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Abstract—Leading cloud providers recently introduced a new
instance type named burstable instances to better match the time-
varying workloads of tenants and further reduce their costs.
In the research community, however, little has been done to
understand burstable instances from a theoretical perspective.
This paper presents the first unified framework to model, analyze,
and optimize the operation of burstable instances. Specifically, we
model the resource provisioning of burstable instances, identify
key performance metrics, and derive the analytical performance
given the resource provisioning decisions. We then characterize
the equilibrium behind tenants’ responses to the prices offered for
different burstable instance service classes, taking into account
the impact of tenants’ actions on the performance achieved
by each service class. In addition, we investigate how a cloud
provider can leverage knowledge of this equilibrium to find the
prices that maximize its total revenue. Finally, we validate our
framework on real traces and demonstrate its usage to price
burstable offerings in a public cloud.

Index Terms—cloud, burstable instances, equilibrium, revenue
maximization

I. INTRODUCTION

T
O reduce costs for cloud tenants, today’s Infrastructure-

as-a-Service (IaaS) providers offer various pricing

schemes, such as on-demand pricing, spot pricing, and re-

served pricing [2]. Under these pricing schemes, however,

tenants always obtain virtual machines (VMs) provisioned

with static amounts of resources, for example, one virtual
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TABLE I: Samples of Microsoft Azure burstable instances [8].

Type CPU credits Maximum CPU Resource volume (vCPUs)
earned per hour credits buffered Maximum Mean

B1ls 3 72
1

0.05
B1s 6 144 0.1
B1ms 12 288 0.2

CPU (vCPU) and 2 GB memory. On the other hand, empirical

studies [3], [4], [5], [6] have reported that workloads executed

on VMs in public clouds are usually time-varying. Therefore,

given the static amount of resources provisioned for VMs,

tenants have to book VM configurations that can satisfy their

peak workload demands. This peak-demand subscription strat-

egy leads to low actual utilization of the resources allocated

to VMs. Take CPU resource utilization as an example. The

utilization is lower than 35% on average according to a Google

cluster trace study [4], and lower than 20% for 60% of the

VMs according to a Microsoft Azure trace study [5]. These

observations imply that tenants’ costs can be further reduced

by time-varying resource provisioning. In other words, VMs

receive a high volume of resources for a short period of time in

exchange for fewer resources most of the time. A new class of

VMs, named burstable instances, has thus been introduced by

a number of cloud providers, such as the t2 and t3 instances

of Amazon EC2 [7], B-series instances of Microsoft Azure

[8], and f1-micro and g1-small instances of the Google Cloud

Engine [9]. In this paper, we approach burstable instances

from a theoretical perspective, and present the first unified

framework to model, analyze, and optimize their operation.

We show that cloud providers can use this framework to

understand the performance of burstable instances and set the

corresponding prices to optimize their total revenue.

A. Background on Burstable Instances

We list a few sample burstable instance configurations in

Table I. A burstable instance has a resource budget quantified

by CPU credits. Each CPU credit provides 100% of the full

capacity of a vCPU for a time slot’s duration (e.g., 1 minute

in Microsoft Azure [8]). CPU credits can be used in fractions,

such as spending 0.1 CPU credits for 10% of a vCPU. The

credits are earned at a constant rate per time slot for an

instance, with a limit on the maximum number of credits

that can be buffered. The maximum resource volume is the

maximum amount of resources that an instance can receive



in a time slot, which is one vCPU for all instances in Table

I. On the other hand, the rate of credit earning determines

the average resource volume (sometimes also referred to as

“baseline”) for an instance. For example, a B1ls instance in

Table I receives 0.05 CPU credits per time slot (i.e., 1 minute),

enabling it to request 5% of a vCPU on average over time.

Burstable instances are suitable for services that demand

relatively small amounts of resources most of the time, while

occasionally requiring large amounts of resources. For exam-

ple, VMs operating as hot standbys [10] are usually idle with

low CPU utilizations. When a failover occurs, they demand

high resources to take over the jobs, but only for a short while

until the normal services are recovered. Applications with

periodic workloads, such as periodically updating machine

learning models [11], are also suitable for burstable instances.

Compared to traditional static resource provisioning meth-

ods, burstable instances can benefit both tenants and cloud

providers. Tenants no longer need to pay for their peak

resource demands all the time, so their costs are potentially

reduced with fewer resources purchased. Cloud providers can

also benefit in terms of over-commitment.1 Though widely

employed, over-commitment traditionally suffers from the

difficulty of understanding VMs’ CPU utilization patterns,

which providers do not control [4]. Therefore, providers have

to co-locate VMs in a relatively conservative manner to offer

a guaranteed quality-of-service (QoS) level, i.e., the chance

that a VM can successfully receive its requested resources

[12]. The CPU utilization of burstable instances, however, is

regulated by the CPU credit mechanism, making the utilization

patterns more predictable for providers. Providers may then be

able to co-locate more burstable instances on a server while

still offering a guaranteed QoS level. Moreover, by jointly

optimizing the offered QoS and the prices charged to the

tenants, providers can maximize their total revenues. In this

paper, we provide a framework for them to do so.

B. Our Contributions

Although cloud computing with static resource provisioning

has been extensively studied, burstable instances are still an

emerging research topic with many unanswered questions.

Consider a cloud provider that offers different types of

burstable instances for multiple tenants. Hereinafter, we refer

to tenants as users, and to instance types as service classes

defined by the configuration parameters shown in Table I. In

this paper, we aim to understand three fundamental questions

on burstable instances and use them to help cloud providers

(i) estimate the performance of burstable instances, and (ii)

increase their total revenue for operating this service.

How can we define and analytically evaluate the per-

formance of burstable instances? The QoS that a burstable

instance receives is determined by the amount of resources

that a VM is allocated compared to how many it requests, i.e.,

how well a user’s resource needs can be fulfilled. Note that the

1Over-commitment in clouds means the resources allocated to the VMs on
a server can exceed the server’s actual capacity, if the VMs are expected not
to fully utilize their reserved resources simultaneously [4]. Therefore, VMs
may not always receive the full resources that they demand.

QoS depends on whether the user’s requests are allowed by the

CPU credit mechanism, as well as how the cloud provider mul-

tiplexes its (over-committed) resources. Therefore, analytically

formulating the QoS representation is non-trivial as it requires

us to mathematically translate the CPU credit mechanism

to CPU utilization patterns and integrate the result with the

resource multiplexing scheme. To this end, in Section II, we

first formally define the QoS metric. We model the dynamics

of CPU credits as a token bucket regulation mechanism [13].

Meanwhile, we model two resource multiplexing schemes for

burstable instance services, random selection and proportional

allocation, and finally derive analytical QoS representations

for both of these multiplexing schemes.

From an individual user’s perspective, which service

class should (s)he select to maximize his/her reward?

We proceed to look at an IaaS cloud that offers burstable

instances with multiple service classes, each configured by

CPU credit parameters and a resource capacity. We refer to

these parameters as service class configurations hereinafter. A

service class charges a price to each user who subscribes to

it. Note that a rational user always favors a service class that

offers higher QoS with lower payment. Therefore, the user

will select the service class where his/her reward, which can

be regarded as his/her valuation of the received QoS minus the

payment, is maximized. In Section III, we analytically derive

users’ service class selections at the Nash equilibrium.

From a cloud provider’s perspective, how should it

price the service classes to maximize its total revenue?

The equilibrium derived above characterizes users’ responses

(i.e., service class selections) to the prices offered by service

classes, accounting for individual users’ heterogeneous QoS

valuations. Note that a cloud provider’s total revenue depends

on both the number of users subscribed to each service class

and the prices that the users should pay for their subscriptions.

Given the service class configurations, a cloud provider can

thus set prices leveraging prior knowledge of the equilibrium

on users’ corresponding subscription decisions to maximize

its total revenue at equilibrium.2 In Section IV, we formulate

a mixed-integer non-linear program to obtain such optimal

prices for the provider. While this problem can be solved by

general-purpose methods for mixed-integer programs [14], we

also propose an algorithm to compute an approximate solution

in a more efficient manner.

Our answers to the three questions above constitute a

framework to model, analyze, and optimize burstable instance

services in IaaS clouds. In Section V, we numerically validate

our framework using real-world traces [5] and show that it

can drastically improve the cloud provider’s total revenue

compared to heuristic pricing methods.

The remainder of the paper is organized as follows. In

Sections II, III, and IV, we answer the three aforementioned

questions sequentially, and simultaneously develop our frame-

2Our revenue maximization problem does not capture the temporal evolu-
tion in the number of users. However, the number of users does not change
much over time according to the state-of-the-art traces [5]. To apply our
proposed methods to real-world public clouds, we can use the user profiles
at the peak for pricing. Although conservative, the derived prices and total
revenue are still shown to be reasonably good (see Section V-C for details).





On the other hand, when the number of tokens in the token

bucket is no smaller than the number of incoming requests,

all of these requests can proceed to the regulator. This model

extends our earlier work [1], where all requests are simply

discarded without getting any tokens if the number of available

tokens in the token bucket is smaller than the number of

incoming requests.

At service class j’s user request regulator, all requests will

be approved if the total number of received requests does not

exceed the resource capacity, cj . Otherwise, the regulator will

allocate the limited resources to users following some resource

multiplexing scheme. We can consider two schemes, random

selection and proportional allocation. In random selection,

the regulator repeatedly chooses a user uniformly at random,

and admits his/her requests until the capacity cj is used up.

Extending our earlier work [1], we also consider proportional

allocation, where each user receives an equal proportion (e.g.,

90%) of his/her requested resources, so that the total amount

of resources allocated to users sums to the resource capacity,

cj . Hence, a user may eventually receive a fractional amount

of resources. This paper will derive analytical results for both

of the multiplexing schemes and provide insights into their

numerical results so that a cloud provider can have a better

idea of which scheme to choose for its real operation.

B. Quantifying Users’ QoS

In this paper, we are interested in the analytical form of

a user’s received QoS by subscribing to a service class. For

simplicity, we assume that users are homogeneous in the

statistical patterns of their requests. The probability that a

user has at least one request in a time slot is denoted by

δ. The number of requests that a user makes in a time slot,

given that (s)he has requests to make, is a random variable

θ ∈ [1, θmax ] ∩ Z+.4 For example, if a token stands for 1%

of a vCPU, with the maximum resource volume as one vCPU

and guaranteed resources as 2% of a vCPU (i.e., agrntd
= 2)

for each instance, an instance can request up to 98% of a

vCPU as its burstable resources (i.e., θmax = 98). To simplify

our mathematical model, we suppose that bj > 2θmax , as

is typically the case in practice.5 Denote the probability that

θ takes the value x by P(θ = x). The distribution of θ

can be estimated from historical data of CPU utilization for

a particular application. We assume that P(θ = x) > 0,

x ∈ [1, θmax ] ∩ Z+. This assumption will be later confirmed

by real-world traces [5] in Section V.

