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Abstract—Federated learning allows distributed clients to train
a shared machine learning model while preserving user privacy.
In this framework, an operator recruits user devices (i.e., clients)
to occasionally perform local iterations of the learning algorithm
on their data. We propose the first work to theoretically analyze
the resulting performance tradeoffs in deciding which clients to
recruit for federated learning, complementing other works on
the selection of recruited clients in each iteration. Specifically, we
define and optimize the tradeoffs between both accuracy (training
and testing) and efficiency (completion time and cost) metrics. We
provide efficient solutions to this NP-Hard optimization problem,
and verify the value of client recruitment in experiments on
synthetic and real-world data. The results of this work can serve
as guidelines for the real-world deployment of federated learning
and an initial investigation of the client recruitment problem.

I. INTRODUCTION

Emerging machine learning techniques have achieved great
success in creating value from big data. Much of this data is
generated by increasingly pervasive mobile devices. These de-
vices, e.g., smart phones, are generally equipped with powerful
sensors and considerable storage space, making them appeal-
ing sources of training data for machine learning. Traditional
learning deployments assume all data is stored in a central
location (e.g., in a single datacenter) where it can be accessed
as needed for training a model. User data is then fully exposed
to the operator of the model training. In practice, however,
the private nature and the potential volume of user data from
mobile devices obstruct its centralized storage and processing,
making it hard to utilize these isolated knowledge bases.

The recently proposed federated learning framework allows
users to contribute the power of their data to train machine
learning models without sharing any raw records. However,
ensuring the good performance of federated learning requires
overcoming additional challenges that do not present in cen-
tralized learning. Specifically, the challenges originate in the
heterogeneous distributions of data at different users (statistical
challenge), and in the complexity of the edge computing
system (system challenge) [9]. Much recent work aims to
address them by optimizing the learning algorithm given a
set of participating clients, i.e., clients that use their data to
contribute model updates to the training process. However,
these works neglect a complementary question: Before running
the federated learning algorithm, how should the operator
recruit participating clients so as to optimize the performance
of its federated learning algorithm? In this work, we show that
a good client recruitment is essential to overcoming federated

learning’s statistical and system challenges, complementing
algorithmic innovations like carefully selecting or scheduling
model updates from a given set of clients.

Client recruitment formalizes the relationship between the
two market players in typical commercial applications of
federated learning: the operators and the users. Operators are
typically companies who hope to create or improve their AI
products utilizing their users’ data. For example, Google has
utilized data from Android users to train a query suggestion
model for their keyboard application [13]. Federated learning
operators are responsible for setting up a coordinator that col-
lects iterative updates from the participating clients. However,
most federated learning algorithms require upfront commit-
ments from users to compute local updates, which may con-
sume limited battery, and send them to the coordinator, which
may reveal private information, to the training on demand.
Such upfront commitments are generally required to ensure
convergence of the training algorithm [5]. To compensate for
these commitments, recruited users may need incentives from
the operator to participate in the training, as proposed in [2]
to compensate privacy losses. Such compensation, however,
introduces a new challenge not commonly considered in
federated learning: limiting the recruitment cost.

We define client recruitment as the preliminary step of
federated learning, in which the coordinator determines the set
of candidate clients with which it will train a model. When the
recruitment is finalized, we will have determined the quality
and quantity of the training data, the number and types of local
devices, and the associated cost of compensating users. A good
client recruitment is fundamental to the successful execution of
federated learning and complements the more commonly con-
sidered client selection [7], in which the coordinator chooses
which of the recruited clients will be asked to provide updates
in each training iteration. Since federated learning requires
upfront client commitments as discussed, recruiting clients is
necessary to ensure the success of subsequent client selection.
Indeed, careful recruitment will reduce the number of clients
required to make training commitments (by almost 5x in our
experiments), improving federated learning’s overall efficiency
and impact on user privacy. However, client recruitment raises
new challenges compared to client selection: unlike client se-
lection algorithms that utilize information revealed during the
training, we must base recruitment decisions on information
known before training begins, which requires more detailed
statistical analysis of the anticipated learning accuracy. Com-



plicating this problem further, client recruitment additionally
decides the model’s generalizability and representativeness,
which client selection cannot control.

The contributions of this paper are: 1) We construct a
comprehensive system model to quantify the quality measures
of federated learning, including not only the training loss, but
also the model’s generalizability, the reliability and completion
time of training, and the operating expense (Section IV); 2) We
formulate an optimization framework to capture the complex
tradeoffs in client recruitment (Section V); 3) We introduce
approximation methods for our quality metrics that can be
computed in practice even when clients’ data distributions are
unknown (Section V-A); 4) We exploit the structure of this
NP-hard optimization problem to provide a provably optimal,
tractable solution (Section VI); and finally, 5) We demonstrate
our work’s practical feasibility by learning models with higher
accuracy and fewer clients compared to heuristic recruitment
methods, on synthetic and real datasets (Section VII).

