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Abstract— Many companies are increasingly making machine
learning integral to their businesses. To defray the resulting
compute costs, much work has proposed using preemptible cloud
instances, a discount tier of virtual machine rentals that may be
interrupted at the cloud provider’s discretion, to run machine
learning jobs. However, processing datastreams on preemptible
instances presents new challenges: processing data as they arrive
may engender bottlenecks when scaling the system to handle
higher throughput, particularly if the instances are frequently
interrupted. Ours is the first work to design, analyze, and
optimize a system that uses a set of datastreams to train a
machine learning model on preemptible instances. Our system,
DOLL, uses queueing and batching to parallelize and scale
SGD (stochastic gradient descent)-based optimizers to large
numbers of workers and datastreams, as well as heterogeneous
data arrival rates across streams. Expected error convergence
guarantees for convex and non-convex loss functions are then
derived for DOLL’s training process. We use this guarantee to
optimize the cost of requisitioning preemptible and on-demand
instances in the face of a performance target and wall-clock
time deadline; this optimization is validated on experiments
demonstrating substantial cost savings with little impact on model
error, compared to on-demand instances.

I. INTRODUCTION

Machine learning (ML) promises to transform many dif-
ferent industries through its use of data to derive predictions
and insights for how systems should be run. By automating
tasks like sensor data fusion [1] or anomaly detection [2],
learning-based systems can drastically reduce the operational
costs of many businesses and users. Such a transformation,
however, relies on ML algorithm implementations’ ability to
process large amounts of data. Most large-scale ML implemen-
tations utilize a distributed training architecture, i.e., the (large)
dataset is spread across multiple servers or virtual machines
(VMs) that iteratively compute local model updates that are
periodically synchronized. Due to the complexity of managing
the resulting computing infrastructure, many companies run
their ML jobs at external cloud providers. However, they
then face a new challenge: cloud resources can be expensive
for large ML jobs with long runtimes. Such expenses can
be significant, particularly for startup companies [3], driving
numerous recent efforts to reduce ML costs [4], [5].

Running ML jobs on preemptible cloud instances is a
popular method to limit their training costs [5]–[7]. Pre-
emptible instances are significantly (sometimes 90%) cheaper

than conventional on-demand instances [8], [9], but may be
interrupted at the cloud provider’s discretion. Most studies of
ML on preemptible VMs, however, assume large pools of data
are available at training time. In practice, training data may
arrive at irregular intervals and models may be trained online
as new data arrives, e.g., when monitoring intrusion events
in computer networks [2], or data from IoT sensors [1] or
healthcare records [10]. If this data is collected frequently
or is high-dimensional, e.g., live video analytics [11] or
updates to hospitals’ patient records, distributing its analysis
across servers may alleviate compute bottlenecks compared to
centralized learning, and updating models as data arrives will
reduce data storage costs. Thus, it is important to understand
how to economically scale ML jobs on incoming datastreams.

Some software frameworks like Apache Kafka [12] are
designed to feed online data arrivals to ML algorithms [13],
[14], but they provide little insight into the costs of running
ML jobs. Running ML on preemptible VMs, for example,
typically requires checkpointing or migration methods to
handle unexpected interruptions [15], [16]. Prior work has
shown that careful provisioning of preemptible VMs can
reduce ML costs while guaranteeing the model convergence
on available pools of data [7]. We extend this idea to ML
on datastreams, which presents new challenges due to the
need to carefully handle data arrivals. We design, analyze,
and optimize DOLL, which to the best of our knowledge is
the first system that provides provable performance guarantees
for Distributed OnLine Learning using preemptible instances.

Research Challenges: An intuitive solution to distributed
ML on streaming data would be to have each ML worker
immediately process a data point as it arrives and synchronize
workers’ models when all VMs finish their gradient com-
putations. This design can cause synchronization delays, as
the worker VMs would need to wait for all VMs to receive
and compute updates on data. Asynchronous methods [17]
eliminate such delays but can increase the training iterations
needed for convergence [18], potentially negating the synchro-
nization delay reduction. Inspired by batching techniques for
general datastream processing [14], we thus propose a batching
and grouping process that limits synchronization delays, while
mimicking traditional mini-batch SGD (stochastic gradient
descent), allowing us to derive convergence guarantees. Our



next challenge is then to ensure that a sufficient number of
VMs are provisioned to process the data: if the data arrives
faster than a VM can compute updates on it, the data queue at
that VM will back up. We must therefore analyze the stability
of our batching, grouping, and model updating process.

Provisioning sufficient VMs should ensure not only queue
stability but also model convergence, which is made more
difficult when we run some VMs on preemptible instances.
Existing system designs for ML jobs on preemptible instances
focus on mitigating training interruptions [7], [15]. In our
setting, such interruptions may also pause data arrivals, which
impedes the rate at which we can compute model updates. To
quantify this effect, we characterize model convergence as a
function of the wall-clock training time, unlike prior works that
focus on the number of training iterations [7]. By doing so, we
can limit the number of workers that use preemptible instead of
on-demand VMs to ensure that preemptions are “rare enough”
such that the training finishes by a given deadline. This anal-
ysis becomes more complex when different VMs experience
different data arrival rates, e.g., due to receiving data from
different sources, and thus generate model updates at different
rates, affecting their ability to run on preemptible VMs. VM
provisioning will also affect the incurred cost, introducing a
cost-convergence tradeoff. Moreover, data arrival rates may be
initially unknown, requiring us to both estimate and optimize
over them when training the model. Our work is the first
to show that we can meet ML convergence guarantees on
preemptible VMs for datastreams.

We give an overview of related work in Section II before
making the following research contributions:

DOLL Design (Section III): We design DOLL, which runs
on multiple VMs in a parameter server architecture to dis-
tributedly train an ML model on datastreams. DOLL batches
arriving data samples at each VM and triggers model updates
once enough batches have accumulated across all VMs, which
limits delays due to model synchronization between updates
and ensures that no single VM has an excessive backlog of
data samples. Once an update is triggered, the VMs compute
updates for each accumulated batch; these updates are then
sent to the parameter server for aggregation.

ML performance analysis (Section III-B): While batching
and grouping mechanisms similar to DOLL’s are used in
industry [13], [19], we are the first to analytically quantify
the rate at which they can compute ML updates. Under mild
assumptions on the (stochastic) data arrival process at each
VM, we derive conditions for the stability of the training
process, i.e., ensuring data samples do not accumulate at each
VM (Proposition 1). We then find a closed-form expression for
the asymptotic number of updates that arrive within a given
time interval (Theorem 1) and the resulting ML convergence
with respect to wall-clock training time (Theorems 2 and 3).