By making θ requests, a user i ∈ N = {1, 2, ..., N }
subscribing to service class j finally receives φ j token units of

4For some applications, the number of requests made in a time slot may be
temporally correlated to that made in previous time slots. However, an IaaS
cloud has neither the knowledge of what applications are running on the VMs
nor the control of these applications. Therefore, our user request model does
not consider such temporal correlation. We will show in Section V that our
model is still accurate for realistic user request patterns from state-of-the-art
public cloud traces [5], which may not be i.i.d. across time.

5As typical values, suppose one token stands for 1% of a vCPU and the
maximum resource volume for an instance is one vCPU. Let agrntd

= 0, so
θmax will go up to 100. Practically, the token bucket size is the total number
of tokens that can be buffered within 24 hours (see Table I). Therefore, even
if the token generation rate is r j = 1, with the duration of a time slot as one
minute, the token bucket size is b j = 1440, much greater than θmax .

resources, where φ j is a random variable (that depends on θ).

Note that φ j depends not only on bj , cj , and r j , the service

class configurations, but also on n j , the number of peer users

that are concurrently sharing the resources in service class j

with this user. Let θ̃ ∈ [1, θ̃max ]∩Z+ be the number of requests

that can traverse the token bucket and reach the regulator for a

given user in a time slot, given that the user makes requests in

this time slot. Note that θ̃ is a random variable with the same

range as that of θ (i.e., θ̃max = θmax ). Meanwhile, θ̃ is always

non-negative, because the token bucket has at least r j ≥ 1

available tokens (the ones accumulated in the same time slot)

to accommodate potential requests. Given that a user makes

θ requests, there must be at least min{θ, r j } requests that can

traverse the token bucket. We denote the probability that θ̃

takes the value y by P
(

θ̃ = y

)

.

The QoS that user i subscribing to service class j receives,

denoted by qj , is defined as the probability that the user can

finally receive α (0 ≤ α ≤ 1) of his/her requested resources

in a time slot given that (s)he makes requests in this time

slot, where α is a cloud-provider-specified parameter. In other

words, provided that a user makes θ = x requests in a given

time slot, qj is the probability that this user can finally receive

no fewer than αx token units of resources. Practically, α can

be a fractional number that is close to 1, for example, 0.9. In

this case, our performance metric characterizes the probability

that a user receives 90% of his/her requested resources. Our

QoS metric guarantees the tail probability on the fraction of a

user’s resource requests that are ultimately fulfilled. This tail

probability guarantee strategy has been widely adopted in the

cloud computing literature [18], [19].

Similar to existing studies on IaaS clouds [6], [20], our QoS

metric quantifies the resource availability on the infrastructure

level instead of modeling the application-level performance

(e.g., job completion time). A CPU credit (a.k.a. a token) can

be interpreted as an opportunity that a user can spend to obtain

resources. Our QoS metric represents the probability that the

CPU credits can finally turn into the allocated resources. To

understand the infrastructure-level QoS, users who deploy

their applications on the cloud-provided VMs may need to

translate the infrastructure-level QoS to the application-level

performance. Although such a translation is out of the scope

of our paper, which targets an IaaS cloud, we still provide a

few translation examples in Appendix A.

We make comments from a qualitative perspective on how

the service class configurations bj , cj , and r j will affect the

QoS for a given number of users in service class j. Generally,

increasing bj and r j at the token bucket side leads to a higher

chance of the users’ requests passing the token bucket, as

Figure 1 shows. If the regulator’s capacity cj is underutilized,

the QoS of users will improve due to the increases in bj and

r j . However, if the capacity is already overutilized with a

multiplexing scheme in place, to improve the QoS, we should

also increase cj to adapt it to the increased number of requests

that reach the regulator.

We continue to derive the analytical QoS. Assume the

system is stationary. We can formulate qj by enumerating the

probabilities that a user makes x resource requests, with y

requests successfully traversing the token bucket, and finally



qj =

θmax
∑

x=1

P
(

φ j ≥ αx |θ = x
)

P (θ = x) =

θmax
∑

x=1

x
∑

y= dαx e
P

(

φ j ≥ αx |θ̃ = y, θ = x
)

P
(

θ̃ = y |θ = x
)

P (θ = x) (1)

receives at least αx token units of resources, as equation (1) at

the top of this page. In equation (1), P
(

φ j ≥ αx |θ = x
)

is the

probability that a user initially makes x requests and finally

receives at least αx token units of resources, P
(

θ̃ = y |θ = x
)

is the probability that exactly y requests successfully traverse

the token bucket for a user, given that (s)he initially makes x

requests, and P
(

φ j ≥ αx |θ̃ = y, θ = x
)

is the probability that a

user finally receives no fewer than αx token units of resources

given that (s)he makes x requests and y requests successfully

traverse the token bucket. Consider a user who initially makes

x requests, with y requests successfully traversing the token

bucket. In order for this user to receive no fewer than αx token

units of resources in the end, a necessary condition is that

y ≥ αx. Since y is an integer, in the inner summation with

regard to y in equation (1), we only consider the situations

when dαxe ≤ y ≤ x.

It can be observed from equation (1) that the value of qj

depends on the following two factors: (i) How many requests

can get the corresponding tokens and traverse the token

bucket, characterized by P
(

θ̃ = y |θ = x
)

; (ii) Whether enough

requests that have already traversed the token bucket can be

admitted by the regulator after multiplexing with other peer

users’ requests, characterized by P
(

φ j ≥ αx |θ̃ = y, θ = x
)

. In

the rest of this section, we will model the token bucket

mechanism and the resource multiplexing scheme at the

regulator side to get the expression of P
(

θ̃ = y |θ = x
)

and

P
(

φ j ≥ αx |θ̃ = y, θ = x
)

, respectively.

1) Modeling the token bucket mechanism: We model the

dynamics of the token bucket as a Markov chain, with the

state defined as the number of tokens in the token bucket in a

time slot, after r j tokens are generated, but before the potential

requests are made and processed. In this case, the token bucket

has at least r j tokens, and thus we have bj − r j + 1 states.

Let state d = r j, r j + 1, ..., bj be the (d − r j + 1)th state of the

Markov chain with d tokens in the bucket. The state transition

probabilities of the Markov chain are given by Proposition

1. Note that although this proposition is based on our prior

assumption of bj > 2θmax , our derived results can be easily

generalized to the cases where θmax ≤ bj ≤ 2θmax using the

same methodology. (For each service class, bj ≥ θmax should

always hold to meet the users’ requests.)

Proposition 1. The transition probability Pd→h from state d

to state h for the Markov chain is as follows:

(i) When r j ≤ d ≤ θmax − 1, we have

Pd→h =



δ ·∑θmax

k=d
P(θ = k) h = r j,

δ · P
(

θ = d + r j − h
)

r j + 1 ≤ h

≤ d + r j − 1,

1 − δ h = d + r j,

0 otherwise.

(ii) When θmax ≤ d ≤ bj − r j , we have

Pd→h =



δ · P
(

θ = d + r j − h
)

d + r j − θmax ≤ h

≤ d + r j − 1,

1 − δ h = d + r j,

0 otherwise.

(iii) When bj − r j + 1 ≤ d ≤ bj , we have

Pd→h =



δ · P
(

θ = d + r j − h
)

d + r j − θmax

≤ h ≤ bj − 1,

δ ·
d+r j−b j

∑

k=1

P (θ = k) + (1 − δ) h = bj,

0 otherwise.

The Markov chain is positive recurrent and aperiodic, so it is

ergodic [21]. Denote the steady-state probability of state d by

πd
j
. The physical meaning of πd

j
is the steady-state probability

that there are d tokens available in the token bucket waiting

for potential requests to be processed. We can obtain πd
j

by

solving the balance equation.

With the Markov chain model above, we are ready to derive

P
(

θ̃ = y |θ = x
)

. Note that we always have no fewer than

r j tokens in the token bucket when requests arrive. For this

reason, when 1 ≤ x ≤ r j , all of the requests can traverse the

token bucket, which means

P
(

θ̃ = y |θ = x
)

=


1 y = x,

0 otherwise.
(2)

When r j < x ≤ θ̃max , however, depending on the token

availability in the token bucket, either all or a part of the

requests can traverse the token bucket, and thus

P
(

θ̃ = y |θ = x
)

=



∑b j

d=x
πd
j

y = x,

π
y

j
r j ≤ y < x,

0 otherwise.

(3)

With the expressions of P
(

θ̃ = y |θ = x
)

derived above, we

can further construct the probability mass function P
(

θ̃ = y

)

of random variable θ̃ by enumerating all the possible numbers

of requests that a user initially makes, namely,

P
(

θ̃ = y

)

=

θmax
∑

x=1

P
(

θ̃ = y |θ = x
)

P (θ = x) . (4)

Substituting equations (2) and (3) into (4), we obtain the full

representation of P
(

θ̃ = y

)

as

P
(

θ̃ = y

)

=



P (θ = y) 1 ≤ y < r j ,

P (θ = y)

(

∑b j

d=y
πd
j

)

+

∑θmax

x=y+1
P (θ = x) π

y

j

r j ≤ y ≤ θ̃max .

(5)



P
(

φ j ≥ αx |θ̃ = y, θ = x
)

=

n j−1
∑

k=0

(

n j − 1

k

)

δk (1 − δ)n j−k−1 *
,

1

k + 1

k+1
∑

h=1

P *
,
h−1
∑

l=1

θ̃l ≤ cj − αx+-
+
- (6)

P
(

φ j ≥ αx |θ̃ = y, θ = x
)

=

n j−1
∑

k=0

(

n j − 1

k

)

δk (1 − δ)n j−k−1 P *
,

k
∑

l=1

θ̃l ≤
( cj

αx
− 1

)

y+- (7)

The first and second term in equation (5) for r j ≤ y ≤ θ̃max

corresponds to the cases where at least y tokens are available

with y requests being made, and where only y tokens are

available with more than y requests being made, respectively.

We proceed to derive P
(

φ j ≥ αx |θ̃ = y, θ = x
)

in equation

(1). To this end, we will respectively model the two multiplex-

ing schemes, random selection and proportional allocation.

2) Modeling the regulator’s resource multiplexing scheme:

Since we assume that users are homogeneous, it suffices

to derive P
(

φ j ≥ αx |θ̃ = y, θ = x
)

from the perspective of

an individual user, who is referred to as the examined user

hereinafter. In what follows, we model random selection and

proportional allocation.