II. RELATED WORKS

Federated learning was first introduced with the FedAvg
algorithm [5]. Many experiments since then have shown that
FedAvg can indeed produce accurate machine learning models
(e.g. [13]). The convergence of FedAvg has been proved for
strongly convex and Lipschitz continuous objectives [3], [11].
These works also prove that the non-IID distribution of local
datasets can greatly obstruct convergence.

Client selection, which studies the scheduling of client
participation in each global round of federated learning, com-
plements client recruitment. E.g., [7] proposes an adaptive
selection algorithm to maximize the number of participating
clients in each round while subject to resource restrictions.
Similar topics are discussed in [12], which assumes clients
follow a specific scheduling policy for global aggregations.
Client recruitment complements these selection policies by
ensuring that a suitable group of clients is available to be
selected in the first place: without a good recruitment, generic
client selection algorithms cannot guarantee the convergence
of federated learning to a globally optimal solution [1]. Client
selection also requires all clients to stay active and ready to
be summoned anytime, even if they are not always selected,
which without a good recruitment process is unrealistic due
to the system challenges to be discussed in Section III.

In practical settings, client recruitment can thus limit the
cost of federated learning since it pre-excludes disqualified
clients before any training steps are taken or incentives of-
fered, while client selection still requires the operator to pay
recruited clients, who have committed to being available for
training even if they are never ultimately selected. The client
recruitment method discussed in this paper is independent of
the remaining training details, and can thus be coupled with
any learning algorithm and selection strategies.

III. FEDERATED LEARNING BACKGROUND

Federated learning trains a single model by attempting to
minimize the model’s empirical risk, i.e., the training loss,

over data from multiple clients. Let U denote the set of K
candidate clients, each with a dataset Dk = {(ui, vi)}i, where
ui, vi are a feature vector and the corresponding label. Let
l(w;u, v) be a loss function with weight vector w and a data
record (u, v). The local empirical risk of client k is:

R̃k(w;Dk) =
1

|Dk|
∑

i
l(w;ui, vi) (1)

The ultimate goal of training is thus to find w that minimizes
the empirical risk over the global dataset Dx = ∪kDk:

min
w
R̃x(w;Dx) =

∑K

k=1

nk
nx
R̃k(w;Dk) (2)

Here nk = |Dk|, and nx =
∑
k nk, representing the total

samples of all recruited clients determined by the recruitment
decision x, which we formally define in Section IV. To min-
imize R̃x, the distributed stochastic gradient descent (SGD)
paradigm is utilized. A central coordinator maintains a global
weight w, and each client maintains a local weight wk. The
training repeats the following 3 steps for t = 1, ..., T .

1) Synchronization: The coordinator broadcasts the latest
global weight wτt to the clients through the network. Clients
then update their local weights wτtk with wτt.

2) Local optimization: Each client k runs SGD in parallel
for τ steps to minimize its local risk R̃k, getting w(t+1)τ

k .
3) Aggregation: The coordinator aggregates clients’ local

weights {w(t+1)τ
k }k by setting the next global weight as their

weighted average: w(t+1)τ =
∑
k
nk

nx
w

(t+1)τ
k .

Client selection chooses which clients perform these steps
in each iteration, while client recruitment chooses the set of
eligible clients Ux. This paper assumes all algorithm parame-
ters are given, including τ and T . Our results are thus robust
to different algorithm settings and complement optimizations
of these parameters. The challenges of federated learning are:

Statistical Challenge: Non-IID datasets. Unlike in the data
center where data is assumed to be identically and indepen-
dently distributed among workers, clients’ data distributions
in federated learning may well be non-IID. Thus, we suppose
that the samples in every local dataset Dk are independently
drawn from a distinct distribution Pk. Non-IID data can greatly
decelerate the training. The training loss can be bounded by
a monotonically increasing function of the average difference
in local and global distributions |P̃k − P̃x| [11]:

training loss ∝
∑

k

nk
nx
|P̃k − P̃x| (3)

System Challenge: Stragglers and failures. User devices
have relatively constrained computation resources (e.g. CPU,
memory), which furthermore must be shared among many
apps. These make stragglers (devices that take a long time
to run local iterations) and even occasional device failures,
e.g., due to lost power or network connectivity, more likely to
appear in federated learning. These must be treated carefully
to ensure the success of the learning algorithm.

Due to space limit, in this paper our analysis is largely
based on the vanilla FedAvg algorithm. Incorporating client re-
cruitment with other variant algorithms such as asynchronous



federated learning, model personalization, and dynamic client
selection will be an interesting future research direction.

IV. SYSTEM MODELING

Formally speaking, given a list of candidate clients U =
{uk}k, the goal of client recruitment is to choose the optimal
subset of clients Ux ⊆ U that will run the learning algorithm to
optimize the overall performance of federated learning. In this
section, we first model the local/global/population data dis-
tributions, which we then use to propose formal performance
metrics for both the learning accuracy and the efficiency.

