, S. Chen, Y. Im, X. Zhang, S. Ha, and C. Joe-Wong, “Modems:
Optimizing edge computing migrations for user mobility.” https://
research.ece.cmu.edu/lions/Papers/MoDEMS INFOCOM.pdf, 2021.

[21] X. Sun and N. Ansari, “EdgeIoT: mobile edge computing for the internet
of things,” IEEE Comm. Magazine, vol. 54, no. 12, pp. 22–29, 2016.

[22] Z. Rejiba, X. Masip-Bruin, and E. Marı́n-Tordera, “A survey on
mobility-induced service migration in the fog, edge, and related com-
puting paradigms,” ACM Comput. Surv., vol. 52, Sept. 2019.

[23] Z. Liang, Y. Liu, T.-M. Lok, and K. Huang, “Multi-cell mobile
edge computing: Joint service migration and resource allocation,”
arXiv:2102.03036 [cs.IT], 2021.

[24] M. V. Ngo, T. Luo, H. T. Hoang, and T. Q. S. Quek, “Coordinated con-
tainer migration and base station handover in mobile edge computing,”
arXiv:2009.05682 [cs.NI], 2020.

[25] L. Ma, S. Yi, N. Carter, and Q. Li, “Efficient live migration of edge
services leveraging container layered storage,” IEEE Transactions on
Mobile Computing, vol. 18, no. 9, pp. 2020–2033, 2019.

[26] C.-F. Liu, M. Bennis, M. Debbah, and H. V. Poor, “Dynamic task of-
floading and resource allocation for ultra-reliable low-latency edge com-
puting,” IEEE Transactions on Communications, vol. 67, p. 4132–4150,
Jun 2019.

[27] J. Wang, J. Hu, and G. Min, “Online service migration in edge
computing with incomplete information: A deep recurrent actor-critic
method,” arXiv:2012.08679 [cs.NI], 2020.

[28] S. Wang, R. Urgaonkar, M. Zafer, T. He, K. Chan, and K. K. Leung,
“Dynamic service migration in mobile edge computing based on markov
decision process,” IEEE/ACM Transactions on Networking, 2019.

[29] S. Wang, Y. Guo, N. Zhang, P. Yang, A. Zhou, and X. S. Shen,
“Delay-aware microservice coordination in mobile edge computing:
A reinforcement learning approach,” IEEE Transactions on Mobile
Computing, pp. 1–1, 2019.

[30] I. Labriji, F. Meneghello, D. Cecchinato, S. Sesia, E. Perraud, E. C.
Strinati, and M. Rossi, “Mobility aware and dynamic migration of mec
services for the internet of vehicles,” IEEE Trans. on Netw. and Serv.
Manag., vol. 18, p. 570–584, mar 2021.

[31] T. Ouyang, Z. Zhou, and X. Chen, “Follow me at the edge: Mobility-
aware dynamic service placement for mobile edge computing,” IEEE
J.Sel. A. Commun., vol. 36, p. 2333–2345, oct 2018.

[32] T. Cao, Z. Qian, K. Wu, M. Zhou, and Y. Jin, “Service placement and
bandwidth allocation for mec-enabled mobile cloud gaming,” in 2021
IEEE 22nd International Symposium on a World of Wireless, Mobile
and Multimedia Networks (WoWMoM), pp. 179–188, 2021.

[33] B. Yang, W. K. Chai, Z. Xu, K. V. Katsaros, and G. Pavlou, “Cost-
efficient nfv-enabled mobile edge-cloud for low latency mobile applica-
tions,” IEEE Transactions on Network and Service Management, vol. 15,
no. 1, pp. 475–488, 2018.

[34] A. Nadembega, A. S. Hafid, and R. Brisebois, “Mobility prediction
model-based service migration procedure for follow me cloud to support
qos and qoe,” in 2016 IEEE International Conference on Communica-
tions (ICC), pp. 1–6, 2016.