Random selection. Equation (6) at the top of this page

shows the analytical form of P
(

φ j ≥ αx |θ̃ = y, θ = x
)

under

random selection. First, the amount of resources that the

examined user can obtain is directly related to the number

of requests that also reach the regulator from other peer

users. We denote the number of such peer users by k in

equation (6), with the corresponding probability of occurrence

as
(

n j−1

k

)

δk (1 − δ)n j−k−1(recall that δ is the probability a user

makes at least one request), which are the first three terms

inside the outer summation of equation (6).

The random selection scheme can be equivalently described

as the following. The regulator keeps selecting a user uni-

formly at random to admit his/her requests until all the users’

requests are admitted or the residual capacity is used up. In

the latter case, the regulator will use its residual capacity

to partially satisfy the requests from the last selected user.

Following this scheme, given that there are k + 1 users in

total (including k peer users and the examined user) making

requests in the service class, the probability that the examined

user is the hth (1 ≤ h ≤ k + 1) user to be selected by the

regulator is 1/ (k + 1). Each peer user l (1 ≤ l ≤ h − 1)

has θ̃l requests reaching the regulator, where θ̃l is a random

variable that can be obtained from equation (5). The h − 1

previously selected users have
∑h−1

l=1
θ̃l requests reaching the

regulator in total. Therefore, the probability that this examined

user is admitted with no fewer than αx token units of resources

allocated is P
(

∑h−1
l=1
θ̃l ≤ cj − αx

)

.

Proportional allocation. Equation (7) at the top of this

page shows the analytical form of P
(

φ j ≥ αx |θ̃ = y, θ = x
)

under proportional allocation. Similar to random selection,

we examine the
∑k

l=1
θ̃l requests reaching the regulator made

by the k peer users. The range of
∑k

l=1
θ̃l is [k, k θ̃max ].

Recall that the examined user now has y requests reaching

the regulator. Here, y should be no smaller than αx to meet

the QoS requirement, as the index of the inner summation in

equation (1) shows. If
∑k

l=1
θ̃l is no more than cj − y, the total

number of requests received by the regulator does not exceed

its capacity. In this case, all the requests will be admitted,

and the examined user will get y token units of resources.

Otherwise, each user will get his/her share of the total capacity

cj proportional to his/her requested resources. In other words,

the amount of resources that the examined user receives is

cj y/(y +
∑k

l=1
θ̃l ). In view of the QoS metric, we need to

ensure that
cj

y +
∑k

l=1
θ̃l

y ≥ αx,

which yields

k
∑

l=1

θ̃l ≤
( cj

αx
− 1

)

y.

To sum up, given that k users in service class j have requests

in a time slot, the probability that the examined user can get

no fewer than αx token units of resources is

P *
,

k
∑

l=1

θ̃l ≤
( cj

αx
− 1

)

y+- ,

which is the last term inside the outer summation of equation

(7).

By sequentially substituting equations (2), (3), and (5) into

(6) or (7), and finally into (1), we obtain the analytical form

of qj . When referring to equation (1) as the analytical QoS

for burstable instances in the rest of this paper, we mean its

complete representation after all the above substitutions.

III. EQUILIBRIUM ANALYSIS

Given the service class configuration parameters bj , cj , and

r j , in the last section, we have derived the relationship between

the QoS qj that a service class j can deliver with respect to

its number of subscribers n j , as shown in equation (1). When

operating multiple service classes of burstable instances, the

cloud provider assigns a price pj for each service class j to

charge to the corresponding subscribers. In this section, we

continue to understand the users’ responses, i.e., their preferred

selections of service classes, to the prices issued by the cloud

provider. Specifically, let each user i ∈ N specify a coeffi-

cient ui that represents his/her valuation of the received QoS

(e.g., relationship between the received QoS and the resulting

application-level performance); the user will therefore harvest

a utility of uiqj by subscribing to service class j. Following

prior works in the network economics literature [22], [23], we

assume that each user’s ui value lies on a continuum with

range (0, γ]. Let f (x) be the cumulative distribution function



(CDF) of the random variable ui at x ∈ (0, γ]. Denote the

reward that user i earns by subscribing to service class j by

wi, j , which can be calculated by the user’s harvested utility

minus payment, i.e.,

wi, j = uiqj − pj . (8)

We focus on deriving the Nash equilibrium of users’ service

class selections. From an individual user i’s perspective, at

the Nash equilibrium, (s)he should receive more reward from

his/her selected service class, denoted by η(i), than from other

service classes, which can be mathematically written as

wi,η(i) ≥ max
{
wi, j, 0

}
,∀ j ∈ M\{η(i)}. (9)

Let η(i) = 0 if user i decides not to subscribe to any service

class. According to equation (9), this can happen if all the

service classes deliver negative rewards to this user.

Suppose a Nash equilibrium exists and has been reached.

(The existence of a Nash equilibrium will be proved in

Proposition 2 later in this section.) Each service class j has n j

subscribers and delivers a QoS of qj according to equation (1).

We next analytically characterize the relationship among n j ,

pj , qj , ui , and η(i), i ∈ N , j ∈ M, at the Nash equilibrium.

Our first result finds a sufficient condition that a service

class has no subscribers:

Lemma 1. Consider two service classes, j and k, where pj <

pk . If qj ≥ qk , then nk = 0 at equilibrium.

We know from Lemma 1 that for a service class that charges

a higher price but offers a lower QoS than another service

class at equilibrium, the former service class has essentially

no subscribers. The following corollary elaborates a similar

idea for two service classes that charge the same price.

Corollary 1. For two service classes, j and k, where pj = pk ,

if qj > qk , then nk = 0 at equilibrium.

As Corollary 1 suggests, if two service classes charge the

same price but offer different QoS at equilibrium, the service

class that offers a lower QoS has essentially no subscribers.

Note that we should prevent a service class from having no

subscribers at equilibrium because the cloud provider will

derive no profit from it. Therefore, we learn from Lemma 1

and Corollary 1 that the prices of service classes should be

properly set so that at the Nash equilibrium (i) a service class

that charges a higher price should also offer a higher QoS,

and (ii) the service classes that charge the same price should

offer the same QoS. In the rest of this section, we assume that

the prices of the service classes are set as aforementioned.

Without loss of generality, we index the service classes in

non-decreasing order with respect to the QoS that they offer

at equilibrium (i.e., qj ≤ qk , ∀ j < k and j, k ∈ M). Since

we properly set the prices, we have pj ≤ pk , ∀ j < k and

j, k ∈ M. Also, if pj = pk , j, k ∈ M, then qj = qk . Also,

we suppose that if two users, i and k with ui < uk , have

decided to subscribe to different service classes with the same

offered QoS (and thus the same price) at equilibrium, their

subscriptions follow η(i) < η(k).

From an individual user’s perspective, we continue to derive

which service class the user will subscribe to. In the next

lemma, we qualitatively illustrate the relationship between

users’ QoS valuations and their service class selections as a

necessary condition for a Nash equilibrium.

Lemma 2. Suppose user i selects service class η(i). For any

user k with a QoS valuation uk > ui , his/her service class

selection η(k) satisfies η(k) ≥ η(i).

We can also derive a sufficient condition when each user

has an incentive to subscribe to a service class.

Corollary 2. Each user will have an incentive to subscribe to

a service class at equilibrium (i.e., ∀i ∈ N , ∃ j ∈ M, wi, j ≥ 0)

if p1 = 0.

Lemma 2 shows that users’ service class selections are

monotonic with regard to their QoS valuations: users with

higher QoS valuations ui will subscribe to service classes

with higher QoS levels (i.e., higher indices) at equilibrium.

In other words, as users’ ui values lie on a continuum within

the region (0, γ], we can partition the region into multiple

non-overlapping intervals (0, v0), [v j−1, v j ), j ∈ M \ {M },
and [vM−1, vM ], where vM = γ. Users with QoS valuations

ui ∈ [v j−1, v j ), j ∈ M \ {M } will subscribe to service class

j, while users with ui ∈ [uM−1, uM ] will subscribe to service

class M . When p1 > 0, users with ui ∈ (0, v0) do not have

incentives to subscribe to any service class. On the other hand,

if p1 = 0, then v0 = 0 according to Corollary 2, meaning that

all users will have incentives to subscribe to service classes.

Given this quantitative description, we can fully characterize

users’ service class selections by determining the boundary

points {v j, j = 0, 1, ...,M −1} of the intervals, at which a user

is indifferent to the choice between the neighboring service

classes. We can establish the relationship between the number

of subscribers n j of service class j and the corresponding

boundary points v j−1 and v j as

n j = N
(

f
(

v j

)

− f
(

v j−1

))

, j ∈ M. (10)

Note that f (vM ) = f (γ) = 1. Define n0 as the number of users

who have no incentive to join any service class. We have

n0 = N f (v0). (11)

With the users’ service class selections defined above, we can

analytically characterize a Nash equilibrium as follows.

Proposition 2. Equation (12) serves as a necessary and

sufficient condition that pj , qj , v j , and n j , j ∈ M, constitute

a Nash equilibrium:

pj = v0q1 +

j
∑

k=2

vk−1

(

qk − qk−1

)

, ∀ j ∈ M. (12)

From an individual user’s perspective, the Nash equilibrium

finds the best trade-off in achieving a high utility uiqj with a

low payment pj , as defined in equation (9). If user i attaches

more importance to the received QoS, (s)he should also have

a higher affordability. The user can then take a higher value of

ui . At equilibrium, the user will be assigned to a service class

that delivers a higher QoS, which correspondingly charges a

higher price. Otherwise, the user should take a smaller value



of ui , which will potentially lead to a lower QoS delivered

and a lower price charged to the user at equilibrium.

From the cloud provider’s perspective, the Nash equilibrium

characterizes users’ corresponding responses (i.e., service class

selections) to the prices set by the provider. In the next

section, we will continue to study how to take advantage of

the knowledge of this equilibrium to set optimal prices.

IV. REVENUE MAXIMIZATION FOR THE CLOUD PROVIDER

The equilibrium derived from Section III provides an oppor-

tunity for the cloud provider to maximize its total revenue via

optimal pricing. More specifically, with prior knowledge of the

relationship between users’ service class selections and prices,

as given in Proposition 2, the cloud provider can indirectly

control the number of users in each service class via setting the

corresponding prices. Because the total revenue of the provider

is related to both the prices and the actual numbers of users

subscribed to the service classes, we can define a revenue

maximization problem to find the prices that maximize the

provider’s total revenue at the Nash equilibrium.