A. Data Distributions
Since federated learning trains one model for all clients,

we assume all data is generated in an IID manner from a
population distribution P . On the other hand, each client’s data
individually forms a local distribution Pk, which can differ
from other local distributions and from P . When we compare
two local datasets, we assume the data is not identically dis-
tributed between them. In contrast, when we discuss the union
of all local datasets, we treat each sample as IID distributed in
P . E.g., suppose we are training a model to predict temperature
from features such as the amount of sunlight and rainfall. Then
P represents the joint distribution of world-wide temperature
with these features. Since a client can only collect temperature
data in a small region, its local distribution Pk only reflects the
regional climate characteristics. As a result, clients in different
regions possess divergent local distributions. In the meanwhile,
all these data points are essentially generated within the same
Earth climate system. Thus when forged together, they do
follow the world-wide distribution P in an IID manner.

A local dataset Dk may not describe its local distribution
Pk well if insufficient data points were collected. In prac-
tice, the operator estimates Pk by indirectly evaluating its
empirical distribution P̃k, which converges to the real Pk
when Dk grows larger. Similarly, we define the global dataset
Dx = ∪kDk as the union of all recruited datasets. Data
in Dx forms the global empirical distribution P̃x. Likewise,
P̃x is a weighted average of local empirical distributions:
P̃x =

∑
k
nk

nx
P̃k. Since all data in Dx is independently drawn

from P , P̃x can be regarded as an empirical estimation of P
when a reasonably large number of clients are recruited. In
the climate data example, if we have recruited clients from all
climatic zones in the world, the union of this data P̃x becomes
a good representative of the whole Earth climate system P .

We suppose the operator can estimate P with a small
benchmark dataset (e.g., as in [10]) D̃ ∼ P , and we denote its
empirical distribution by P̃ . Since D̃ is small in size, it cannot
be directly used for training. Instead, this educated guess of
the population allows the operator to gauge the clients’ quality
and representativeness. E.g., the operator may estimate the
distribution of rainfall from historical climate data. We show
how to estimate data quality with P̃ in Sections V and VII.

B. Performance Metrics
We will consider two categories of performance measures.

The first category is the accuracy of the output model for

the distribution P , which includes not only the training loss,
but also the model’s generalizability and its representativeness.
The second measures the training efficiency, which includes
the time to complete the training, and the cost incurred.

Reduce training loss with high-quality data: A dataset
Dk is considered of good quality if its distribution P̃k re-
sembles the population P . From (3), if P̃x resembles P (see
“representativeness” below), the quality of the local datasets
directly determines the training loss. A dataset Dk with a small
distribution divergence |P̃k − P| yields small training loss.

Reduce generalization error with more data: Given a
loss function l and dataset D, the generalization error |R̃−R|
is the divergence between the empirical risk R̃(w;D) =
(
∑
l(w;u, v))/|D| and the real risk R(w) = EP [l] =∫

l(w;u, v)dP . While the training loss gauges the model’s
performance on the training data, the generalization error
reflects its accuracy when applied to new samples drawn from
the recruited distributions. If a client has insufficient data,
its local empirical distribution P̃k may poorly approximate
Pk, which implies a large generalization error. Existing works
generally omit the generalization error as they take the training
data as given. For us, however, client recruitment determines
the size of the dataset, affecting the generalization error.

Choose for population representativeness: For the trained
model to be applicable to unrecruited datasets, the recruited
clients, when forged together, must be representative of the
population P . Indeed, if the clients do not cover portions of
the population space, we will perform poorly in those areas.
E.g., including polar region data complicates the training of
models that predict worldwide temperatures, but failing to do
so can degrade the model’s performance in this region.

Control the completion time: Federated learning is useless
if the training process does not complete in reasonable time.
We define the completion time as the expected time for the
coordinator to finish all T rounds of aggregations.

Control the cost: Since the size of an individual local
dataset is usually small, a typical execution of federated
learning may need thousands of recruited clients. The operator
should thus make sure the resulting expense is affordable.

V. PROBLEM FORMULATION

We formulate client recruitment as the following optimiza-
tion problem: Given a set of candidate clients U = {Uk}Kk=1,
let x ∈ {0, 1}K be a binary vector denoting the recruitment
decision for each client. The operator picks an optimal subset
Ux = {Uj |xj = 1} to minimize an objective function f ,
subject to a given maximum completion time It and cost Ic.

Problem 1. Client Recruitment

min
x∈{0,1}K

f(x) = γtlftl(x) + γgefge(x) + γrpfrp(x)

s.t. gt(x) ≤ It, gc(x) ≤ Ic
Here f consists of 3 terms that determine the accuracy of the

trained model: ftl, fge, frp, which respectively upper bound
the training loss, the average generalizability, and the rep-
resentativeness. f(x) determines the goodness of the trained



model when applied to existing or future data points generated
by both recruited and unrecruited clients. The coefficients
γtl, γge, γrp determine the relative importance of these terms,
and gt, gc are respectively the completion time and cost.