Cost optimization (Section IV): We provision preemptible
VMs so as to minimize the monetary cost of the ML training,
given constraints on model accuracy achieved before a wall-
clock deadline. We find the optimal number of preemptible
VMs when all VMs have the same data arrival rates (Theo-

rem 4) and an efficient algorithm to do so with heterogeneous
data arrivals (Theorem 5), ensuring the “right” degree of
preemption to balance cost and performance. These solutions
enable an adaptive provisioning strategy that estimates VMs’
data arrival rates and availability as the job runs.

Experimental validation (Section V): We implement and
evaluate DOLL with large-scale experiments on Amazon EC2
spot prices. By judiciously optimizing VM preemption, DOLL
achieves 14% to 50% lower cost than standard on-demand
instances. We validate our theoretical cost analysis and show
that DOLL’s benefits are robust to heterogeneous data arrivals.
Our adaptive provisioning mechanism reduces the cost by
another 15% compared to static optimization.

We outline future directions and conclude our work in
Section VI. All proofs are abbreviated to conserve space.

II. RELATED WORK

Distributed online learning: Many recent works have
proposed distributing ML training using a variant of mini-
batch SGD [20], in which workers iteratively compute the
gradients of a given objective function with respect to model
parameters over stochastic samples from each worker. Much
prior work [21] analyzes the convergence of training error in
SGD, e.g., with respect to the wall-clock training time when
workers’ gradient computations have stochastic runtimes [18],
or when the number of workers changes in different iterations,
e.g., when workers run on preemptible instances [7]. In the
federated learning context, when worker data is not i.i.d. (inde-
pendently and identically distributed), algorithmic adjustments
ensure that SGD on interruptible devices converges [22], [23].
In contrast, we analyze ML convergence under stochastic,
online data arrivals that themselves affect the ML update rate.

Learning on online data arrivals may require training time-
varying models [24], or stochastic approximation techniques to
obtain convergence bounds [25], [26]. Many existing works,
however, use SGD-based update methods on streaming data
to achieve faster convergence, e.g., SAG [27], SDCA [28],
SVRG [29], SAGA [30] and recent variants [31]. Indeed,
SGD itself remains a popular tool for datastreams, e.g., in
health analytics [10], network intrusion detection [2], and
live video analytics [11]. We thus frame our convergence
guarantees assuming SGD-based ML updates for streaming
data. Frameworks to run these data stream ML algorithms have
also received attention recently, with resource management and
resilience to infrastructure disruptions primary research chal-
lenges [14], [32]. However, these frameworks do not explicitly
optimize for ML convergence or preemptible instances.

ML on cloud instances: Infrastructure support for large-
scale ML has attracted much recent attention [33], with some
frameworks focusing on online datastreams [12]–[14], [32].
Cloud operators can optimize the configuration of servers
provisioned for distributed ML jobs so as to minimize op-
erational costs [5], [34] and migrate datastream analysis
across different servers to load-balance dynamic workloads as
data arrives [35]. ML users can design systems for utilizing
“transient” (i.e., preemptible) resources to run distributed data
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Fig. 1: Workers and parameter server interactions in DOLL.
Each worker may run on a preemptible or on-demand instance.

analytics [5], [6], [15], [36], [37], but unlike our work they
do not consider stochastic datastream arrivals. Prior work
includes using transient instances for parameter servers [38],
adjusting the learning rate to compensate for interruptions [16],
or utilizing asynchronous SGD [17]. While [7] optimizes
preemption probabilities in distributed ML, these are often not
controllable [39]. DOLL instead optimizes the provisioning of
preemptible instances for ML on incoming datastreams.

III. DOLL SYSTEM DESIGN

We present DOLL’s architecture (Section III-A) and our data
batching and grouping mechanisms (Section III-B).

A. System Architecture

System components: We consider a parameter server ar-
chitecture [7], [18] in which Ntot distributed workers or VMs
each receive a stream of data. The overall goal is to train a
model h (z,w), where w are the parameters to be trained, and
z represents the model’s input features. Each worker n may
run on either an on-demand or preemptible cloud instance,
and receives samples from a datastream Dn = {xn,i : i ∈
{1, 2, . . .}} : n ∈ {1, . . . , Ntot}, consisting of a series of data
samples xi,n = (zn,i, yn,i)

i.i.d∼ X which are independent
and identically distributed (i.i.d) across time and across every
worker’s datastream Dn. For example, social networking sites,
equipment or network monitoring systems [2], or hospitals
in a health system might analyze data inputs across multiple
monitoring points or locations that have statistically similar
data. We use zn,i to denote the model input features and
yn,i to denote the corresponding labels. The arrival events
τn,i : i ∈ {1, 2, . . .} of successive xn,i in datastream i over
time are modelled as a renewal process, i.e., each interarrival
time An,i is i.i.d, both within and between datastreams:

An,i ≡ τn,i − τn,i−1
i.i.d∼ A,∀n ∈ {1, . . . , Ntot}, i ∈ {1, 2, . . .}

τn,0 = 0

For example, if data is routed to workers from a central
collection point, each worker will likely experience i.i.d.
interarrivals. In the next section, we relax the assumption that
the An,i are i.i.d. across workers n, e.g., if samples are directly
sent to workers from observation points with different sample
generation frequencies. As shown in Figure 1, each worker
maintains a queue of arrived data samples and a module for
computing updates to the model parameters w.

Each worker communicates with a parameter server (PS)
that stores a global model h (z,w) to be trained, where w are
the parameters to be determined through the training process.
We assume that the parameter server is always available to
coordinate the workers, e.g., if it runs on an on-demand
instance. Note that the parameter server may be physically
implemented with multiple physical servers that coordinate
with each other, e.g., an all-reduce architecture; this does not
impact our subsequent analysis [38]. As shown in Figure 1,
the PS both monitors arrivals at workers (explained below)
and aggregates model updates received from workers.

Training process: The goal of training the ML model is to
minimize the expected loss, or risk, of the model h, i.e., to
solve minw Ex∼XL (h (z,w) ,y), where L(h, y) denotes the
loss of the model prediction h compared to the ground truth
y. In practice, however, X is unknown. Thus, as is typical in
ML and streaming analytics applications [5], [10], we train the
model with a variant of SGD on available data samples. We
break up the training into running “producer” and “consumer”
processes at each worker and the PS, as described below.

