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Abstract—Leading cloud providers recently introduced a new TABLE I: Samples of Microsoft Azure burstable instances [8].

instance type namecburstableinstances to better match the time- —fype T CPU credits Maximum CPU | Resource volume (vVCPUS
varying workloads of tenants and further reduce their costs. earned per hour credits buffered [ Maximum] Mean
In the research community, however, little has been done to g5 3 72 0.05
understand burstable instances from a theoretical perspective. g1s 5 144 1 01
This paper presents the rst uni ed framework to model, analyze, BIms 12 788 0:2

and optimize the operation of burstable instances. Speci cally, we
model the resource provisioning of burstable instances, identify
key performance metrics, and derive the analytical performance
given the resource provisioning decisions. We then characterize CPU (vVCPU) and 2 GB memory. On the other hand, empirical
the equilibrium behind tenants’ responses to the prices offered for - studies [3], [4], [5], [6] have reported that workloads executed
different burstable instance service classes, taking into account on VMs in public clouds are usually time-varying. Therefore,

the impact of tenants' actions on the performance achieved . the stati t of . d for VM
by each service class. In addition, we investigate how a cloud given the staic amount oOr resources provisionea for S

provider can leverage knowledge of this equilibrium to nd the tenants have to book VM con gurations that can satisfy their
prices that maximize its total revenue. Finally, we validate our peak workload demands. This peak-demand subscription strat-
framework on real traces and demonstrate its usage to price egy leads to low actual utilization of the resources allocated
burstable offerings in a public cloud. to VMs. Take CPU resource utilization as an example. The
Index Terms—cloud, burstable instances, equilibrium, revenue utilization is lower than 35% on average according to a Google
maximization cluster trace study [4], and lower than 20% for 60% of the
VMs according to a Microsoft Azure trace study [5]. These
l. INTRODUCTION observations imply that tenants' costs can be further reduced

by time-varying resource provisioning. In other words, VMs

o reduce_costs for cloud t(_enants, today's Ipfrastruc;tgr eceive a high volume of resources for a short period of time in
as-a-Service (laaS) providers offer various pricin

gxchange for fewer resources most of the time. A new class of

schemes, such as on-demand pricing, spot pricing, and \rﬁ\7ls, namedburstableinstances, has thus been introduced by

;serve? pr;cmg [2]l.3tU_nde_rtthTse prr|]<_:|ng siz/r;;mes, h_0\_/vev l'number of cloud providers, such as teandt3 instances
enants always obtain virtual machines (VMs) provisiong Amazon EC2 [7],B-seriesinstances of Microsoft Azure

with static amounts of resources, for example, one virtu ], andf1-micro andg1-smallinstances of the Google Cloud