We optimize the provider’s total revenue given the service

class configurations bj , cj , and r j . Also, we consider n0 and

v0, which characterize the provider’s preference in accepting

users, as pre-specified by the cloud provider. (For example,

a provider that wishes to accommodate every user will take

v0 = 0, with all users being accepted.) We also let the

provider specify another parameter, τ, which indicates the

minimum QoS that each service class should offer. Let p =

[p1, . . . , pM ]T , q = [q1, q2, . . . , qM ]T , n = [n1, n2, . . . , nM ]T ,

and v = [v1, . . . vM−1]T be the concatenated vectors of decision

variables. With the performance model and user selection

equilibrium respectively defined in Sections II and III, we can

formulate the revenue maximization problem as

maximize
p,q,n,v

M
∑

j=1

pjn j , (13)

subject to constraints (1), (10), and (12),

qj ≤ qj+1, ∀ j ∈ M \ {M }, (14)

q1 ≥ τ, (15)

n j ∈ Z+, ∀ j ∈ M. (16)

In the objective function (13), the provider’s total revenue is

the summation over the revenue pjn j gained by each service

class j. Together with constraints (1) and (10), constraint (12)

defines the relationship among the decision variables at the

Nash equilibrium. Since vector q is sorted in a non-decreasing

order at equilibrium, without loss of generality, we configure

the service classes as bj ≤ bj+1, cj ≤ cj+1, r j ≤ r j+1, j ∈
M \ {M }. Therefore, it is natural to expect that service classes

with richer resources will offer higher QoS levels, as indicated

in constraint (14). Meanwhile, constraints (14) and (15) jointly

guarantee that the QoS qj offered by each service class j

satisfies the minimum requirement τ.

Following similar models from the network economics

literature [22], [23], we use users’ statistical characteristics

(i.e., existing the CDF of ui) for optimal pricing, as shown in

constraint (14). The realizations of users’ utility parameters ui

Algorithm 1 Approximation Algorithm for the Revenue Max-

imization Problem in Section IV.

Input: Service class configurations {bj, cj, r j, ∀ j ∈ M},
provider-specified parameters n0 and v0, user profiles N ,

δ, θ, QoS metric parameter α, and the pre-calculated

{nupper

j
, j ∈ M}.

Output: p, q, n, and v.

1: Relax constraint (16) as a continuous constraint:

n j ≥ 0, ∀ j ∈ M. (17)

2: Linearly or quadratically approximate constraint (1), and

also constraint (10) if it is neither linear nor quadratic.

3: Construct and solve the semidefinite relaxed formulation

of the revenue maximization problem.

4: Recover feasible solution p, q, n, and v to the original

revenue maximization problem from the optimal solution

to the semidefinite relaxed formulation in Step 3.

5: return p, q, n, and v.

may not exactly match the distribution f (·), where the actual

revenue achieved by the cloud provider may deviate from

that derived from our optimization problem. However, this

deviation will be negligible when the total number of users, N ,

is large. We can thus interpret the optimal revenue derived by

our optimization problem as the “expected” revenue (which we

still refer to as the revenue hereinafter for brevity) given users’

statistical characteristics. Our optimal solution also guarantees

constraint (14) with probability one for realizations of ui .

As a mixed-integer non-linear program, our revenue max-

imization problem is a hard problem in general, which can

incur a high computational complexity to get an optimal

solution by existing general-purpose solution algorithms for

mixed-integer programs in the literature (e.g., brute-force

search) [14]. Therefore, in the rest of this section, we also

propose Algorithm 1, an approximation algorithm, to compute

an approximate solution for the optimization problem in a

more efficient manner. Details of the algorithm are illustrated

as follows.

Taking a close look at the problem structure, we find

that the optimization problem is almost an inhomogeneous

quadratically constrained quadratic program (QCQP)6 except

that we know the exact form of neither the performance

model in equation (1) nor the CDF f (·) in equation (10).

Therefore, the core notion of our algorithm is to construct

an approximate QCQP of the optimization problem, and

then apply semidefinite relaxation (SDR) [24] to relax a few

constraints towards an efficiently solvable convex optimization

problem. Specifically, we first construct an inhomogeneous

QCQP of the original optimization problem by relaxing the

discrete constraint (16) as a continuous constraint (17) and

approximating constraint (1), indicated by step 1 and step 2,

respectively, in Algorithm 1. Depending on the actual form

of f (·), we also need to approximate constraint (10) if it is

neither linear nor quadratic (but not necessarily convex). We

6According to the definition in [24], an inhomogeneous QCQP is a QCQP
with linear terms in its objective function and/or constraints.



TABLE II: Service class configurations.

j r j b j c j Resource volume (vCPUs) agrntd

Maximum Mean

1 4 1, 152 100

1

0.05
2 6 1, 728 200 0.07 1%
3 8 2, 304 300 0.09 of a
4 14 4, 032 400 0.15 vCPU
5 19 5, 472 500 0.2

present Algorithm 1 as a general framework that allows any

approximation method for a linear or quadratic approximation.

The reason for not allowing higher-order approximations is

that the resulting formulation after approximation has to be

an inhomogeneous QCQP so that SDR can be applied in

the following steps. We will demonstrate in Section V the

detailed approximation method that we use in deriving our

numerical results. As SDR is a widely-used technique, we do

not elaborate the details of constructing a semidefinite relaxed

formulation in step 3 here, but refer interested readers to

Appendix D-A. The constructed convex optimization problem

can be efficiently solved by well-developed algorithms (e.g.,

interior-point methods [25]). In step 4, we recover a feasible

solution to the original revenue maximization problem from

the optimal solution to the semidefinite relaxed problem. The

detailed algorithm that we use for recovery is presented in

Appendix D-B.

V. NUMERICAL VALIDATION AND CASE STUDY

Above, we have defined our theoretical framework to

analytically model the performance of burstable instances,

analyze the user selection equilibrium, and maximize the

total revenue of a cloud provider. In this section, we first

numerically validate this framework and then demonstrate

how it can be used to price a public cloud. A Java-based

simulator is implemented to simulate the operations of token

buckets, regulators, and VMs. The simulations are driven by

the Microsoft Azure traces [5]. Released in 2017, these traces

are the latest characterization of VM resource utilization in

public clouds.

A. Validating Our Performance Model

We validate our performance model (Section II) in this sub-

section.

1) Simulation settings: The Microsoft Azure traces record

CPU utilization of VMs at a time granularity of five minutes.

Therefore, the duration of a time slot in our simulations is

also set to be five minutes, and a token refers to 1% of the

full capacity of a vCPU for five minutes. Five different service

class configurations, listed in Table II, are considered in the

simulations. We set the token bucket size bj as the number of

tokens earned in 24 hours, as done in Amazon EC2 [7] and

Microsoft Azure [8]. At the beginning of the time horizon,

every instance is assigned initial tokens for a smooth bootstrap,

the amount of which is equivalent to 1/6 of its token bucket

size. Meanwhile, since the average resource volume received

per instance is no larger than 20% of a vCPU according to

Table II, VMs with an average CPU utilization higher than

20% of a vCPU are excluded from the simulations because

they definitely cannot receive their requested resources and

are thus not suitable for our burstable instance services. (These

VMs may subscribe to traditional static instances due to their

high volumes of CPU resources requested.)

We sort the instance records in chronological order, and

randomly select 200 of the first 5, 200 records7 as samples to

estimate the parameter δ and the distribution of the random

variable θ ∈ [1, 99] ∩ Z+. We use these estimates to set

our parameters throughout this section. The remaining 5, 000

instance records are used as testing data in the simulations

in this sub-section. The δ value and the θ distribution are

respectively obtained by simply counting the number of times

that users have resource requests to make and the frequency

of appearance of different θ values in the 200 sample instance

records. Our obtained δ value is 0.9948. Interested readers

can refer to Figure 8 in Appendix E-A for the obtained

cumulative distribution of θ. We confirm from the traces that

P(θ = x) for random variable θ is positive at all integral points

x ∈ [1, 99]∩Z+, meaning that our prior assumption in Section

II-B holds. We also observe that the distribution of θ has a

long tail, indicating that the users’ resource requests are indeed

bursty (i.e., varying significantly over time). The α parameter

in the QoS metric and the QoS lower bound τ are set to be

0.9 and 0.1, respectively.

2) Results: Our performance model in Section II-B presents

the analytical performance of an individual service class given

its configuration parameters (bj , cj , and r j ) and the number

of subscribers (n j ). Due to the limited space, we take three

of the service classes from Table II, namely, j = 1, 3, and

5, as representatives to validate our performance model. Note

that all five service class configurations listed in Table II will

be considered as we move on to cloud-level simulations with

multiple service classes later in this section. We simulate a

total period of five days, and play back the workloads in

the traces. Our performance models with both the random

selection and proportional allocation schemes will be verified.

In Figure 2, we show comparisons between our analytical

(from Section II) and simulated QoS curves, both obtained

by varying the number of users n j from 1 to 100 for service

classes j = 1, 3, and 5, with random selection and proportional

allocation, respectively. In the simulated QoS curves, a point

corresponding to n j users shows the average QoS over 25

runs, with n j instance records randomly drawn from the 5, 000

testing records in each run. Qualitatively, it can be observed

from the figure that our analytical curves are close to their

simulated counterparts. The average error ratios of our ana-

lytical curves to the simulated curves for service class j = 1,

3, and 5 is 2.76%, 2.32%, and 0.49% for random selection,

and 2.96%, 2.92%, and 0.76% for proportional allocation,

respectively, which are relatively small. Thus, our analytical

performance model can both qualitatively and quantitatively

well approximate the actual QoS.

3) Insights: Next, we elaborate the insights delivered by

the QoS curves shown in Figure 2. Under the same service

7All of these 5, 200 instances start in the first time slot of the time horizon
and have durations longer than five days.
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Fig. 2: The analytical and simulated QoS curves obtained by

varying n j from 1 to 100 for service classes j = 1, 3, and 5,

whose parameters are listed in Table II. Both random selection

and proportional allocation are considered. The error ratios

of our analytical curves from (a) to (f) are 2.76%, 2.96%,

2.32%, 2.92%, 0.49%, and 0.76% In summary, our analytical

performance model can approximate the actual QoS.

class configuration (e.g., j = 1), the QoS achieved by random

selection and proportional allocation at n j = 1 is the same.

This is because when n j = 1, the examined user has no

other peer users to compete with for resources. Meanwhile,

the resource capacity at the regulator is always sufficient to

accommodate this user’s requests (i.e., cj ≥ θ̃max ). Therefore,

the QoS for n j = 1 represents the probability that α of a

user’s requests can traverse the token bucket, and such a QoS

is not influenced by the multiplexing scheme at the regulator

as long as cj ≥ θ̃max . On the other hand, with the increase of

n j , the QoS achieved by proportional allocation deteriorates

much faster than that achieved by random selection. This is

because under the proportional allocation scheme, when the

total number of requests received by the regulator exceeds

the resource capacity, each user gets an equal proportion of

his/her requested resources that are received by the regulator.