The process proceeds iteratively for updates J = 1, 2, . . .:
each worker i continually accumulates data samples, sending
a batch indicator SB;j,n to the PS when it accumulates b
samples since the last indicator. The batching process exists
as the “producer” process running on a given worker (see
Algorithm 1). Receipt of the batching indicators then induces
a “producer” process at the PS (see Algorithm 3). The PS
periodically sends a model update trigger to all workers with
the current model parameters wJ . The resulting gradient
computation process at each worker constitutes its “consumer”
process (see Algorithm 2). Workers begin computing gradients
when they receive the update trigger, to ensure they are work-
ing from the correct global model. Let {Bk, k = 1, 2, . . . ,K}
denote the batches accumulated across all workers since up-
date J − 1. Each worker with a batch Bk then computes the
gradient gJ,k = ∂

∂wJ−1

(∑
xn,i∈Bk

L (h (zn,i,wJ−1) ,yn,i)
)

of the loss function. Data samples may continue to arrive
during the gradient computations; if they arrive quickly relative
to the computation time, a new training round may be triggered
shortly after the previous round completes. The resulting
gradients from each batch are sent to the PS, which aggregates
them to perform gradient descent: wJ ← wJ−1 − η

∑
k gJ,k,

where η is a pre-determined step size (see Algorithm 4). This
aggregation constitutes the PS “consumer” process. The next
iteration J + 1 commences once the PS sends another update
trigger. We let C denote the (stochastic) gradient computation
and upload time at each worker and assume C is i.i.d. across
workers, e.g., as for workers of the same cloud instance type.

Throughout the paper, we use
(
µY , λY = 1

µY
, σ2

Y

)
to re-

spectively denote the mean, reciprocal mean, and variance of
a random variable Y .

Handling preemptions: The cloud provider may preempt
any worker at any time. Workers do not receive data samples
or compute model updates while preempted but retain any
samples received before the preemption begins, via standard



Algorithm 1: Producer process on a given worker n.

Data: stream Dn = {xi,n
i.i.d∼ X : i ∈ {1, 2, . . .}}

Parameter: batch size b
1 i← 0 //data point count

2 j ← 0 //local batch count; J is global count

3 while G(w)−G∗ > ϵ do //dependent on PS model

4 Bj ← {}
5 for a← 0 to b do //batch gathering

6 wait for arrival of data point xi,n from Dn

7 Bj ← Bj ||xi,n //add data point to batch

8 i← i+ 1
9 send batch indicator SB;j,n to PS

10 store Bj in memory for consumer
11 j ← j + 1

Algorithm 2: Consumer process on a given worker n.
Data: stored batches {Bj : j ∈ {1, 2, . . .}}
Parameter: loss function G (h (z,w) ,y)

1 wn //local model weights

2 while G(w)−G∗ > ϵ do //dependent on PS model

3 wait for update trigger SC;j′,n from PS
4 wn ← w //copy PS model to worker

5 retrieve Bj′ from memory

6 gj′,n ← ∂
∂wn

(∑
xi′∈Bj′

G (h (zi′ ,wn) ,yi′)
)

7 send gj′,n back to PS

fault tolerance mechanisms [6]. Workers do not return updates
if they are preempted after sending a batch indicator and before
the PS issues an update trigger. We will incorporate the effect
of preemptions in our analysis in the next section.

B. Solution Design

We next analyze the stability of the DOLL architecture,
which we show in Section IV will allow us to optimize its cost.
Figure 2 shows that the update process ({Uj}) is the departure
process resulting from a composition of the data arrivals
at workers ({An,i}), batching of these arrivals ({Bn,i}),
grouping of the batches ({Γj}), and gradient computations.

We will assume that data sample arrival times at each worker
are i.i.d. processes of rate λA (we later relax this analysis
to heterogeneous, time-varying rates). This can for example

TABLE I: Key notation. Figure 2 illustrates further notation
for the data progression through batching and grouping.

Symbol Definition
J SGD iteration number
wJ ML model parameters at iteration J

G(w) Loss function
N , Ntot Number of available workers and total number of workers
K, b Group and batch size, respectively

λA ≡ 1/µA Data arrival rate at a given worker
πs, πo Hourly price of a spot instance and on-demand instance

ϵ Target error of training job
θ Wall-clock training time
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Fig. 2: Data progression diagram of DOLL. Note that data
does not physically leave the workers. Data progresses through
arrivals ({An,i}), batching ({Bn,i}), grouping ({Γj}), and
gradient computations. The numbers above the batch grouping
and gradient computation boxes indicate the mean holding
time for each queue. Note that the queue for batching is only a
virtual queue used to express the bulk processing behaviour of
grouping K batches for each update. The computed gradients
leave the worker for the PS to aggregate.

model streams of taxi passenger data [40], sensor networks [1],
or social networks [41]. We next analyze how the batching and
grouping of data arrivals affect DOLL’s model updates. For
simplicity, we initially assume that workers are not preempted.

1) Batching: Each model update is computed on a batch
of b data points, as in mini-batch SGD. This batching adds
another intermediate process {Bn,i} at the output of each
worker, with interarrival times Bn,i =

∑bi
i′=b(i−1)+1 An,i′ .

The departure rate of batches is then λA/b, and {Bn} is a
superposition of the individual processes {Bn,i} (Figure 2).

The input process to Γ is then the departure process {Bn}.
Since the superposition of N identical renewal processes tends
towards a Poisson distribution as N → ∞, we use a Poisson
process to approximate {Bi}, the superposition of {Bn,i} [42].
In practice, there are usually enough workers (N = 64 in
Section V’s experiments) for this approximation to hold [1].
This approximation will have rate λB ≡ NλA/b.

2) Grouping: A natural sequence of processing data points
would be for the PS to send an update trigger after any worker
accumulates a batch. However, new batches will continue to
arrive while a worker is computing gradients. Thus, this naı̈ve
strategy may induce significant backups of batches, which
cannot be analyzed until the worker finishes computing the
gradient. Moreover, enforcing such synchrony defeats the point
of having a distributed system, since batches at other workers
could not be processed either until the next model update.