A. Quantifying Accuracy Metrics
We first consider the training loss. From (3), the training

loss is determined by the divergence between local and global
empirical distributions

∑
k
nk

n |P̃k − P̃x|. However, since the
global distribution can only be determined after the recruit-
ment process, it is hard to optimize the divergence directly. We
thus use the fact that P̃x resembles P (Lemma 2) to define:

ftl(x) =
∑

k

xknk
nx
|P̃k − P̃| (4)

Sharing this metric preserves user privacy since it does not
actually require the individual empirical distributions P̃k’s.
Instead, the required information from the clients |P̃k − P̃|
only encodes the distance of local distributions to the pop-
ulation. Below we provide tractable methods and formula to
approximate ftl, without the need to know P̃k or Pk. We
verify the effectiveness of these methods in Section VII.
• Counting classes: Consider a classification problem with L

classes, and suppose P̃k and P̃ have densities p̃k and p̃.
We can write |P̃k − P̃| =

∫
|p̃k(u, v) − p̃(u, v)|dudv =∑

i∈[L]

∫
|p̃k(u|v)p̃k(v = i) − p̃(u|v)p̃(v = i)|du. Assume

p̃k(u|v) = p̃(u|v), i.e., local features have the same distri-
bution as the population given the label. Thus,

∫
|p̃k− p̃| ∝∑

i∈[L] |p̃k(v = i) − p̃(v = i)|, where p̃ is known a
prior. Denoting by Cki the number of data points with label
i in Dk, p̃k(v = i) = Cki /

∑L
i=1 C

k
i . Thus, the whole∑

|p̃k(v = i)− p̃(v = i)| can be easily computed by simply
counting the number of labels each client sees. Estimating
P̃ from D̃ entails the same simple counting process.

• Gaussian graphic model approximation: For general super-
vised learning with continuous labels, we can formulate
the features and the label as a Gaussian graphic model. A
local empirical distribution is then fully specified by the
mean and covariance (µ̃k, Σ̃k). The quality measure then
becomes the divergence between two Gaussian distributions,
which can be quantified by the Kullback–Leibler divergence:
|P̃k − P̃| ∝ DKL

(
N (µ̃k, Σ̃k),N (µ̃, Σ̃)

)
. Estimating P̃

from D̃ entails computing µ̃, Σ̃ and inferring the graph
connectivity (e.g. from the covariance), which is tractable.
Next, we model the average generalizability. Since the

training objective of federated learning R̃x is an average of lo-
cal empirical risks as in (2), we similarly quantify the average
generalization error of local datasets by

∑
k
xknk

nx
|R̃k − Rk|.

To formulate it, we rely on Lemma 1 as follows:

Lemma 1. There exists a class of convex learning problems
(e.g. linear regression), for which we can obtain the following
generalization error bound for all clients k:

|R̃k −Rk| = O
(
n−0.5
k

)
(5)

For example, [8] proves this bound for the linear regression
model. A tighter convergence bound taking the form O(n−βk )

with β > 0.5 is also possible using more sophisticated statis-
tical tools. For simplification and to accommodate non-convex
models that may have looser risk generalization bounds, this
paper assumes a relatively big β = 0.5. However, our analysis
can be easily extended to any β < 1. We thus define:

fge(x) =
∑

k

xknk
nx

n−0.5
k (6)

We then model the representativeness. To make sure the
chosen distributions can represent basic characteristics of the
population distribution, we seek to minimize the divergence
between P̃x and P . As is discussed in Section IV-A where
we assume P̃x is an empirical distribution of P , and using the
central limit theorem, we have the following uniform bound:

Lemma 2. P̃x −P converges in distribution to the Gaussian
distribution with 0 mean at the rate of O(n−0.5

x ).

Therefore, statistically, when nx grows larger, P̃x becomes
a more accurate representative of P . We thus define:

frp(x) = n−0.5
x (7)

Combining (4), (6), and (7), the objective f can be expressed
as in (8). Since the coefficient γrp is a positive constant
independent of x, we normalize it to 1. The sk value here is
a weighted sum of the client’s quality representation |P̃k−P̃|
and quantity representation n−0.5

k . It thus enables us to quan-
tify the quality-quantity tradeoff when choosing user datasets.

f(x) = γrp

(∑
xknksk
nx

+ n−0.5
x

)
sk =

γtl
γrp
|P̃k − P̃|+

γge
γrp

n−0.5
k

(8)

B. Quantifying System Metrics

Now we analyze the completion time. We assume for
each round of the training, the coordinator will wait up to
a predetermined duration E0. The global weight will then be
calculated based on the weights received before the deadline.

We model the client failure as a Markov chain. An active
client crashes with probability qf , and a failed client recovers
with probability qr. Here qr, qf > 0. Suppose there are m
recruited clients. Letting At be the number of active clients at
iteration t, which has the following properties.

Proposition 1. At is an ergodic Markov chain. In the steady
state, the probability that there are i active clients equals

πi
∆
= P(A∞ = i) =

(
m
i

)
(qr/qf )i

(1 + qr/qf )m
(9)

Proof. It can be easily verified that At is homogeneous,
positive recurrent and aperiodic, thus it’s ergodic. To get (9),
we use the condition that

∑
i πi = 1, and πiPi0 = π0P0i for

all i, where Pij is the transition probability.