That is to say, if service class j’s regulator receives more than

cj/α requests in a particular time slot, none of the users’ QoS

requirements (i.e., receiving at least α of the user’s requested

resources) can be fulfilled in this time slot. However, if random

selection is applied to the same situation, some of the users

will be selected to receive their full requested resources, while

other users’ requests will be rejected. In this case, even if more

than cj/α requests arrive at the regulator, there will still be

some users whose QoS requirements can be satisfied.

The observations above imply a performance-fairness trade-

off behind the multiplexing schemes. When users’ QoS re-

quirements cannot be satisfied simultaneously, each user still

receives an equal proportion of his/her resource requests that

reach the regulator under the proportional allocation scheme,

although none of the users’ received resources can achieve

the QoS-required amount (i.e., α of the requested resources).

In contrast, users are no longer guaranteed to receive any

resources under the random selection scheme for this situation.

Only some of the users can receive their requested resources

with the corresponding QoS requirements satisfied, while the

remaining users will be allocated no resources at all.

To further illustrate the fairness of the multiplexing

schemes, we calculate the Gini coefficient8 on the ratio of

each user’s received resources to the requests that the regulator

receives for this user in a given time slot. Figure 3 reports the

average Gini coefficient with three service class configurations,

j = 1, 3, and 5, for both random selection and proportional

allocation when we vary n j from 1 to 100. Since users

receive the same proportion of their requests that reach the

regulator, the Gini coefficient for proportional allocation is

always 0. With random selection, it can be observed that when

the number of users in the service class (n j ) is small, the

corresponding Gini coefficient is close to 0 because each user

receives the full amount of resources that (s)he requests to the

regulator most of the time. However, with an increase of n j ,

the Gini coefficient also increases, as the regulator’s resource

capacity can no longer satisfy all users. In this case, only

a selected group of users are able to receive their requested

resources, making the proportions of received resources for

different users more diverse. Note that the average resources

received by each user over time is the same for the random

selection and proportional allocation schemes, but random

selection ensures users’ requests are occasionally matched.

B. Validating Our Equilibrium and Revenue Maximization

This sub-section validates our equilibrium analysis (Section

III) and revenue maximization scheme (Section IV).

1) Results: Consider that users’ QoS valuations ui follow

a uniform distribution within (0, 1]. The CDF at v j is thus

f (v j ) = v j, j = 0, 1, . . . ,M . (18)

Substituting equation (18) into (10), (11), and (12), we obtain

the analytical equilibrium representation.

Two classes of approaches can be applied to solve our

revenue maximization problem in Section IV, the general-

purpose methods for solving mixed-integer programs [14]

8The Gini coefficient is a widely used measure of dispersion on a set of
data. A Gini coefficient takes a fractional value within the range [0, 1], where
0 means the values of the elements in the data set are exactly equal to each
other, while 1 expresses the maximal inequality among the elements. Details
of the Gini coefficient can be found in [26].
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Fig. 4: Provider’s total revenue under different schemes by varying N .

(among which we use the brute-force search algorithm for the

simulations in this section), and the SDR-based Algorithm 1

specifically designed based on our problem structure. We will

evaluate the performance of both approaches. In the SDR-

based approach, a least-squares quadratic approximation is

used to approximate qj in Step 2 of Algorithm 1. Since qj

is non-increasing in n j , we first use a bi-section method to

find the maximum n j that can satisfy the QoS requirement τ,

denoted by n
upper

j
, where qj

(

n j

)

< τ, ∀n j > n
upper

j
. Note

that n
upper

j
will also be used later in constructing heuristic

benchmarks to be compared with our proposed approaches.

Next, we numerically calculate qj (n j ) for n j = 1, n j =

n
upper

j
, and all the n j that are integral multiples of 20. For

example, if n
upper

j
= 90, we calculate qj (n j ) for n j = 1, 20,

40, 60, 80, and 90. These numerically calculated qj (n j ) points

are used for the least-squares quadratic approximation. We will

demonstrate in the upcoming results that this simple approxi-

mation method can provide sufficiently good results. Note that

our Algorithm 1 can be combined with any approximation

algorithm that returns linear or quadratic approximations of

qj (n j ).

We compare the results derived from the general-purpose

method (referred to as the optimal approach hereinafter) and

SDR-based Algorithm 1 (referred to as the SDR approach

hereinafter) with two benchmarks: the uniform benchmark

and the Gaussian benchmark, both of which heuristically

determine n j , j ∈ M. Note that n0 users with the lowest

QoS valuations ui do not have incentives to subscribe to

service classes; we then set n0/N = 0.1. Among the remaining

N − n0 users, the basic idea for the uniform benchmark is

to admit an equal number of users to each service class.

Nevertheless, if (N − n0) /M > n
upper

j
for service class j,

i.e., a strict uniform allocation would lead to infeasible QoS

in class j, we assign n
upper

j
users to this service class, and

equally assign the remaining users to other service classes with

richer resources (i.e., with indices larger than j). The uniform

benchmark is formally presented as Algorithm 3 in Appendix

E-B. The Gaussian benchmark determines n j , j ∈ M \ {M }
sequentially, starting from j = 1. To determine an n j , we

first draw a random number ν from a Gaussian distribution

with mean (N −∑ j−1

k=0
nk )/ (M − j + 1) and standard deviation

(N − ∑ j−1

k=0
nk )/3 (M − j + 1). We let n j = ν if ν ≤ n

upper

j
,

and n j = n
upper

j
otherwise. Finally, nM is calculated by

equation (10). The Gaussian benchmark is formally presented

as Algorithm 4 in Appendix E-B. By employing the Gaussian

benchmark, we aim to randomly add some non-linearity to

the solution and see if a better performance can be achieved.

After vector n is worked out for the two benchmarks, other

decision variables p, q, and v are then determined by equations

(1), (10), and (12) to ensure that they constitute a Nash

equilibrium. Other simulation settings stay unchanged from

those in Section V-A2. The simulation parameters are properly

selected to ensure the feasibility of the revenue maximization

problem.

When varying N , the total number of users, the correspond-

ing revenues generated by our proposed approaches and the

benchmarks for random selection and proportional allocation

are shown in Figure 4a and Figure 4b, respectively. It can be

seen from the figures that the optimal approach always derives

the maximum revenue. Our proposed SDR approach is also a

good approximation of the optimal approach.

2) Insights: Table III lists the prices (pj ), analytical QoS

(qj ), numbers of admitted users (u j ), and the QoS valuation

boundary points (v j ) generated by our proposed approaches

and the benchmarks for each service class j when N = 250.

(Due to the limited space, we take the statistics of N = 250 as

an example.) This table offers us insights into three interesting

observations from Figure 4.

First, we elaborate the reasons why our proposed approaches

outperform the benchmarks, as shown in Figure 4. It can be

observed from Table III that our approaches attach more im-

portance to improving the QoS offered by service classes with

richer resources (i.e., with larger indices) by restricting them

to fewer users. These users also have higher QoS valuations

ui according to Lemma 2, resulting in higher utilities (uiqj )

being achieved. They are thus willing to pay higher prices,

ultimately leading to an increase in the provider’s revenue.

The second observation from Figure 4 is that random

selection derives a slightly higher optimal revenue than pro-

portional allocation when N ≥ 230, while the opposite is true

when N < 230. To understand this better, we additionally list

the service-class-wise results obtained by the optimal approach

for N = 200 in Table IV. Note that the price for a service

class depends on the differences in the offered QoS between it

and its neighboring service classes according to equation (12).



Intuitively, a service class charges more if it “distinguishes”

itself more from its lower-level service classes in terms of

QoS. Meanwhile, Figure 2 shows that given the same number

of users in a service class, random selection can offer a better

QoS than proportional allocation. Therefore, when the total

number of users N is not large (e.g., N = 200), proportional

allocation offers worse QoS for low-level service classes (with

small indices) than random selection. In high-level service

classes (with large indices), however, there are still few users

and thus little competition among users so that proportional

allocation can still offer good QoS. In this case, the inter-class

QoS differences for proportional allocation are higher than

those for random selection, ultimately leading to a higher total

revenue. However, with the increase of N , the QoS offered

by low-level service classes for proportional allocation will

reach their lower bounds τ. To accommodate more users (e.g.,

when N = 250), the QoS of high-level service classes must

be impaired. On the contrary, random selection can still offer

high QoS for high-level service classes. In this case, random

selection produces larger inter-service-class QoS differences

and thus a higher revenue.9

Our third observation from Figure 4 is that as N increases,

the total revenues derived by the benchmarks get closer to the

optimal revenue for proportional allocation, but get farther

away for random selection. Note that both our proposed

approaches and the benchmarks should guarantee τ, the lower

bound of the QoS offered by service classes. We define

n
upper

j
as the corresponding maximum number of users that

service class j can admit to guarantee τ. Figure 2 shows

that n
upper

j
is lower for proportional allocation than it is for

random selection with the same service class configurations.

The maximum number of users that proportional allocation

can admit under Table II’s service class configurations is
∑M

j=1 n
upper

j
= 297. In contrast,

∑M
j=1 n

upper

j
is larger than

1, 000 for random selection. Therefore, when N is getting

closer to 297, especially within [220, 250], as shown in Figure

4b, the decision space (i.e., the number of feasible combi-

nations) in n for proportional allocation is shrinking, while

that for random selection is still expanding. Thus, as dis-

cussed above, the optimal revenue for proportional allocation

increases less than for random selection with the number of

users. Expanding the decision space, to the contrary, enlarges

the range, and reduces the chances that good performances

will be generated by the benchmarks. Take N = 250 for

proportional allocation, as shown in Table III, as an example.

The number of users admitted by service class 1 reaches its

upper bound n
upper

1
= 39 for both our proposed approaches

and the benchmarks, meaning n1 is always at its optimal value.

3) Impact of n0 on total revenue: From the provider’s

perspective, n0/N can be interpreted as the rejection rate

of users. A smaller n0/N means more users whose QoS

9Practically, whether to implement random selection or proportional allo-

cation depends on the cloud provider’s understanding of the market as to what
the corresponding parameter N and distribution of ui will be. For example,
proportional allocation may attract fewer users than random selection due
to the lower absolute QoS offered. Interested readers may refer to research
on consumer behaviors for this. The aim of this paper is to help providers
understand the performance and set prices for burstable instances given the
system parameters.