We prevent these backups, and preserve the benefits of a
distributed system, by placing data arrivals in a queue at each
worker. The PS initiates a model update once K mini-batches
have arrived across all workers. This type of queue is called a
bulk processing queue [43], such as in roller coaster queues,
where visitors enter the queue individually (Algorithm 3), but
are processed in groups (Algorithm 4). We can quantify the
resulting update arrival rate by viewing the bulk processing



queue as two queueing systems in series (see Figure 2);
preceding the main queue is a virtual grouping queue that
receives the batches and outputs a group process {Γj} with
interarrivals that are the sum of K batch interarrival times:
Γj =

∑Kj
i=K(j−1)+1 Bi.

Since the virtual grouping queue has zero holding time, it
will not affect system stability. Letting µC denote the mean
gradient computation time, the main computation queue has
a mean holding time (i.e. iteration computation time) less
than KµC (if all K batches in the group are from the same
worker) and greater than e.g. log(K)µC assuming exponential
gradient computation time (if all K batches are from different
workers). A priority queue can also be used (i.e., each batch
is associated with a priority that decreases with the number
of batches from the same worker already in the queue) to
significantly reduce the probability of multiple arrivals from
the same worker appearing in the same group for K ≤ N .
We can then derive stability conditions on the computation
process by analyzing the batch interarrival times {Bi}.

With the Poisson approximation of {Bi}, the distribution
of Γj will be Γj ∼ Erlang

(
K, bµA

N

)
. We can now find

conditions for the stability of the overall process:

Proposition 1 (Update process stability). For the process {Γj}
to be stable, it is sufficient to have bµA

N > µC . Moreover, if
{Γj} is stable, then its departure process has the same mean
interarrival time µU as that of {Γj}, µΓ.

Proof. Follows directly from batch and computation rates.

Algorithm 3: Parameter Server producer process.

1 Q← Queue() //initialize batch queue

2 while G(w)−G∗ > ϵ do
3 wait for any batch indicator SB;j,n from workers
4 Q.enqueue(j, n) //store worker, batch indices

Algorithm 4: Parameter Server consumer process.
Parameter: group size K, step size η, target error

threshold ϵ
1 Initialize model weights w
2 while G(w)−G∗ > ϵ do //arbitrary end

condition in practice

3 for γ ← 0 to K do //group gathering

4 j, n← Q.dequeue() //retrieve batch data

5 broadcast update trigger SC;j,n to workers
6 broadcast PS model weights w to workers
7 g ← 0
8 for γ ← 0 to K do
9 wait for any gradient gj,n from workers

10 g ← g + gj,n //add gradient

11 w ← w − ηg

3) Model Updates: The event of the PS model being up-
dated, which we denote as U , can be modeled as the departure
process from the grouping Γ (Algorithm 4). Proposition 1
allows us to characterize the effective arrival rate, mean inter-
update time µU and inter-update time variance σ2

U :

λU ≡
1

µU
=

NλA

Kb
, σ2

U ≤
Kb2

N2λ2
A

+K2σ2
C (1)

for a given variance of computation time σ2
C at an individual

worker. The variance of inter-update time is expressed by its
upper bound with the worst-scenario in mind, that is, the case
of every group consisting of batches from the same worker.
Also, as shown above, the limiting factor in update rate is λA.
We can now find the number of updates within a given wall-
clock time interval t; we generally care about the state of the
ML model at the end of training, so t will be a large number:

Theorem 1 (Updates vs. wall-clock time). For large wall-
clock time t, the number of updates after elapsed time t, Jt,
converges in distribution to a normal distribution.

Jt → N
(
tλU , tσ

2
Uλ

3
U

)
(2)

Proof. Follows from the Central Limit Theorem.

Corollary 1 (Update rate without preemptions). The rela-
tionship between expected number of iterations in a time
period t and the expected runtime to achieve J iterations,
for sufficiently large J and t, are

E[Jt] = tλU , E[runtime(J)] =
J

λU
. (3)

Proof. Follows from properties of Jt in Theorem 1.

4) Preemption: With preemptible instances, the number
of workers online at any given moment may not equal N .
However, in practice, worker preemptions tend to occur on
a slower timescale compared to data arrivals [9]. Thus, we
follow prior work in assuming that preemptions do not occur
during a model update [7]; equivalently, we may assume
that preemptions that occur during updates discard the up-
date altogether and that preemption overhead (shutdown and
booting) is negligible on the time scale of the training task.
Let N(t) ∈ {0, 1, . . . , Ntot} be the number of active workers
at time t; to account for variable workers, N would have to be
replaced with N(t) in finding the arrival and departure rates
of the update queue as in (1), as well as the number of updates
Jt that occur prior to time t:

µU (t) =
KbµA

N(t)
, λU (t) =

N(t)λA

Kb

E[Jt] =
∫ t

0

λU (τ)dτ =
λA

Kb

∫ t

0

N(τ)dτ

(4)

No updates occur while N(t) = 0, and λU (t) = 0 in such situ-
ations. For a time-varying rate λA(t), e.g., if the sampling rate
varies by time of day [40], we similarly express the expected
number of updates as E[Jt] = 1

Kbt

∫ t

0
λA(τ)dτ

∫ t

0
N(τ)dτ .



We suppose that preemptions are initiated by the cloud
provider in a fashion opaque to users, as is the case for
most such offerings [8], [44]. Amazon Web Service (AWS)’s
spot instances are a possible exception: workers can bid for
spot instances, which are preempted when the (dynamic)
spot price falls below their bids. However, in practice spot
prices change very slowly over time [9]; for example, they
varied by at most $0.02 from November 2021 to January
2022 for c5.xlarge instances in AWS’s US East region.
Most preemptions occur due to Amazon’s exogenous actions
and not user bids. As such, we can model the state of
a single preemptible instance as a continuous-time Markov
chain (CTMC) with two states, OFF and ON, which has
the stationary distribution (1 − α, α), where α ∈ [0, 1] is
the fraction of time the preemptible instance is available.
With Ntot preemptible instances, we define the CTMC N
with states {0, 1, . . . , Ntot}, corresponding to the number of
active preemptible instances at a given moment. Its stationary
distribution can be shown to be binomial B(Ntot, α). With this
model in mind, N(t) becomes a path through N . We will use
E[N ] = αNtot to represent the expectation value of the mean
of N(t) across the space of possible paths through N .Then
for a large enough time period, we can modify Corollary 1 to
find the time required for J model updates to be made:

Proposition 2 (Runtime). The limit of expected runtime for J
model updates, ΘJ , as J increases is:

lim
J→∞

E[ΘJ ]

J
=

Kb

λAE[N ]
(5)

Proof. As time t progresses, the distribution of time spent in
each state of N approaches the stationary distribution of the
system. Therefore, the mean value of a path N(t) approaches
E[N ] and the integral of N(t) can be expressed with the
following limit: limt→∞

1
t

∫ t

0
N(τ)dτ = E[N ]. Inserting the

above into (4), for high runtimes and any path N(t), we have

lim
t→∞

1

t
E[Jt] =

λA

Kb

∫ t

0

N(τ)dτ =
λA

Kb
E[N ]

If we fix J to a large value and instead replace t with a random
variable representing the necessary runtime θJ , the analogous
relation will also hold true: limJ→∞

λA

JKbE[N ]EN(t)[θJ ] = 1,
where the expectation of θJ is over the space of paths N(t)
through N . Rearranging the above yields (5).