Since ergodic Markov chains converge exponentially fast,
we only consider the steady state. The probability that no
clients fail is thus ( qr

qf+qr
)m. To model the system heterogene-

ity of clients, we partition clients into N groups according to



their devices, network qualities, battery levels etc. Suppose
each group has mz clients for z = 1, ..., N , and all the clients
inside a group z have the same failure rate qzf and recovery
rate qzr . Since clients are running independently, the probability
that all clients in all groups are active is then

∏N
z=1(

qzr
qzf+qzr

)mz .
If a client k in group z is active, we model its per-

iteration runtime as a random variable Y zk ∼ exp(λz). The
expected full iteration runtime when all clients are active is:
Γ(m1, ...mN ) = E[min{maxz maxk Y

z
k , E0}]. The comple-

tion time is as follows, where mz depends on the recruitment.

gt(x) = gt(m1, ...,mN )

=T

(
Γ

N∏
z=1

(
qzr

qzf + qzr
)mz + E0(1−

N∏
z=1

(
qzr

qzf + qzr
)mz )

)
(10)

Intuitively, the completion time increases when we recruit
more clients. This is summarized in Proposition 2.

Proposition 2. The completion time gt(m1, ...mN ) increases
when any mz, z = 1, ..., N increases.

Proof. It can be shown ∂Γ
∂mz

> 0, thus ∂gt
∂mz

> 0 ∀mz .

Finally, we consider the cost. The cost depends on specific
payment mechanisms (e.g. [2]) adopted. Here we assume a
generic case where each client k has an exogenous price ck:

gc(x) =
∑K

k
xkck ≤ Ic (11)

VI. THE OPTIMAL CLIENT RECRUITMENT

From Section V, each client Uk ∈ U , k = 1, ..,K can be
characterized by a tuple ( ˜|Pk−P̃|, nk,Z(k), ck), representing
respectively the distribution divergence, the local dataset size,
the group number, and the ask price. Clients in a group z
have failure rate qzf , recovery rate qzr and processing rate
λz . As discussed above, the client can readily compute this
information and send it to the operator without significant
privacy loss at the start of the recruitment.

Combining (8), (10), and (11), Problem 1 becomes:

Problem 2. Client Recruitment

min
x∈{0,1}K

f(x) =
1

nx

∑
k

xknksk + n−0.5
x

s.t. gt(x) = (Γ− E0)

N∏
z=1

(
qzr

qzf + qzr

)mz

+ E0 ≤
It
T

gc(x) =
∑K

k
xkck ≤ Ic

Proposition 3. Problem 2 is NP-Hard.

Proof. Let It = ∞, sk = 0, then min f ⇔ maxnx. We thus
reduce Problem 2 to the NP-Hard Knapsack problem.

A. Unconstrained Optimization

We first consider the unconstrained version of Problem 2,
i.e., when all the limits It, Ic approach infinity. This is useful
when the operator has gained complete right of usage of the
clients (so that they can be used for free without time limit).

This unconstrained optimization can be solved in polynomial
time using the following proposition:

Proposition 4. (Unconstrained Client Recruitment) Suppose
clients are sorted by their s values, i.e. s1 ≤ ... ≤ sK . The
solution to problem Problem 2 without constraints must be
of the form: x∗ = (1, 1, ..., 1, 0, 0, ...0), i.e., if a client j is
recruited, all the clients k < j must also be recruited.

Proposition 4 indicates that recruiting more clients does
not always help improve the accuracy. Intuitively, when more
client participate, the overall dataset grows larger and the
representativeness should thus improve. However, a chosen
dataset Dk itself may be small in size, making its data biased
from Pk. This will enlarge its generalization error. Worse
still, if Pk is also biased from the population P , the training
loss will increase as well due to the increased divergences in
local distributions. Based on the proposition, we can solve the
unconstrained client recruitment problem by simply sorting the
devices by their s values, then comparing the objective values
for all the K possible choices of x∗. The time complexity is
dominated by the sorting step, which is O(K logK).

To prove the proposition, we use the following lemma.

Lemma 3. Consider two recruitments x0 and xj that contain
the same set of clients, except that the latter includes client
j while the former does not. If f(xj) ≤ f(x0), then f(xj)
decreases as we increase nj , the number of data points in j.

Proof. For convenience we rewrite f(xj) = f j(nj). Note that

f j(nj) =

∑
k x

0
knksk + njsj∑
k x

0
knk + nj

+
(∑

k

x0
knk + nj

)−0.5
(12)

df j

dnj
=

∑
k x

0
knk(sj − sk)

(
∑
k x

0
knk + nj)2

− 0.5

(
∑
k x

0
knk + nj)1.5

(13)

As nj increases, (13) is either i) strictly negative, or ii)
first positive then negative. Thus, (12) will either i) strictly
decrease, or ii) first increase then decrease. Using the condition
f j(nj) = f(xj) ≤ f(x0) = f j(0), the value of nj must fall
into the decreasing interval. Therefore, further increasing nj
will only cause the objective f to decrease.