TABLE III: Service-class-wise results for the N = 250 case

in Figure 4. The result that generates the median revenue over

25 runs for the Gaussian scheme is reported.

j 1 2 3 4 5

Random Selection

Optimal

p j 0.0142 0.3409 0.4488 0.4768 0.4799
q j 0.1419 0.7514 0.9512 0.9935 0.9972
n j 109 1 31 38 46
v j 0.5360 0.5400 0.6640 0.8160 1.0000

SDR

p j 0.0184 0.2657 0.2855 0.4136 0.4166
q j 0.1841 0.7514 0.7956 0.9919 0.9957
n j 84 3 51 39 48
v j 0.4360 0.4480 0.6520 0.8080 1.0000

Gaussian

p j 0.0336 0.1071 0.1344 0.3871 0.3917
q j 0.3362 0.5950 0.6515 0.9948 1.0000
n j 46 50 63 37 29
v j 0.2840 0.4840 0.7360 0.8840 1.0000

Uniform

p j 0.0344 0.1218 0.2198 0.2878 0.3063
q j 0.3437 0.6558 0.8690 0.9752 0.9978
n j 45 45 45 45 45
v j 0.2800 0.4600 0.6400 0.8200 1.0000

Proportional Allocation

Optimal

p j 0.0113 0.0187 0.2748 0.4214 0.4483
q j 0.1129 0.1418 0.7085 0.9433 0.9771
n j 39 49 43 43 51
v j 0.2560 0.4520 0.6240 0.7960 1.0000

SDR

p j 0.0113 0.0293 0.2071 0.4098 0.4847
q j 0.1129 0.1835 0.5803 0.9010 0.9928
n j 39 48 46 46 46
v j 0.2560 0.4480 0.6320 0.8160 1.0000

Gaussian

p j 0.0113 0.0989 0.2710 0.2963 0.2965
q j 0.1129 0.4552 0.8574 0.9010 0.9012
n j 39 43 38 46 59
v j 0.2720 0.4480 0.6320 0.8280 1.0000

Uniform

p j 0.0113 0.0551 0.1855 0.3742 0.4619
q j 0.1129 0.2840 0.5803 0.8827 0.9908
n j 39 46 46 47 47
v j 0.2560 0.4400 0.6240 0.8120 1.0000

TABLE IV: Service-class-wise results for the N = 200 case

in Figure 4 by the optimal approach.

j 1 2 3 4 5

p j 0.0176 0.3284 0.4406 0.4656 0.4667
Random q j 0.1758 0.7514 0.9572 0.9975 0.9989
Selection n j 88 1 15 34 42

v j 0.5400 0.5450 0.6200 0.7900 1.0000

p j 0.0113 0.0198 0.4599 0.4862 0.4871
Proportional q j 0.1129 0.1418 0.9568 0.9975 0.9987
Allocation n j 39 49 21 31 40

v j 0.2950 0.5400 0.6450 0.8000 1.0000

valuations satisfy ui ∈ [n0/N, γ] will be admitted by service

classes at equilibrium. To understand how n0 influences the

revenue, we vary n0 with N fixed as 150 and 250, and report

the corresponding optimal revenues in Figure 5 for random

selection. Due to the limited space, results for proportional

allocation are not presented as they are similar to those for

random selection. In Figure 5, when n0/N starts to increase

from 0, the overall ui values of the admitted users also

increase. As fewer users are admitted, the offered QoS qj

increases for service classes. According to equation (8), higher

uiqj values leave more room for providers to set higher prices

pj , so the corresponding revenue rises. On the other hand,

when n0/N is too high, the number of admitted users becomes
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Fig. 5: Optimal total revenues under

different n0/N for random selection.
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Fig. 6: Hourly revenue over five days for the case study in Section V-C.

extremely low. Setting higher prices can no longer compensate

for the smaller number of users admitted, ultimately leading

to a decrease in the total revenue.

C. Pricing a Public Cloud: A Use Case Scenario

In this sub-section, we apply our framework to pricing a

public cloud for burstable instance services. The Microsoft

Azure traces are used as the VM workloads. Through trace

analysis, we find that although VMs are dynamically created

and terminated over time, the number of simultaneously run-

ning VMs is periodic on a daily basis. Therefore, we regard

the workload records from day 1 and day 2 as historical data,

which we use to calculate the prices. We then run simulations

to evaluate our derived prices using the workload records in a

five-day period from day 3 to day 7.

To accommodate the large number of concurrently running

VMs in the traces, we duplicate each service class j in

Table II 675 times, and refer to such a duplicated service

class as a type- j service class. In this case, we have 3, 375

service classes from five types in total. Other parameters stay

the same as those in Section V-B. We set N = 135, 000,

corresponding to the peak number of VMs in the system over

time. We then partition the service classes into 675 groups,

with five different types of service classes and 200 (= N/675)

users in each group. A group can be implemented using 17

(= agrntd · N/675 +
∑M

j=1 cj , where agrntd
= 0.01) vCPUs.

Since a group represents a separate set of VMs, a VM’s

received QoS depends only on the behaviors of other VMs

within the same group. We can thus calculate the prices for

our proposed approaches and the benchmarks within a group

at equilibrium, the same as in Section V-B. Since groups are

homogeneous, all type- j service classes essentially have the

same pj , qj , n j , and v j . The simulation parameters are selected

to ensure that we eventually get non-trivial results, which are

not extreme cases and can gain us insights.

The cloud assigns VMs to service classes upon their cre-

ations and removes them upon their terminations. When a new

VM i needs to be created, we first check its ui to decide

which service class type it should go to. The VM is then

assigned to the service class that has the minimum number

of active VMs within this type, i.e., VMs that are currently

running. As the QoS and prices are designed with regard to

the peak demand, the actual number of VMs in a service

class is smaller than the designed number most of the time.

In this case, VMs can receive higher actual QoS than that

guaranteed by our pricing approach during off-peak periods.

When an existing VM terminates, we simply remove it from

its service class. We regard our derived prices as the payment

of an active VM for a time slot’s (i.e., five minutes’) duration.

For example, a VM subscribing to service class j for an hour

should pay 20pj in total. We plot the hourly-based revenues

in the time horizon under both our proposed approaches and

the benchmarks in Figure 6. Our optimal approach is shown

to yield the best revenues for both random selection and

proportional allocation. Our SDR approach also generates the

second-best revenues as a good approximation.

VI. RELATED WORK

Existing works on burstable instances fall into two classes.

On the infrastructure level, the first class of works studies

how the CPU credit mechanism works. Through extensive

measurements, Leitner et al. [27] verify that the CPU credit

mechanism works as advertised by cloud providers (e.g., Table

I). Wang et al. [13] further point out that this mechanism

essentially follows a token bucket model [15], [16], [17]. This

finding has motivated us to model burstable instances and

analytically study the performance. To bridge the gap between

the performance of burstable instances and their commercial

operation, we continue to study how a cloud provider should

price burstable instances for the maximum revenue. To the best

of our knowledge, we are the first to study optimal pricing for

burstable instances.

The second class of existing works focuses on use cases of

burstable instances. Wang et al. [10] present the deployment

of backup services on burstable instances, while Baarzi et

al. [28] present another deployment of web servers and in-

memory cache. Also, both Yan et al. [29] and Ali et al.

[30], [31] discuss how to shape the CPU resource utilization

of applications to make full use of the initial CPU credits

assigned to burstable instances. This class of works on the ap-

plication level is different from ours. From a cloud provider’s

perspective on the infrastructure level, we have no control over

the behaviors of applications, but just take and process their

resource requests.



Burstable instances and the correspondingly introduced re-

source provisioning mechanism have been attracting more and

more attention from the research community. While burstable

instances were initially designed for computation resources,

Park et al. [32] extend them to storage services. In their pro-

posed system, I/O credits, which follow the same philosophy

as CPU credits of burstable instances, take the role to regulate

users’ received storage resources.

Similar techniques to those employed in our work, such as

token bucket models and optimal pricing, have been used to

address different problems in the literature. For example, token

bucket models have been extensively adopted to regulate data

traffic [15], [16], [17]. Other works have priced service classes

with differentiated QoS levels in data networks [23], [33].

However, due to different system dynamics and characteris-

tics, these results cannot be directly applied to our burstable

instance scenario. Similarly, the distinct features of burstable

instances compared to traditional static cloud instances prevent

existing models on cloud pricing (e.g., [34] and [35]) from

being applied to our scenario.

Some early works have proposed alternative resource pro-

visioning ideas to tackle bursty workloads in clouds. Wang et

al. [36] propose to aggregate the bursty workloads in a cloud

broker for cost savings to users. The broker reserves cheap

long-term resources from the cloud provider and profits from

the aggregation. A similar notion has been studied in [37], but

the brokerage strategy follows a different business model and

system characteristics to ours. The model we study stems from

current practices in the industry. Another stream of works has

investigated, from the applications’ perspective, how resource

requests should be made via proactive prediction [38], [39]

or online algorithmic decision processes [40], [41], while our

work focuses on how resource requests already made by users

can be accommodated by a cloud provider.

VII. CONCLUSION

This paper presents a framework to analytically model the

performance of burstable instances given service class config-

urations (Section II), characterize users’ selections of service

classes at the Nash equilibrium (Section III), and maximize

the provider’s total revenue by finding the optimal prices at

equilibrium (Section IV). We validate our framework via trace-

driven simulations. The results show that our performance

model can estimate the QoS received by burstable instances

with an average error ratio lower than 3%, and our revenue

maximization scheme can increase the provider’s revenue

compared to heuristic methods (Section V).

As the first to study burstable instances from a theoretical

perspective, we regard this work as an initial framework that

captures the fundamental features of burstable instances. To

extend the work, more diverse settings can be integrated into

our framework. For example, we can consider a hybrid cloud

that offers both static and burstable instances. By allocating

different proportions of the resources to the two types of

instances, users’ selection behaviors and the cloud provider’s

optimal revenue could be further studied. Another direction

is to continue to study the theoretical bound of our proposed

SDR-based algorithm for revenue maximization.
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APPENDIX A

EXAMPLES ON TRANSLATING OUR

INFRASTRUCTURE-LEVEL QOS TO THE PERFORMANCE OF

USER-DEPLOYED APPLICATIONS

Similar to other studies on IaaS clouds, our QoS metric

quantifies the infrastructure-level resource availability. With

the control of low-level resources, such as the CPU, IaaS

cloud users deploy their applications onto the infrastructure

(i.e., the VMs) provided by the IaaS clouds. Since an IaaS

cloud provider has neither the knowledge of what applications

the users are running on their VMs, nor the control of these

applications, the QoS metric for an IaaS cloud does not

directly capture the performance of user-deployed applications

(e.g., the completion time of a Hadoop job [42]). Having the

full knowledge of his/her deployed applications, the user may

translate the infrastructure-level QoS to the application-level

performance to get a better understanding of the quality of

an IaaS cloud service. Although such a translation is out

of the scope of our work, which focuses on the resource

provisioning of an IaaS cloud, we still shed some light on how

this translation may be done for the two sample applications

mentioned in Section I, namely, hot standbys and periodically

updating machine learning models.