Given Proposition 2, we will define an effective mean
runtime given J updates, Θ̄J as

Θ̄J ≡
J

λU
≡ JKb

λAE[N ]
(6)

IV. PERFORMANCE ANALYSIS

The goal of DOLL’s design is to minimize the cost of run-
ning ML jobs on preemptible instances, subject to convergence
constraints: while we would like the model training to cost
as little as possible, the final trained model must be accurate

enough, and delivered promptly enough, to be useful. We can
formalize this goal in an optimization framework as:

min E[Cost] s.t. E[G(wJθ
)]−G∗ ≤ ϵ

where θ = wall-clock time deadline, ϵ = target error
(7)

Here, G is the loss function associated with the machine learn-
ing task. Thus, in this section we use Section III-B’s analysis
to solve this optimization problem. We first analyze the model
convergence with respect to wall-clock time (Section IV-A),
allowing us to derive expressions for our constraint in (7), and
then solve the resulting optimization problem in Section IV-B.

A. Model Convergence

The bounds determined in this subsection are novel and
serve to unify the convex and non-convex cases with DOLL.
Convex loss: We define G(w) as the expected loss over X :

G(w) =

∫
X
L(h(z;w), y(z))dp(z), (8)

where h(z;w) is the hypothesis function with input features
z and parameters w, and L(h, y) is the divergence function
selected for the machine learning task. We upper bound the
expected model error assuming J model updates over t time:

Theorem 2 (Convex convergence). For an L-Lipschitz smooth
and c-strongly convex machine learning loss function G, the
expected error converges geometrically towards an error floor

E[G(wJ+1)−G∗] ≤
∫ ∞

0

ϕ(j)fJt(j)dj ≤ βe−ρt + γ (9)

for a given β > 0, γ ≥ 0, and 0 < ρ < 1. fJt is the pdf
(probability distribution function) of Jt in Theorem 1.

Proof. The model updates in a synchronous manner, as dic-
tated by the main queue which processes groups of batches.
As such, the convergence of the expected loss in relation to
the number of model updates would be the same as a K-
synchronous SGD [18] implementation. With modifications
made to account for groups of batches being processed, we
can upper-bound E[G(wJ+1)]−G(w∗) as

≤ (1− ηc)J
(
E[G(w0)]−G(w∗)− ηLB

2Kbc

)
+

ηLB

2Kbc
(10)

We assume that gradients are upper-bounded in magnitude
such that ∥ḡj(wj)∥2 ≤ B. For simplicity, the following are
defined: ρ ≡ 1 − ηc, β ≡ E[G(w0)] − G(w∗) − ηLB

2Kbc ,
and γ ≡ ηLB

2Kbc , allowing us to express Equation 10 as
ϕ(j) ≡ βρj + γ = βelog(ρ)j + γ, where ϕ(j) is equivalent
to the right hand side of Equation 10. We then bound the loss
expectation in time, where G∗ ≡ G(w∗) is the minimum loss:

Ḡ(t) ≡ EN(t)[G(wJ+1)] =

∞∑
j=0

E[G(wj)]pJt
(j)

Ḡ(t)−G∗ =

∞∑
j=0

(E[G(wj)]−G∗) pJt
(j)

For large t, we substitute the summation with an integral and
the pdf of Jt with that of the asymptotic normal distribution,



then take the inner product of the convergence bound ϕ(j) and
the asymptotic pdf of the number of updates fJt(j):

Ḡ(t)−G∗ ≤
∫ ∞

0

ϕ(j)fJt(j)dj, (11)

which is upper bounded by βe−ρt + γ to give the result.

We can incorporate the impact of preemption on (9) by
using Proposition 2 to replace Jt with E[Jt].

Non-convex loss: We extend our convergence analysis to
non-convex loss functions, omitting details for brevity. [45]
From the point of view of the PS, the model is updated in the
same manner as conventional SGD, so we may alternatively
use known bounds:

Proposition 3 (SGD non-convex convergence). For a smooth
loss function G, its expected gradient converges such that

min
j=1:J

E
[
∥∇G(wj)∥2

]
≤ O

(
1
/√

J
)

(12)

given that computed gradients are unbiased estimators
E[ḡj(wj)] = ∇G(wj), the magnitudes of gradients are
bounded by B, and an η ≡ c/

√
J is selected for a c > 0.

Proof. Convergence of SGD is proven in [46].

Theorem 3 (Non-convex convergence). For a smooth loss
function G, its expected gradient converges in time such that

min
j=1:Jt

E
[
∥∇G(wj)∥2

]
≤ O

(
1
/√

Jt

)
= O

(
1
/√

t
)

(13)
given the assumptions stated in Proposition 3.

Proof. By the elementary renewal theorem, limt→∞ E[Jt]/t =
λJ , so we extend Proposition 3 to convergence in time. [47,
Chap. 5.6.2]

For simplicity of expression, in the next section we will
measure the loss function error, as opposed to gradient mag-
nitude, in optimizing the cost of ML training.

B. Cost Optimization

Having established Theorems 2 and 3’s convergence guaran-
tees, we now turn our attention to solving our cost optimization
problem in (7). We separate the single constraint into two
constraints, that each deal solely with error and runtime:

min
Ns,J

E[Cost(Ns)]

s.t. E[G(wJ)]−G∗ ≤ ϵ, E[runtime(J)] ≤ θ

where θ = wall-clock time deadline, ϵ = target error

(14)

For the non-convex case, we would apply the error condition
ϵ to the magnitude of the gradient such that ∥∇G(wj)∥2 ≤ ϵ.
We use Theorems 2 and 3 to verify the feasibility of meeting
both constraints in this optimization problem. Here we have
two decision variables: Ns is the number of preemptible
instances to request, with the remaining No ≡ Ntot − Ns

instances being on-demand. The number of iterations J should
be chosen large enough to satisfy the error constraint, but

not so large so as to violate the runtime constraint. We first
consider homogeneous and then heterogeneous arrival rates.