[35] B. Hu and W. Hu, “Linkshare: Device-centric control for concurrent
and continuous mobile-cloud interactions,” in Proceedings of the 4th
ACM/IEEE Symposium on Edge Computing, SEC ’19, (New York, NY,
USA), p. 15–29, Association for Computing Machinery, 2019.

15

[36] B. Ottenwälder, B. Koldehofe, K. Rothermel, and U. Ramachandran,
“Migcep: Operator migration for mobility driven distributed complex
event processing,” in Proceedings of the 7th ACM International Confer-
ence on Distributed Event-based Systems, DEBS ’13, (New York, NY,
USA), pp. 183–194, ACM, 2013.

[37] B. Ottenwälder, B. Koldehofe, K. Rothermel, K. Hong, D. Lillethun, and
U. Ramachandran, “Mcep: A mobility-aware complex event processing
system,” ACM Trans. Internet Technol., vol. 14, pp. 6:1–6:24, Aug. 2014.

[38] Y. Jia, C. Wu, Z. Li, F. Le, and A. Liu, “Online scaling of nfv service
chains across geo-distributed datacenters,” IEEE/ACM Transactions on
Networking, vol. 26, pp. 699–710, April 2018.

[39] F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and O. C. M. B.
Duarte, “Orchestrating virtualized network functions,” IEEE Trans. on
Network and Service Management, vol. 13, pp. 725–739, Dec 2016.

[40] S. Wang, R. Urgaonkar, T. He, K. Chan, M. Zafer, and K. K. Leung,
“Dynamic service placement for mobile micro-clouds with predicted
future costs,” IEEE Transactions on Parallel and Distributed Systems,
vol. 28, no. 4, pp. 1002–1016, 2016.

[41] L. Wang, L. Jiao, J. Li, and M. Mühlhäuser, “Online resource allocation
for arbitrary user mobility in distributed edge clouds,” in Proceedings
of the 37th IEEE ICDCS, pp. 1281–1290, IEEE, 2017.

[42] L. Fleischer, M. X. Goemans, V. S. Mirrokni, and M. Sviridenko, “Tight
approximation algorithms for maximum general assignment problems,”
in Proceedings of the 17th ACM-SIAM Symp. on Discrete Algorithms,
pp. 611–620, Society for Industrial and Applied Mathematics, 2006.

[43] M. Barbehenn, “A note on the complexity of dijkstra’s algorithm for
graphs with weighted vertices,” Computers, IEEE Transactions on,
vol. 47, p. 263, 03 1998.

[44] W. Stadje, “The exact probability distribution of a two-dimensional
random walk,” J. of Statistical Physics, vol. 46, pp. 207–216, Jan 1987.

[45] Wolfram, “BesselK.” https://reference.wolfram.com/language/ref/
BesselK.html, 1999.

[46] “ns-3 network simulator,” 2020. https://www.nsnam.org/.
[47] K. Voruganti and J. Smith, “Cloud vs. edge.” https://blog.equinix.com/

blog/2021/08/09/cloud-vs-edge/.
[48] X. e. a. Liang, “Unraveling the origin of exponential law in intra-urban

human mobility,” vol. 3, no. 2983, 18 Oct. 2013.
[49] Intel, “Edge clouds and servers.” https://www.intel.com/content/www/

us/en/edge-computing/edge-cloud.html.
[50] J. B. Gilmour, A. W. Lui, and D. C. Briggs, “Emr,” 1986.
[51] C. Zhou, Z. Li, and Y. Liu, “A measurement study of oculus 360 degree

video streaming,” in Proceedings of the 8th ACM on Multimedia Systems
Conference, pp. 27–37, 2017.

[52] L. Ma, S. Yi, N. Carter, and Q. Li, “Efficient live migration of edge
services leveraging container layered storage,” IEEE Transactions on
Mobile Computing, vol. 18, no. 9, pp. 2020–2033, 2018.