We then prove Proposition 4:

Proof. (Proposition 4) We prove by contradiction. Assume the
clients are already sorted by the s value. Suppose the optimal
recruitment x∗ = xj , where client j is the last recruited client,
and there exists at least one unrecruited client Ui, such that
i < j, xji = 0. Denote by f(x|U(s, n)) the objective value for
recruiting clients in x, plus an additional client U who has
parameters s and n. Let x0 be a copy of xj , except that client
j is not recruited. We thus have f(x∗) = f(xj) ≤ f(x0), and:

f(xj |U(si, ni)) ≤ f(xj |U(sj , ni))

=f(x0|U(sj , ni + nj)) < f(x0|U(sj , nj)) = f(xj)
(14)

The first inequality is due to the condition si ≤ sj . The sec-
ond follows from Lemma 3 with the fact that f(xj) ≤ f(x0).



Therefore, adding the unchosen client i to the recruitment xj

results in a smaller objective value f(xj |U(si, ni)), contra-
dicting that x∗ = xj .

B. Constrained Optimization

As we would expect from our NP-hardness result (Propo-
sition 3), Proposition 4 does not hold when incorporating the
constraints. To solve the constrained optimization Problem 2,
we first relax the completion time constraint gt ≤ It by N
linear constraints Gt(m1, ...,mN ) = {mz ≤Mz

t }Nz=1 on mz .

Mz
t = min

{∑K

k=1
1(Z(k) = z),

argmaxmz
{gt(0, ..., 0,mz, 0, ..., 0) ≤ It}

} (15)

According to Proposition 2, if (m1, ...,mN ) satisfies the
original completion time constraint gt(m1, ...mN ) ≤ It, it
also satisfies the relaxed constraint Gt(m1, ...,mN ). We then
construct a new optimization Problem 3. Here we define
s′k = nksk, Is =

∑K
k s
′
k. Problem 3 maximizes a linear

objective, subject to N + 2 linear constraints. This is a multi-
dimensional Knapsack problem, and can be solved by the
dynamic programming (DP) algorithm [4].

Problem 3. Data Quantity Maximization

max
x∈{0,1}K

nx =
∑

k
xknk

s.t. mz =
∑

k
1(Z(k) = z)xk ≤Mz

t , z = 1, ..., N

gc(x) =
∑

k
xkck ≤ Ic, gs(x) =

∑
k
xks
′
k ≤ Is

As in conventional DP procedures, we construct a N + 3
dimensional table φ(k,m1, ...,mN , c, s) to keep track of the
algorithm states. φ(k,m1, ...,mN , c, s) represents the maxi-
mum value of nx we can get, under the conditions that: 1)
we only pick from the first k clients (the order of clients
does not matter); 2) we recruit at most mz clients for each
group z; 3) the cost is less than or equal to c; and 4) the
sum

∑
s′k ≤ s. Conditions 2) to 4) correspond to the three

constraints in Problem 3. The DP algorithm gradually incre-
ments the recruitment boundary k. For each k, the following
recursive relation guarantees the consistency of φ:

φ(k,m1, ...,mN , c, s) = max{φ(k − 1, ...,mZ(k) − 1,

..., c− ck, s− s′k) + nk, φ(k − 1,m1, ...,mN , c, s)}
(16)

In practice, c and s may be float numbers, but we can easily
normalize them to integers. The correctness of the algorithm
is obvious by induction. The time complexity is bounded by
the size of the DP table, which is O(KIcIs

∏N
z=1M

z
t ).

Now we go back to the original Problem 2. We can observe
that when the value of s is fixed, minimizing the objective f
is equivalent to maximizing the number of samples nx. Since
the φ table records a one to one mapping of s to the maximum
nx, we can utilize φ to reconstruct the original objective f .

Formally speaking, given (m1, ...,mN , s), we define

f ′ =
s

φ(K,m1, ...,mN , Ic, s)

+ (φ(K,m1, ...,mN , Ic, s))
−0.5

(17)

Algorithm 1 DP and Revisit. Solving Problem 2.

procedure OPTIMIZE
φ← (solve Problem 3 with DP), f∗ ←∞
if φ(K,M t

1, ...,M
t
N , Ic, Is) ≤ 0 then

// Infeasible
return ∞

for s = 0 to Is do
for m1 = 0 to M1

t do
......

for mN = 0 to MN
t do

if gt(m1, ...,mN ) ≤ It then

f∗ ← min(f∗, Equation (17))

return f∗

Intuitively, for a solver x∗ of Problem 2, if its corresponding
s∗ and m∗z are recorded during the DP iteration, then f ′ should
be “related” to the optimal objective value f(x∗). We thus
propose Algorithm 1 to solve the constrained client recruit-
ment. Its correctness is shown below. The time complexity is
dominated by the DP step as O(KIcIs

∏N
z=1M

z
t ).

Proposition 5. Algorithm 1 solves Problem 2.