We model the cost of each preemptible instance to be a
fixed unit cost per time, as offered by Google [8]. AWS spot
instances [9], a popular type of preemptible instances, do allow
users to bid on spot instances, potentially resulting in variable
prices. As discussed in Section III-B4, however, spot prices
in practice change extremely slowly. Thus, it is reasonable to
bid the current spot price, as recommended by AWS [9], and
we may model this price as a constant. Note that we use real
spot price traces in Section V’s experiments. Microsoft Azure
offers variable price discounts on preemptible VMs [44], but
the user has no control or visibility into the causes of price
variability or preemptions, so we can simply use their expected
price value and assume they are independent of preemptions.

1) Homogeneous arrival rates: We denote the preemptible
instance posted price as πs, offered at a lower rate than the
on-demand unit price πo for the same VM type. Instances are
preempted arbitrarily if on-demand usage surpasses leftover
VM supply, and new preemptible instances are only available
when demand is below leftover VM supply. Since exact
supply and demand are opaque to customers, availability of
preemptible instances can be abstracted into a value α ∈ [0, 1]
(that is, an instance is available for computation according to
a Bernoulli distribution with parameter α (see Section III-B4).

As in Section III-B4, the number of available preemptible
VMs follows a binomial distribution Na ∼ B(Ns, α). From
(4), the effective model update rate λU can be computed
using the expected value of N(t): λU = (No+E[Na])λA

Kb =
(No+αNs)λA

Kb By (6), the effective runtime is then:

E[runtime(J(ϵ))] = Θ̄J(ϵ) =
J(ϵ)Kb

λA(No + E[Na])
(15)

J(ϵ) in this setting refers to the number of model updates
required to achieve a given error threshold ϵ. By multiplying
Θ̄J(ϵ) with the effective total price per unit time (Ntot −
Ns)πo + αNsπs, we closely approximate the expected cost:

E[Cost(Ns)] =
J(ϵ)Kb

λA

Ntotπo + (απs − πo)Ns

Ntot + (α− 1)Ns
(16)

Lemma 1 (Cost monotonicity). The expected cost function
(16) is monotonously decreasing in Ns.

Proof. We first relax Ns to be any real number in [0, Ntot].
The derivative of E[Cost(Ns)] in Ns is then as follows:

dE[Cost(Ns)]

dNs
=

J(ϵ)Kb

λA

αNtot(πs − πo)

(Ntot + (α− 1)Ns)2
< 0. (17)

As such, the expected cost monotonously decreases in Ns.

Theorem 4 (Optimal preemptible instances). The number
of preemptible instances Ns solving (14) by optimizing the
formulation of expected cost in (16) is

N∗
s = min

{⌊
Ntot − J(ϵ)Kb

λAθ

1− α

⌋
, Ntot

}
(18)



where J(ϵ) is the expected number of updates J for which the
error constraint is tight.

Proof. Lemma 1 shows that either the runtime constraint or
Ns ≤ Ntot must be active. Knowing runtime, the constraint
can be expressed as E[runtime(J(ϵ))] = J(ϵ)Kb

λA(No+E[Na])
≤ θ.

Rearranging and seting Ns to an integer yields the result.

We can use Theorem 4 to estimate the cost savings of using
the optimal number of preemptible instances:

Corollary 2 (Cost savings guarantee with preemptible in-
stances). Letting θ0 ≡ J(ϵ)Kb

NtotλA
denote the expected runtime

without interruptions, DOLL’s expected cost satisfies

E[Cost(N∗
s )]

E[Cost(0)]
≥ max

 θ

θ0
+

(απs − πo)
(

θ
θ0
− 1

)
πo(1− α)

,
πs

πo


(19)

Thus, if α is large (high availability), we only use preemptible
instances and the cost savings is the ratio of spot to on-demand
prices. Otherwise, it is a more complex function of α.

2) Heterogeneous Data Arrival Rates: In some distributed
applications, workers do not all receive data at an even rate;
this may be due to physical constraints, such as geography,
or localized communication bottlenecks. We next generalize
Theorem 4’s results to heterogeneous arrival rates. We can
follow a similar approach to that for homogeneous data arrivals
in order to find the optimal number of preemptible instances.
Through the Palm-Khintchine theorem, we approximate the
superposition of a large number N of renewal processes (with
rates λ1, . . . , λN ) with a single Poisson process with rate∑N

n=1 λn [48]. Intuitively, ordering arrival rates by magnitude
and assigning preemptible instances to workers with the lowest
arrival rates minimizes the impact of preemption. For ordered
arrival rates λA,1 ≤ λA,2 ≤ · · · ≤ λA,Ntot , the effective update
rate is the sum of the effective arrival rates of each worker:

λU =

∑Ntot

n=1 λA,n − (1− α)
∑Ns

n=1 λA,n

Kb
(20)

and the effective mean runtime given J(ϵ) updates is:

Θ̄J(ϵ)) =
J(ϵ)Kb∑Ntot

n=1 λA,n − (1− α)
∑Ns

n=1 λA,n

(21)

We can derive an expression for the expected cost in a similar
fashion to (16) by multipling the expected runtime with the
effective total price per unit time (Ntot −Ns)πo + αNsπs:

E[Cost(Ns)] = J(ϵ)Kb
Ntotπo + (απs − πo)Ns∑Ntot

n=1 λA,n − (1− α)
∑Ns

n=1 λA,n
(22)

Lemma 2 (Necessary conditions on Ns). Given ordered
arrival rates {λA,n}, the cost-optimal Ns ≤ Ntot must satisfy:

(1− α)

Ns∑
n=1

λA,n ≤
Ntot∑
n=1

λA,n −
J(ϵ)Kb

θ
(23)

Proof. Follows by rearranging the runtime constraint.

Theorem 5 (Optimal preemptible instances for heterogeneous
arrivals). The expected cost function (22) contains at most one
local minimum in the range Ns ∈ [0, Ntot].