[53] B. Charyyev, E. Arslan, and M. H. Gunes, “Latency comparison of
cloud datacenters and edge servers,” in GLOBECOM 2020 - 2020 IEEE
Global Communications Conference, pp. 1–6, 2020.

[54] S. Nair, S. Abbasi, A. Wong, and M. J. Shafiee, “Maple-edge: A runtime
latency predictor for edge devices,” 2022.

[55] S. Sesia, I. Toufik, and M. Baker, LTE-the UMTS long term evolution:
from theory to practice. John Wiley & Sons, 2011.

[56] Juni, “Enterprise Small Cell JL620.” http://www.juniglobal.com/product/
jl-620fdd-jlt-621tdd/, 2017.

Taejin Kim (Student Member, IEEE) received his
B.S. from Olin College of Engineering (2018) and
M.S. from Carnegie Mellon University (2021) in
Electrical and Computer Engineering. He is cur-
rently a Ph.D. student at Carnegie Mellon university
since August 2018. His current research topics are
resource allocation and management in mobile edge
computing, as well as security in distributed and
federated learning systems.

Sandesh Dhawaskar Sathyanarayana received his
M.S. in 2019 and is a Ph.D. student in the De-
partment of Computer Science at the University of
Colorado Boulder.

Siqi Chen received his B.S degree in Computer
Science from Shanghai Jiao Tong University in 2016
and his M.S. degree in Computer Science from
the University of Colorado Boulder in 2018. His
research interests include mobile networking and
systems, LTE architecture design and optimization,
and the next-generation Internet..

Youngbin Im is an Assistant Professor in the De-
partment of Computer Science and Engineering at
UNIST. Before joining UNIST, he was a postdoc-
toral researcher in the Department of Computer Sci-
ence at University of Colorado Boulder from 2015
to 2019. He received his B.S. and Ph.D. degrees
in computer science and engineering from Seoul
National University in 2006 and 2014. His research
interests include the next-generation Internet, video
streaming, Internet protocols, data centers, wireless
networks, and IoT. He received the Best Paper

Award from ACM MobiSys in 2019.

Xiaoxi Zhang (Member, IEEE) received the B.E.
degree in electronics and information engineering
from the Huazhong University of Science and Tech-
nology in 2013 and the Ph.D. degree in computer
science from The University of Hong Kong in 2017.
She is currently an Associate Professor with the
School of Computer Science and Engineering, Sun
Yat-sen University. Before joining SYSU, she was
a Post-Doctoral Researcher with the Department
of Electrical and Computer Engineering, Carnegie
Mellon University. She is broadly interested in op-

timization and algorithm design for networked systems, including cloud and
edge computing networks, NFV systems, and distributed machine learning
systems.

Sangtae Ha (Senior Member, IEEE) is an Associate
Professor in the Department of Computer Science
at the University of Colorado Boulder. He received
his Ph.D. in Computer Science from North Carolina
State University and was an Associate Research
Scholar at Princeton University from 2010 to 2013.
He received ACM MobiSys Best Paper Awards in
2019 and 2021 and the INFORMS ISS Design
Science Award in 2014.

16

Carlee Joe-Wong (Senior Member, IEEE) is the
Robert E. Doherty Associate Professor of Electri-
cal and Computer Engineering at Carnegie Mellon
University. She received her A.B. degree (magna
cum laude) in Mathematics, and M.A. and Ph.D.
degrees in Applied and Computational Mathematics,
from Princeton University in 2011, 2013, and 2016,
respectively. Carlee’s research is in optimizing net-
worked systems, particularly on applying machine
learning and pricing to resource allocation in data
and computing networks. From 2013 to 2014, she

was the Director of Advanced Research at DataMi, a startup she co-founded
from her Ph.D. research on mobile data pricing. Her research has received
several awards, including the NSF CAREER Award in 2018, the ARO Young
Investigator Award in 2019, and several best paper and poster awards.