Proof. Let x∗ be a solver of Problem 2, with n∗x =∑
xknk, s

∗ =
∑
x∗knksk,m

∗
z =

∑
1(Z(k) = z)x∗k, then

φ(K,m∗1, ...,m
∗
N , Ic, s

∗) = n∗x (18)

Otherwise, if the left hand side is smaller, the DP algo-
rithm yields a smaller objective n0

x for some recruitment x0.
Both x0 and x∗ satisfy the four conditions in the defini-
tion of φ at (K,m∗1, ...,m

∗
N , Ic, s

∗). But replacing x0 with
x∗ yields a greater objective n∗x > n0

x. This contradicts
the correctness of DP. In addition, if the left hand side is
greater, the DP algorithm finds a recruitment x0 that has
s0 =

∑
x0
knksk ≤ s∗, n0

x =
∑
x0
knk > n∗, and satisfies

all the constraints in Problem 2. Thus, by recruiting x0, we
have f(x0) = s0

n0
x

+ (n0
x)−0.5 < s∗

n∗
x

+ (n∗x)−0.5 = f(x∗). This
shows x0 is a better recruitment than x∗, which contradicts
the assumption that x∗ is an optimal. Thus, since Algorithm
1 iterates through all the feasible elements, we must at some
point visit (K,m∗1, ...,m

∗
N , Ic, s

∗).

VII. PERFORMANCE EVALUATION

We finally evaluate the performance of our client recruit-
ment strategy with a classification problem and a regression
problem. We set the aggregation deadline E0 = 30. Unless
otherwise noted, we assume clients have the default specifica-
tion: Group I = (q1

f = 0.001, q1
r = 0.6, λ1 = 0.1). If a client

fails upon the aggregation, we replace its wtτk with the previous
global weight wtτ . Throughout this section, we uniformly at
random set the cost of each client in the range of 1 to 9. We
consider three baseline recruitment strategies:
• All participation: recruiting all clients. Comparisons with

this baseline show the value of intelligent client recruitment.
• Greedy recruiting by quantity: greedily choosing clients

with the most data samples until any constraint is active.



• Greedy recruiting by quality: greedily choosing clients
with best quality until any constraint is active.
In the case of unconstrained optimization, we force the

greedy baselines to choose the same number of clients as the
optimal recruitment. By comparing to the latter two baselines,
we present the value of considering both quantity and quality
of the data. Since we take the training parameters as fixed
as discussed in Section III, we will not fine-tune them in the
simulation. We pick these values such that all model training
in all experiments are fully converged. We then only need to
determine the relative weights of the training accuracy (γtl)
and generalizability (γge). In practice, they can be tuned by
optimizing the unconstrained recruitment through grid search.

A. Image Classification

We first consider the MNIST digit recognition problem. We
use the same 2NN model as [5]. All clients are equipped
with the Adam optimizer and use the same set of training
parameters. We use a batch size of 10 for local iterations. The
initial learning rate is set to 3e-4, and decays by half every 200
steps. The local epochs τ = 30 and global epochs T = 50.

Dataset and clients. To construct the non-IID distributions
of local datasets, we assign each client a set of class labels
(digits). Clients then randomly sample training images corre-
sponding to the assigned labels. We limit each client to sample
10 to 40 images. For j from 1 to 10, we assign j label(s) to
30 new clients, resulting in total 300 candidate clients. The
default MNIST test dataset is used.

Approximation of divergence. We use the “counting
classes” method described in Section V-A to approximate the
probability divergence. Here we have L = 10 classes, thus∫
|p̃k − p̃| =

∑9
i=0 |p̃k(v = i)− p̃(v = i)|. For the population

distribution, all classes appear with the same probability, so
p̃(v = i) ≡ 0.1. If a client k has j labels, p̃k(v = i) = 1/j
if label i was assigned, or p̃k(v = i) = 0 otherwise. Thus,∑
|p̃k(v = i) − p̃(v = i)| = j( 1

j −
1
10 ) + (1 − j) 1

10 , which
clients can easily compute knowing only the number of labels
that they see. By tuning the unconstrained recruitment, we
choose γtl = 0.015, γge = 1 for all experiments.

Unconstrained recruitment. The left plot of Figure 1
shows the convergence progress of the four recruitment strate-
gies. 64 clients are recruited by the optimal strategy. The op-
timal recruitment converges the fastest and obtains the highest
test accuracy on the fully trained models. Notably, the optimal
strategy can increase the test accuracy by 5.0% compared to
simply recruiting all clients, which is a big improvement for
most classification problems. Figure 2 shows the distribution
of recruited clients w.r.t. the number of classes assigned
to them. Compared to the greedy-by-quantity strategy, the
optimal recruitment chooses fewer low-quality datasets, but
more high-quality ones. Also, most clients recruited by the
optimal strategy contain more than 30 samples, but the greedy-
by-quality recruitment includes lots of small-sized datasets.

Constrained recruitment. The left plot of Figure 3 shows
the change of test accuracy when we increase the budget Ic
from 20 to 60 and take It to be infinity. The optimal strategy

Fig. 1. Convergence curves for the unconstrained recruitments. Left: Classfi-
cation problem. The X axis is global epochs, and the Y axis is test accuracy.
The optimal strategy’s model yields higher test accuracy than other baselines
after 10 epochs. Right: Regression problem. The X axis is global epochs, and
the Y axis is the normalized MSE on the test dataset. The untrained model has
MSE=1, and the closed-form solution has MSE=0. The optimal recruitment
can obtain lower MSE than the closed-form solution.