Proof. This can be shown by relaxing {λA,n} into a contin-
uous monotonically increasing function λ(n). The expected
cost function can thus be expressed as:

E[Cost(Ns)] = J(ϵ)Kb
Ntotπo + (απs − πo)Ns∫ Ntot

0
λ(n)dn− (1− α)

∫ Ns

0
λ(n)dn

As πs < πo and α ≤ 1, the numerator of the expected cost
function decreases linearly. As λ(n) monotonically increases
on Ns ∈ [0, Ntot], the denominator monotonically decreases
on Ns ∈ [0, Ntot]. Moreover, the derivative of the denominator
monotonically decreases on Ns ∈ [0, Ntot]. Because the
derivatives of the numerator and denominator intersect at most
once within Ns ∈ [0, Ntot], the expected cost function contains
at most one turning point in Ns ∈ [0, Ntot]. As the second
derivative of the denominator is negative on Ns ∈ [0, Ntot],
any turning point must be a local minimum.

This result allows a simple algorithm for determining the
optimal Ns: we simply evaluate the expected cost at each Ns

starting at Ns = 0, increasing Ns until either the constraint in
Lemma 2 is broken or the expected cost begins increasing.

We finally note that Theorems 4 and 5 also allow us to
determine the preemptible instance region in which to run
our ML job, based on their prevailing prices [9]. Since we
can easily solve for the optimal number of preemptible VMs,
Theorems 4 and 5 also suggest that it is feasible to design
an adaptive algorithm that re-optimizes our provisioning as
the job runs, e.g., in case we do not know VM availability a
priori, which we experimentally validate in Section V-C.

V. EXPERIMENTS AND RESULTS

We finally evaluate our system design and optimization from
Sections III and IV through experiments on AWS (Amazon
Web Services). We first describe our experimental environment
(Section V-A) and then show that DOLL can substantially
reduce ML costs compared to on-demand instances (Sec-
tion V-B). We analyze the impact of different deadline and
price parameters on the cost savings, and finally introduce
an adaptive version of our preemptible instance optimization
(Section V-C) that adjusts the provisioning over time.

A. Experimental Environment

We implement DOLL with a parameter server on an AWS
EC2 m4 VM and Ntot = 64 workers on r5 VMs. A separate
g4dn VM hosts a test dataset, allowing us to monitor test
accuracy without interfering with the training.

Unless otherwise stated, the learning task used is the
handwriting classification problem using the Extended MNIST
(EMNIST) dataset, composed of 814225 images [49]. (We
additionally report results for the Infinite MNIST [50], which
can infinitely generate virtual handwriting examples and is
used as a benchmark dataset in online ML experiments [51]
[52], and CIFAR-10 [53] image classification datasets under



5500 6000 6500 7000 7500
Wall-clock time (s)

20

30

40
Co

st 
($

)

(a) Cost vs. wall-clock time

0 10 20 30
Cost ($)

0

25

50

75

Te
st 

se
t a

cc
ur

ac
y 

(%
)

on demand
=0.8, / 0=1.05
=0.8, / 0=1.1
=0.9, / 0=1.05

(b) Accuracy vs. Cost (averaged)

Fig. 3: Using Theorem 4 for requisitioning preemptible in-
stances yields target performances (solid dots in the figures) at
on average 69.50% (α = 0.9, θ/θ0 = 1.05), 86.22% (α = 0.8,
θ/θ0 = 1.05), and 78.05% (α = 0.8, θ/θ0 = 1.10) of the
on-demand cost. Costs diminish with higher α (preemptible
instance variability) and θ/θ0 (longer deadlines), consistent
with Corollary 2. Figure 3a displays cost and wall-clock time
for 12 experiments and their mean values per setting. Figure
3b shows that preemptions do not affect the final test accuracy.
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Fig. 4: For heterogeneous arrival rates, DOLL incurs costs on
average 70.54% (α = 0.9 and θ/θ0 = 1.05), 81.71% (α = 0.8
and θ/θ0 = 1.05), and 74.54% (α = 0.8 and θ/θ0 = 1.10)
below the on-demand training cost. The figure displays cost
and wall-clock time for 12 experiments per setting, as well as
their means. Randomness in the arrival rates affects both cost
and wall-clock time; as such, savings may vary significantly.

homogeneous and heterogeneous arrival rates in Table II.)
The dataset is evenly divided into Ntot shards and assigned
to a worker; data samples are acquired by iterating through
shards in a random order. Datastreams are simulated by
augmenting the dataset; the uniqueness of training inputs is
achieved by filtering each sample through a random transform
layer (random perspective plus random affine transformations)
before gradient computations. The classification objective uses
the ByMerge split, which contains 47 unbalanced classes
corresponding to alphanumeric characters [49], and cross-
entropy loss. For the EMNIST and I-MNIST tasks, we train a
convolutional neural network (CNN) with 2 convolutional and
2 dense linear layers; for CIFAR-10, we train a CNN with 2
convolutional and 3 linear layers. We use PyTorch and Ray for
the learning algorithm and node communication, respectively.

Preemption is simulated through a two-state (pre-
empted/running) Markov chain sampled every 2 seconds, with
specified availability value α for a expected on-off cycle
length of 1000 seconds. To simulate job cost under AWS

spot instance prices, we use the historical price trace of
c5.xlarge instances in the Canada (Central) region from
January to March 2021. We use the spot pricing for nodes
in the ca-central-1b availability zone running the SUSE
operating system, due to this trace’s high cost (mean value
of $0.158/hour) relative to the on-demand price ($0.286/h).
Thus, we conservatively estimate DOLL’s cost savings. The
trace is traversed at 2000× speed; this and the short expected
on-off cycle allow us to emulate the system behavior for
longer training applications (e.g., wall-clock training time on
the order of days and weeks). To account for this, we train
relatively simple models that have significantly shorter (a
few hours) runtime compared to enterprise applications. To
show applicability to all SGD-based optimizers, we use both
conventional SGD and the Adam optimizer (see Table II).

We set J = 10000, at which the CNN model achieves our
target ∼85% test classification accuracy. Homogeneous arrival
rates are set to λA = 125 with Poisson arrivals; heterogeneous
Poisson arrival rates are sampled from the uniform distribution
λA ∼ U(1, 250) for each worker in each experiment. To
maintain queue stability, we take group and batch sizes of
K = 20, b = 256 (Proposition 1). Experiment deadlines are
expressed relative to θ0 = 6400 seconds, the training time to
85% test accuracy for 64 on-demand instances.