Hot standbys and updating machine learning models belong

to a class of applications that tolerate partial execution [43].

In other words, although these applications may receive only a

part of their requested resources from the underlying burstable

instances, they can run with these partial resources and achieve

a certain performance.

The function of a hot standby is to execute as many work-

loads as possible for the main service when the main service

is down, in order to reduce the amount of pending workloads

when the main service recovers. From our infrastructure-level

QoS, the user, by making resource requests, can have an idea

of how many of them will be accepted. Although the user may

only receive a part of his/her requested resources, his/her hot

standby can still use these resources to process some of the

workloads submitted to the main service, and the application-

level performance improves when more workloads can be

processed by the hot standby to mitigate the workload of the

main service when it is recovered.

In the example of training a machine learning model, its

performance can be quantified by the accuracy of the trained

model. In many cases, the training process is iterative and

the more iterations that the training process undergoes, the

higher the accuracy of the trained model will be. Therefore,

the actual amount of resources that the user receives in the

infrastructure level can translate to the number of iterations

that the machine learning model will be trained with, and

finally be translated to the accuracy of the trained model. For

example, if a user receives 90% of his/her requested resources,

(s)he can complete 90% of the desired iterations and get within

less than 10% of the targeted training error.10

We should acknowledge that in real-world systems, users’

applications may not tolerate partial execution (e.g., with the

10The marginal improvement in the model accuracy usually decreases with
the number of iterations increases [44], [45].

job completion time as the performance indicator). Therefore,

the QoS translation from the infrastructure level to the applica-

tion level may be more complicated than what we have stated

above.

APPENDIX B

PROOF OF PROPOSITION 1 IN SECTION II

Proof. The proposition defines the transition probability from

state d in the current time slot to state h in the next time slot

under the following three different scenarios, with the visual-

izations of their state transition probabilities Pd→h shown in

Figure 7.

(i) When r j ≤ d ≤ θmax − 1, we first examine the case

where the user has resource requests in the current time slot.

Depending on θ, the number of requests, there are two possible

sub-scenarios for the state transition:

• When θ ≤ d, the number of currently available tokens,

d, is sufficient to satisfy all the requests. Therefore, θ

tokens will be consumed in the current time slot, and

r j more tokens will be accumulated in the beginning of

the next time slot, so the Markov chain will transit to

state h = d − θ + r j . We re-write the above equation with

regard to θ as θ = d + r j − h. Therefore, with probability

δ ·P(θ = d+ r j − h), the Markov chain transits from state

d to state h, with the range of h as r j ≤ h ≤ d + r j − 1.

• When θ > d, d out of θ requests will be fulfilled by the

currently available tokens, with the rest of the requests

being discarded. After accumulating r j new tokens in the

beginning of the next time slot, the Markov chain will

transit to state h = r j . The probability for such a transition

is δ ·∑θmax

k=d+1
P(θ = k).

If the user does not have resource requests in the current

time slot with probability 1− δ, the Markov chain will transit

from state d to state h = d+r j in the next time slot, because no

tokens are consumed in the current time slot, and r j tokens are

accumulated in the beginning of the next time slot. Meanwhile,

the Markov chain cannot transit to states h > d+r j+1. To sum

up, the state transition probabilities when r j ≤ d ≤ θmax − 1

are written as

Pd→h =



δ ·∑θmax

k=d
P(θ = k) h = r j,

δ · P
(

θ = d + r j − h
)

r j + 1 ≤ h

≤ d + r j − 1,

1 − δ h = d + r j,

0 otherwise.

(ii) When θmax ≤ d ≤ bj − r j , we always have sufficient

tokens to satisfy requests if there are such requests sent by the

user with probability δ. In this case, The Markov chain will

transit from state d to state h = d − θ + r j with probability

δ ·P(θ = d+r j −h). If there are no requests sent by the user in

the current time slot with probability 1− δ, the Markov chain

will transit from state d to state h = d+ r j . The Markov chain

cannot transit to states h < d + r j − θmax or h > d + r j − 1. In

summary, the state transition probabilities when θmax ≤ d ≤
bj − r j are written as





class j + 1, which means v jqj+1 − pj+1 ≥ v jqj − pj . If

ui < v j , the user will subscribe to service class j, which means

limui→v−
j

(

uiqj − pj

)

≥ limui→v−
j

(

uiqj+1 − pj+1

)

. Therefore,

at the turning point v j , we should have

v jqj − pj = v jqj+1 − pj+1, ∀ j ∈ M \ {M }. (19)

The same notion holds for boundary point v0, so that

v0q1 − p1 = 0. (20)

We can thus recursively write equations (19) and (20) with

regard to pj from j = 1 to j = M − 1 as equation (12). As a

result, equation (12) holds at the Nash equilibrium.

Sufficiency: Consider a user i with his/her QoS valuation

as ui . If ui < v0, according to the definitions of n j and v j in

equation (12), this user will have no incentive to subscribe to

any service class because all the service classes will deliver

negative rewards to this user. As shown in equation (9), this is

by definition the Nash equilibrium and the sufficiency is thus

proved for this particular case.

We continue to focus on cases where ui ≥ v0. According

to the definitions of n j and v j in equation (12), suppose this

user should subscribe to a particular service class j, where

ui ∈ [v j−1, v j ] if j = M and ui ∈ [v j−1, v j ) otherwise. We

prove the sufficiency by contradiction. Suppose pj , qj , v j , and

n j , j ∈ M, satisfy equation (12) but do not constitute a Nash

equilibrium. In other words, user i will subscribe to service

class j ′, where j ′ , j, at the Nash equilibrium. According to

the definition of a Nash equilibrium, as shown in equation (9),

we should have

wi, j − wi, j′ =
(

uiqj − pj

)

−
(

uiqj′ − pj′
)

< 0. (21)

In what follows, we respectively delve into the two cases

where j < j ′ and j > j ′.
(i) When j < j ′ ≤ M , we have ui < v j . We can then

get equations (22a) to (22k) shown on the next page, where

equation (22c) is obtained by substituting equation (12) into

equation (22b) and equations (22d), (22f), (22h), and (22k)

are obtained by ui < v j < vk , ∀k > j and qk ≤ qj′ , ∀k < j ′.
From equations (22a) to (22k), we know that wi, j −wi, j′ ≥ 0,

which contradicts our prior assumption in equation (21) that

wi, j − wi, j′ < 0.

(ii) When 1 ≤ j ′ < j, we have v j−1 ≤ ui . We can then

get equations (23a) to (23k) shown on the next page, where

equation (23c) is obtained by substituting equation (12) into

equation (23b) and equations (23d), (23f), (23h), and (23k)

are obtained by ui ≥ v j > vk , ∀k < j and qk ≥ qj′ , ∀k > j ′.
From equations (23a) to (23k), we know that wi, j −wi, j′ ≥ 0,

which contradicts our prior assumption in equation (21) that

wi, j − wi, j′ < 0.

�

APPENDIX D

DETAILS OF STEPS 3 AND 4 IN ALGORITHM 1

A. Constructing a Semidefinite Relaxed Problem in Step 3

Let vector s = [pT qT nT vT ]T be the concatenated vector

of the decision variables in the optimization problem. We can

write the optimization problem after the completion of Step 2

in Algorithm 1 in the following form:

(inhomogeneous QCQP)

maximize
s

sTG(13)s

subject to sTG
(1)
j

s + 2sTg
(1)
j
= β

(1)
j
, ∀ j ∈ M,

sTG
(10)
j

s + 2sTg
(10)
j
= β

(10)
j
, ∀ j ∈ M,

sTG
(12)
j

s + 2sTg
(12)
j
= 0, ∀ j ∈ M,

sTG
(14)
j

s + 2sTg
(14)
j
≤ 0, ∀ j ∈ M \ {M },

sTG(15)s + 2sTg(15) ≥ τ,
sTG

(17)
j

s + 2sTg
(17)
j
≥ 0, ∀ j ∈ M,

where G
(k )
j

is the coefficient matrix of the quadratic term in

constraint (k) with index j, while g
(k )
j

is the coefficient vector

of the linear term and β
(k )
j

is the constant term. Particularly, we

have no j index in the objective function and constraint (15),

so G(13) and G(15) directly represent the coefficient matrices

of the quadratic terms in the objective function (13) and

constraint (15), respectively. We refer to constraints (1) and

(10) in the above inhomogeneous QCQP formulation as their

convex forms after the approximations in Step 2 of Algorithm

1. To apply SDR to the inhomogeneous QCQP formulation,

we first need to transform it to a homogeneous QCQP.11 To

this end, we first introduce an additional decision variable

t that satisfies t2
= 1. Let vector z = [sT t]T be the new

decision variable vector. To merge the linear term 2sTgk
j

into

the quadratic term sTG
(k )
j

s, we introduce a new coefficient

matrix H
(k )
j

for each constraint in the inhomogeneous QCQP

formulation so that

H
(k )
j
=


G

(k )
j

g
(k )
j

g
(k )T
j

0

 .