Fig. 2. The distribution of recruited clients w.r.t. the number of assigned
classes (X axes). Left plot: counts of recruited clients. Right plot: sizes of
local datasets for recruited clients, where each point represents a client.

obtains the highest accuracy for all the budgets Ic. In the
right plot of Figure 3 we drop the Ic constraints and vary the
completion time constraint It from 15T to 25T . Apart from
Group I, we also create a relatively lower-end specification
Group II = (q2

f = 0.01, q2
r = 0.5, λ2 = 0.05). We randomly

pick one third of the clients and assign them to Group II. When
It/T is down to around half of E0 = 30, only 1 or 2 clients
are recruited, so the models do not appear to be trained at all.
The optimal strategy exhibits the best performance when It is
reasonably large, improving the accuracy by 10% to 20%.

B. Climate Data Regression

We now evaluate client recruitment with a 5-dimensional
linear regression model, simulating a climate prediction task.
All clients use the Adam optimizer with the initial learning
rate set to 1e-3, and decay by 0.8 every 200 steps. We set the
batch size as 20, τ = 10, and T = 40.

Dataset and clients. We use the U.S. Historical Clima-
tology Network (HCN) dataset [6], which contains climate
records for climate stations in the 48 contiguous United States.
The local datasets of these stations are by their nature non-IID,
allowing us to evaluate how well our recruitment algorithm
performs on realistic data distributions. For simplicity, we
only use the data on the first day of December from 1960
to 2019, and we randomly pick 1-3 stations from each state,
resulting in 117 stations. Each record contains 5 features:
station latitude, station longitude, lowest temperature of the
day, highest temperature of the day, and precipitation of the
day. Our goal is to predict the snowfall of the day. To reflect



Fig. 3. Left: Test accuracy when varying the budget Ic from 20 to 60 (i.e.
4x to 12x of the expected cost per client). Right: Test accuracy when varying
the per round completion time It/T from 15 to 25 (i.e. 1/2 to 5/6 of E0).
The optimal strategy consistently has the highest accuracy.

the uneven sizes of local datasets, we randomly drop some
data so that each client has 30 to 69 samples. We test the
learned models on a holdout dataset, which is generated by
randomly picking 2 unused stations from each state.

Approximation of divergence. We use the second approx-
imation method described in Section V-A by assuming the
5 features and the snowfall form a fully connected Gaussian
graphic model N (µ,Σ). Thus, each local distribution can be
parameterized by the sample mean and the sample covari-
ance N (µ̃k, Σ̃k). Similarly, we approximate the population
distribution N (µ̃, Σ̃) utilizing the unused (neither training nor
testing) data. Thus, we only need to compute the divergence
between the local Gaussian N (µ̃k, Σ̃k) and population Gaus-
sian N (µ̃, Σ̃). We normalize the divergences to the range of
0 and 10, and we choose the coefficients γtl = 0.01, γge = 1.

Unconstrained recruitment. The right plot in Figure 1
shows the mean-squared error (MSE) on the holdout dataset,
which includes 1-2 stations from each state, for different
strategies. 37 clients are chosen by the optimal recruitment,
allowing us to drop most clients as in Section 5.1. Since
linear regression is a convex problem, we can easily calculate
the closed-form optimal model over the full dataset. For
ease of comparison, we normalize the MSE values so that
the untrained model has MSE equal 1, and the closed-form
solution has MSE equal 0. As in Figure 1, the optimal recruit-
ment yields a lower MSE even than the closed-form solution,
which illustrates the value of incorporating generalizability and
representativeness metrics. Compared to other strategies, the
optimal recruitment can decrease the MSE up to 10%.

Similar to Figure 2, Figure 4 shows the distribution of
recruited clients. Here we divide the clients based on their
local-population distribution divergences into 10 bins.

Constrained recruitment. Figure 5 shows the change of
MSE when varying the cost and time limits, on the same
setup as in Section VII-A. The optimal recruitment obtains
the lowest MSE and much smaller variance in most cases.

VIII. CONCLUSION

This paper studies the client recruitment problem in fed-
erated learning. We first introduce and quantify five perfor-
mance metrics that cover both the model’s accuracy (training
loss, generalization error, representativeness) and the training
efficiency (completion time, cost). We then formulate the

Fig. 4. The distribution (left: client count; right: dataset size per client) of
recruited clients w.r.t. the distribution divergence. X axes are quantile ranges.
Left bins correspond to small divergence (i.e. good quality).

Fig. 5. Left: Test MSE when varying the budget Ic from 20 to 60. Right: Test
MSE when varying It/T from 15 to 25. The optimal strategy consistently
has the lowest error.

client recruitment as an NP-Hard optimization problem, and
provide an optimal solution algorithm. Finally, we verify our
theoretical results with experiments using both synthetic and
real-world data. Our results show that recruiting more clients
does not always improve the model, and intelligent client
recruitment can greatly improve the accuracy of the trained
model in constrained execution environments.
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