B. Cost Optimization

To show cost savings in a variety of settings, we select
three pairs of availability α and deadlines θ: (α, θ/θ0) =
(0.9, 1.05), (0.8, 1.05), (0.8, 1.1). We select α based on AWS
posted frequencies of interruption, which are below 20% for
most instances [39]. Training with each setting, plus on-
demand-only, is repeated 12 times. We only measure worker
costs, which dominate parameter and test server costs. These
deadlines are relatively tight: while preemptible instances are
assumed unavailable 10% to 20% of the time, we allow only
5% to 10% longer runtimes than the on-demand case.

As shown in Figure 3, cost savings of up to 30.50% can
be enjoyed for relatively lax deadlines (θ = 1.1× θ0, or 10%
longer runtime than without preemptible instances) and high
availability (α = 0.9, or 90% preemptible instance availability)
when using Theorem 4 to requisition preemptible instances.
For α = 0.8 and θ = 1.05× θ0, savings are lower (13.78%).
Note that these are conservative savings estimates due to using
relatively high spot prices: on other traces, we obtain twice as
much savings (Figure 5). Figure 5 shows that the empirical
savings surpass Corollary 2’s expected bounds, likely because
Theorem 2’s convergence upper bound is conservative: in
practice, we need fewer model updates to achieve the de-
sired accuracy. The variation of cost savings across different
(α, θ/θ0) settings further indicates the need to optimize the
number of preemptible VMs provisioned. For example, when
α = 0.8, choosing even slightly fewer preemptible VMs (as
recommended for the tighter deadline θ/θ0 = 1.05 instead of
θ/θ0 = 1.1) changes the cost by > 10%.

We next show that DOLL can also reduce costs when
workers have heterogeneous arrival rates, e.g., due to each
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Fig. 5: Cost incurred as a % of on-demand-only cost for
α = 0.9 and θ/θ0 = 1.05. Both the a priori and adaptive
optimization methods achieve more savings than guaranteed
by Corollary 2. “High spot price” refers to c5.xlarge
instances running SUSE in the ca-central-1b availability
zone, with an on-demand price of $0.286/h and a mean spot
price of $0.158/h. Running another Linux OS at an on-demand
price of $0.186/h and mean spot price of $0.058/h (“Low spot
price”), shows Corollary 2’s viability in different price settings.

TABLE II: DOLL’s cost as a percentage of on-demand-only
cost for (α, θ/θ0) = (0.9, 1.05) on three datasets, with both
Adam and SGD optimizers. The adaptive method nearly halves
the cost relative to the on-demand-only setting and consistently
achieves lower cost than the static method, whose cost is
generally lower than that of Corollary 2’s bound.

Dataset Opt. Arrival
rate λA

K
Static

method
cost

Adap.
method

cost

Expect.
lower
bound

EMNIST SGD 125 20 69.5% 66.5% 79.8%
EMNIST SGD U(1, 250) 20 70.5% 56.5% –
EMNIST Adam 125 20 78.2% 54.6% 80.1%
I-MNIST SGD 125 10 75.8% 54.6% 80.1%
I-MNIST SGD U(1, 250) 10 77.3% 52.9% –
CIFAR10 SGD 125 4 82.6% 57.2% 79.8%
CIFAR10 SGD U(1, 250) 4 64.7% 53.7% –

worker receiving data from different geographical regions. In
each training run, λA,n for each worker is sampled anew from
U(1, 250). Due to the wide distribution of possible arrival
rates, not all runs display a cost savings relative to the on-
demand-only setting (see outliers in Figure 4). However, on
average, using preemptible instances will yield 18.71% to
29.46% savings relative to only using on-demand instances.

Comparing the variability of different runs in Figure 4,
whose runs include randomness in the individual workers’ data
arrival rates and the arrival and preemption processes, with
that of Figure 3a, which only includes randomness in arrivals
and preemptions, shows that cost and runtime variability is
significantly affected by the statistics of the individual arrival
rates. Enterprises may thus wish to encourage homogeneity
in arrival rates across workers by centrally routing incoming
datastreams to workers. Conversely, for the same global arrival
rate

∑Ntot

n=1 λA,n, having more heterogeneity across arrival
rates can allow for more preemptible instances to be requi-
sitioned, increasing savings (Figure 4 has lower costs than
Figure 3a). The DOLL architecture supports both options.

C. Adaptive Cost Optimization

Since requisitioning preemptible instances a priori for het-
erogeneous arrival rates may cause worse performance, partic-
ularly if they are unknown, we devise an adaptive optimization
method. Assuming that the time to switch a worker between
an on-demand and preemptible instance is negligible at the
timescale of the training task, whenever the spot prices change
we use Theorems 4 and 5 to compute Ns using running tallies
of λA,n and α, then adjust instance types as needed. The
adaptive method initializes with Ns = Ntot. Since we set our
spot pricing bids to be the exact spot price, a spot price change
may preempt every preemptible instance, allowing us to switch
workers between on-demand and preemptible instances.

Experiments are run with α = 0.9, θ = 1.05× θ0. On aver-
age, the cost incurred using the adaptive method amounts to
only 66.50% of that incurred when only using on-demand in-
stances (Figure 5), representing a savings of 4.32% compared
to the cost of using static a priori Ns in the homogeneous
setting. Table II shows even greater savings for the adaptive
method on the Infinite MNIST and CIFAR-10 datasets, for
both Adam and SGD optimizers in the homogeneous case.
For heterogeneous arrivals, Table II and Figure 5 show that
adaptive optimization is even more beneficial due to greater
randomness in the arrivals. The average adaptive cost was
56.54% of the on-demand cost in Figure 5, with 19.85%
additional savings compared to a priori computation of Ns.

VI. CONCLUSION AND FUTURE WORK

We propose a novel system design, DOLL, which allows
the training of ML models on a distributed set of datastreams
in a scalable manner. Our key theoretical contribution is the
design of batching and grouping to handle large inflows of data
while maintaining both data processing queue stability and
a convergence guarantee. We validate with benchmark tests
DOLL’s ability to handle large amounts of high-throughput
datastreams, and our experimental results clearly show that
with our proposed requisition strategy, DOLL can achieve
desired performance at a lower cost while meeting training
deadlines and can adapt to unknown environment parameters.

DOLL’s contributions can form part of a set of strategies
to manage time and cost in enterprise-scale applications.
Cross-silo federated learning, for example, introduces data
heterogeneity challenges [22], while other methods can track
model evolution over time. We can foresee DOLL’s use
on heterogeneous, federated data sources by extending the
availability model for preemptible VMs to more general cases.
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