We can therefore re-write the optimization problem with z as

the decision variable vector:

(homogeneous QCQP)

maximize
z

zTH(13)z

subject to zTH
(1)
j

s = β
(1)
j
, ∀ j ∈ M,

zTH
(10)
j

z = β
(10)
j
, ∀ j ∈ M,

zTH
(12)
j

z = 0, ∀ j ∈ M,

zTH
(14)
j

z ≤ 0, ∀ j ∈ M \ {M },
zTH(15)z ≥ τ,
zTH

(17)
j

z ≥ 0, ∀ j ∈ M
zTH(t )z = 1,

where H(t ) is a matrix with only one non-zero entry valued

1 at the bottom right. The constraint associated with H(t )

guarantees that t2
= 1. Denote z̃ = [s̃T t̃]T as the optimal

solution to the homogeneous QCQP formulation. If t̃ = 1,

s̃ is also an optimal solution to the inhomogeneous QCQP

11According to the definition in [24], a homogeneous QCQP is a QCQP
with solely quadratic terms in both its objective function and constraints.



wi, j − wi, j′ =
(

uiqj − pj

)

−
(

uiqj′ − pj′
)

(22a)

=

(

uiqj − uiqj′
)

+

(

pj′ − pj

)

(22b)

= ui
(

qj − qj′
)

+
*.
,v j

(

qj+1 − qj

)

+

j′
∑

k= j+2

vk−1

(

qk − qk−1

)+/
- (22c)

≥ v j

(

qj − qj′
)

+
*.
,v j

(

qj+1 − qj

)

+

j′
∑

k= j+2

vk−1

(

qk − qk−1

)+/
- (22d)

= v j

(

qj+1 − qj′
)

+
*.
,v j+1

(

qj+2 − qj+1

)

+

j′
∑

k= j+3

vk−1

(

qk − qk−1

)+/
- (22e)

≥ v j+1

(

qj+1 − qj′
)

+
*.
,v j+1

(

qj+2 − qj+1

)

+

j′
∑

k= j+3

vk−1

(

qk − qk−1

)+/
- (22f)

= v j+1

(

qj+2 − qj′
)

+
*.
,v j+2

(

qj+3 − qj+2

)

+

j′
∑

k= j+4

vk−1

(

qk − qk−1

)+/
- (22g)

≥ ......
≥ v j′−2

(

qj′−2 − qj′
)

+

(

v j′−2

(

qj′−1 − qj′−2

)

+ v j′−1

(

qj′ − qj′−1

))

(22h)

= v j′−2

(

qj′−1 − qj′
)

+ v j′−1

(

qj′ − qj′−1

)

(22i)

≥ v j′−1

(

qj′−1 − qj′
)

+ v j′−1

(

qj′ − qj′−1

)

(22j)

= 0. (22k)

wi, j − wi, j′ =
(

uiqj − pj

)

−
(

uiqj′ − pj′
)

(23a)

=

(

uiqj − uiqj′
)

+

(

pj′ − pj

)

(23b)

= ui
(

qj − qj′
)

+
*.
,v j−1

(

qj−1 − qj

)

+

j−1
∑

k= j′+1

vk−1

(

qk−1 − qk
)+/
- (23c)

≥ v j−1

(

qj − qj′
)

+
*.
,v j−1

(

qj−1 − qj

)

+

j−1
∑

k= j′+1

vk−1

(

qk−1 − qk
)+/
- (23d)

= v j−1

(

qj−1 − qj′
)

+
*.
,v j−2

(

qj−2 − qj−1

)

+

j−2
∑

k= j′+1

vk−1

(

qk−1 − qk
)+/
- (23e)

≥ v j−2

(

qj−1 − qj′
)

+
*.
,v j−2

(

qj−2 − qj−1

)

+

j−2
∑

k= j′+1

vk−1

(

qk−1 − qk
)+/
- (23f)

= v j−2

(

qj−2 − qj′
)

+
*.
,v j−3

(

qj−3 − qj−2

)

+

j−3
∑

k= j′+1

vk−1

(

qk−1 − qk
)+/
- (23g)

≥ ......
≥ v j′+1

(

qj′+2 − qj′
)

+

(

v j′+1

(

qj′+1 − qj′+2

)

+ v j′
(

qj′ − qj′+1

))

(23h)

= v j′+1

(

qj′+1 − qj′
)

+ v j′
(

qj′ − qj′+1

)

(23i)

≥ v j′
(

qj′+1 − qj′
)

+ v j′
(

qj′ − qj′+1

)

(23j)

= 0. (23k)



formulation. Otherwise, if t̃ = −1, −s̃ is an optimal solution

to the inhomogeneous QCQP formulation.

Let Z = zzT . Observe that

zTH
(k )
j

z = Tr
(

zTH
(k )
j

z
)

= Tr
(

H
(k )
j

zzT
)

= Tr
(

H
(k )
j

Z
)

,

where Tr (·) denotes the trace of a matrix. The above rela-

tionship allows us to equivalently transform the homogeneous

QCQP formulation to a rank-constrained semidefinite program

(SDP) as follows:

(rank-constrained SDP)

maximize
Z

Tr
(

H(13)Z
)

subject to Tr
(

H
(1)
j

Z
)

= β
(1)
j
, ∀ j ∈ M,

Tr
(

H
(10)
j

Z
)

= β
(10)
j
, ∀ j ∈ M,

Tr
(

H
(12)
j

Z
)

= β
(12)
j
, ∀ j ∈ M,

Tr
(

H
(14)
j

Z
)

≤ 0, ∀ j ∈ M \ {M },

Tr
(

H(15)Z
)

≥ τ,
Tr

(

H
(17)
j

Z
)

≥ 0, ∀ j ∈ M,

Tr
(

H(t )Z
)

= 1,

Rank(Z) = 1.

Note that the last constraint regulates the rank of the Z

matrix to be 1, so that we are able to recover the original

optimal z∗ vector from the optimal Z∗ matrix. Observe that

the only non-convex constraint in the rank-constrained SDP

formulation is the rank constraint. Therefore, the core idea

of SDR is to relax the rank constraint so that the remaining

convex optimization problem can be solved efficiently. In

other words, after removing the rank constraint, we have

successfully constructed the semidefinite relaxed formulation

to be solved in Step 3 of Algorithm 1.

The major drawback of removing the rank constraint is that

the rank of the obtained optimal solution Z∗ is no longer

guaranteed to be 1. Therefore, we may not be able to directly

recover a feasible z vector using the equation Z = zzT . We will

demonstrate in Appendix D-B the detailed recovery approach

for a feasible solution to the original revenue maximization

problem in Section V.

B. Recovering Feasible Solutions to the Original Problem in

Step 4

In this sub-section, we elaborate step 4 in Algorithm 1

on how to recover a feasible solution to the original rev-

enue maximization problem from the optimal solution to the

semidefinite relaxed problem. Our proposed recovery approach

is summarized as Algorithm 2.

The core idea of the recovery algorithm is the eigenvalue ap-

proximation approach [24]. In the beginning of the algorithm,

we construct an initial solution from the largest eigenvalue

and its corresponding eigenvector of matrix Z̃ in step 1.

Afterwards, we construct feasible n, q, v, and p sequentially.

Specifically, in steps 2 to 8, we first construct a feasible n

vector by proportionally rounding the n̂ vector with regard to

N so that constraint (10) can be satisfied. Since we use ceiling

functions during the proportional rounding process in step 4,

if vector n̂ after proportional rounding is still not feasible,

the only possibility is that the summation of all its entries

exceeds N − n0. (Note that the decision variable vector n does

not include n0, which is a provider-specified input argument

to the optimization algorithm. Thus, if we recursively write

constraint (10), the relationship that
∑M

j=1 n j = N − n0 can be

derived.) We thus deduct the values of some entries in n to

construct a feasible n̂ vector in step 7. In steps 9 to 13, we

check whether the derived n j , j ∈ M \ {M } can satisfy the

minimum QoS requirement τ by comparing n j with n
upper

j
.

If n j > n
upper

j
, we need to equally assign the difference

n
upper

j
− n j to the service classes k : j < k ≤ M that have

richer resources, and then truncate n j down to n
upper

j
. With

such operations, we can guarantee that n j , j ∈ M \ {M } are

feasible. Note that nM ≤ n
upper

M
is also guaranteed as the

parameters that we select for simulations ensures that feasible

solutions exist for the revenue maximization problem. Now we

have obtained a feasible n vector. We further construct q, v,

and p sequentially according to their dependency constraints

in step 14.

Algorithm 2 Feasible Solution Recovery in Step 4 of Algo-

rithm 1.

Input: Optimal solution Z̃ to the semidefinite relaxed for-

mulation in Step 3 of Algorithm 1 and all the inputs to

Algorithm 1.

Output: Feasible solution p, q, n, and v to the original

revenue maximization problem in Section IV.

1: Construct vector ẑ =
√
λ ρ̃, where λ is the largest eigen-

value of Z̃, while ρ̃ is its corresponding eigenvector.

2: Extract the n̂ vector from the ẑ vector, and ceil the n̂

vector: n̂ = dn̂e.
3: if the summation of all the entries in vector n̂ does not

equal N − n0, i.e., sum(n̂) , N − n0, then

4: Proportionally scale vector n̂ as n̂i = d(N − n0) ·
n̂i/sum (n̂)e for all the entries in vector n̂, where n̂i
denotes the ith entry in vector n̂.

5: end if

6: if sum(n̂) , N − n0 then

7: Deduct the last sum (n̂) − (N − n0) entries in n̂ whose

values are larger than 1 by 1.

8: end if

9: for j = 1, 2, ...,M − 1 do

10: if n j > n
upper

j
then

11: Amortize the difference
(

n
upper

j
− n j

)

equally to

nk , j < k ≤ M . Then let n j = n
upper

j
.

12: end if

13: end for

14: Let n = n̂. Construct q from n according to equation (1).

Construct v from n according to equation (10). Construct

p from q and v according to equation (12).

15: return vectors p, q, n, and v.



APPENDIX E

SUPPLEMENTAL CONTENT TO SECTION V

A. Supplemental Figure to Section V
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Fig. 8: The empirical cumulative distribution of θ derived from

the traces.

The cumulative distribution of θ that we derive from the

Microsoft Azure traces [5] is shown in Figure 8. It can be

observed that θ has a long-tail distribution. Most of the time,

the amount of resources that a user requests is small, but

occasionally, (s)he may request a large amount of resources

(i.e., having a bursty workload). Meanwhile, we confirm from

the traces that P(θ = x) for random variable θ is positive at all

integral points x ∈ [1, 99]∩Z+, meaning our prior assumption

in Section II-B that P(θ = x) > 0, x ∈ [1, θmax ] ∩ Z+ holds.

B. Formal Presentation of the Uniform and Gaussian Bench-

marks in Section V

In this sub-section, we formally present the uniform bench-

mark in Section V as Algorithm 3, and the Gaussian bench-

mark as Algorithm 4.

Algorithm 3 The Uniform Benchmark in Section V.

Input: The same as the input to Algorithm 1.

Output: Feasible solution n.

1: for j = 1, 2, ...,M − 1 do

2: if b N−
∑ j−1

k=0
nk

M− j+1
c ≤ n

upper

j
then

3: n j = b
N−∑ j−1

k=0
nk

M− j+1
c.

4: else

5: n j = n
upper

j
.

6: end if

7: end for

8: nM = N −∑M−1
k=0 nk .

9: return vector n = [n1, n2, ..., nM ]T .

Algorithm 4 The Gaussian Benchmark in Section V.

Input: The same as the input to Algorithm 1.

Output: Feasible solution n.

1: for j = 1, 2, ...,M − 1 do

2: Draw a random number ν from a Gaussian distri-

bution with mean b N−
∑ j−1

k=0
nk

M− j+1
c and standard deviation

b N−
∑ j−1

k=0
nk

3(M− j+1)
c.

3: if ν ≤ n
upper

j
then

4: n j = ν.

5: else

6: n j = n
upper

j
.

7: end if

8: end for

9: nM = N −∑M−1
k=0 nk .

10: return vector n = [n1, n2, ..., nM ]T .