A preliminary version appeared at the IEEE International Conference Eﬂg'ne [9]. In _thIS paper, We approach burstable 'nSta_nceS
Computer Communications (INFOCOM), Paris, France, 2019 [1]. This wofikom a theoretical perspective, and present the rst unied
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in a time slot, which is one vCPU for all instances in TablQoS depends on whether the user's requests are allowed by the
I. On the other hand, the rate of credit earning determin€U credit mechanism, as well as how the cloud provider mul-
the average resource volume (sometimes also referred totipkexes its (over-committed) resources. Therefore, analytically
“baseline”) for an instance. For example Bdls instance in formulating the QoS representation is non-trivial as it requires
Table | receives @5 CPU credits per time slot (i.e., 1 minute)us to mathematically translate the CPU credit mechanism
enabling it to request 5% of a vCPU on average over timeto CPU utilization patterns and integrate the result with the
Burstable instances are suitable for services that demamdource multiplexing scheme. To this end, in Section II, we
relatively small amounts of resources most of the time, whilest formally de ne the QoS metric. We model the dynamics
occasionally requiring large amounts of resources. For exani-CPU credits as a token bucket regulation mechanism [13].
ple, VMs operating as hot standbys [10] are usually idle witleanwhile, we model two resource multiplexing schemes for
low CPU utilizations. When a failover occurs, they demanburstable instance serviceandom selectiomndproportional
high resources to take over the jobs, but only for a short whigdlocation and nally derive analytical QoS representations
until the normal services are recovered. Applications witlor both of these multiplexing schemes.
periodic workloads, such as periodically updating machine From an individual user's perspective, which service
learning models [11], are also suitable for burstable instancetass should (s)he select to maximize his/her reward?
Compared to traditional static resource provisioning metkVe proceed to look at an laaS cloud that offers burstable
ods, burstable instances can benet both tenants and clandtances with multiple service classes, each con gured by
providers. Tenants no longer need to pay for their pe&kPU credit parameters and a resource capacity. We refer to
resource demands all the time, so their costs are potentidhgse parameters as service class con gurations hereinafter. A
reduced with fewer resources purchased. Cloud providers camvice class charges a price to each user who subscribes to
also benet in terms of over-commitmehtThough widely it. Note that a rational user always favors a service class that
employed, over-commitment traditionally suffers from theffers higher QoS with lower payment. Therefore, the user
dif culty of understanding VMs' CPU utilization patterns, will select the service class where his/her reward, which can
which providers do not control [4]. Therefore, providers haviee regarded as his/her valuation of the received QoS minus the
to co-locate VMs in a relatively conservative manner to offggayment, is maximized. In Section Ill, we analytically derive
a guaranteed quality-of-service (QoS) level, i.e., the chanasers' service class selections at the Nash equilibrium.
that a VM can successfully receive its requested resourcesrom a cloud provider's perspective, how should it
[12]. The CPU utilization of burstable instances, however, {srice the service classes to maximize its total revenue?
regulated by the CPU credit mechanism, making the utilizatiofrhe equilibrium derived above characterizes users' responses
patterns more predictable for providers. Providers may then @p@., service class selections) to the prices offered by service
able to co-locate more burstable instances on a server whglasses, accounting for individual users' heterogeneous QoS
still offering a guaranteed QoS level. Moreover, by jointlyaluations. Note that a cloud provider's total revenue depends
optimizing the offered QoS and the prices charged to tl both the number of users subscribed to each service class
tenants, providers can maximize their total revenues. In thiad the prices that the users should pay for their subscriptions.
paper, we provide a framework for them to do so. Given the service class con gurations, a cloud provider can
thus set prices leveraging prior knowledge of the equilibrium
on users' corresponding subscription decisions to maximize
its total revenue at equilibriurhIn Section IV, we formulate
Although cloud computing with static resource provisioning mixed-integer non-linear program to obtain such optimal
has been extensively studied, burstable instances are stillpaizes for the provider. While this problem can be solved by
emerging research topic with many unanswered questiogeneral-purpose methods for mixed-integer programs [14], we
Consider a cloud provider that offers different types ddiso propose an algorithm to compute an approximate solution
burstable instances for multiple tenants. Hereinafter, we refara more ef cient manner.
to tenants as users, and to instance types as service classefur answers to the three questions above constitute a
de ned by the con guration parameters shown in Table I. Iframework to model, analyze, and optimize burstable instance
this paper, we aim to understand three fundamental questi@asvices in laaS clouds. In Section V, we numerically validate
on burstable instances and use them to help cloud providets framework using real-world traces [5] and show that it
(i) estimate the performance of burstable instances, (8nd can drastically improve the cloud provider's total revenue

B. Our Contributions

increase their total revenue for operating this service. compared to heuristic pricing methods.
How can we de ne and analytically evaluate the per-  The remainder of the paper is organized as follows. In
formance of burstable instances?The QoS that a burstable Sections I, Ill, and IV, we answer the three aforementioned

instance receives is determined by the amount of resourgggestions sequentially, and simultaneously develop our frame-
that a VM is allocated compared to how many it requests, i.e.,

how well a user's resource needs can be ful lled. Note that the2oyr revenue maximization problem does not capture the temporal evolu-

tion in the number of users. However, the number of users does not change
1over-commitment in clouds means the resources allocated to the VMsmiich over time according to the state-of-the-art traces [5]. To apply our
a server can exceed the server's actual capacity, if the VMs are expected proposed methods to real-world public clouds, we can use the user pro les
to fully utilize their reserved resources simultaneously [4]. Therefore, VMat the peak for pricing. Although conservative, the derived prices and total
may not always receive the full resources that they demand. revenue are still shown to be reasonably good (see Section V-C for details).






On the other hand, when the number of tokens in the tokezsources, where; is a random variable (that depends Jn
bucket is no smaller than the number of incoming requestdpte that ; depends not only ob;, c;, andr;, the service
all of these requests can proceed to the regulator. This modklss con gurations, but also am, the number of peer users
extends our earlier work [1], where all requests are simptizat are concurrently sharing the resources in service g¢lass
discarded without getting any tokens if the number of availabieith this user. Let 2 [1; max]\ Z* be the number of requests
tokens in the token bucket is smaller than the number tifat can traverse the token bucket and reach the regulator for a
incoming requests. given user in a time slot, given that the user makes requests in
At service clasg's user request regulator, all requests wilthis time slot. Note that is a random variable with the same
be approved if the total number of received requests does namge as that of (i.e., “max = max)- Meanwhile, is always
exceed the resource capacity, Otherwise, the regulator will non-negative, because the token bucket has at tgast 1
allocate the limited resources to users following seesmurce available tokens (the ones accumulated in the same time slot)
multiplexing schemeéWe can consider two schemeandom to accommodate potential requests. Given that a user makes
selectionand proportional allocation In random selection  requests, there must be at least fin; g requests that can
the regulator repeatedly chooses a user uniformly at randamaverse the token bucket. We denote the probability that
and admits his/her requests until the capacityis used up. takes the valug by P =y
Extending our earlier work [1], we also consid@oportional The QoS that usdrsubscribing to service clagsreceives,
allocation, where each user receives an equal proportion (e.dgnoted byg;, is de ned as the probability that the user can
90%) of his/her requested resources, so that the total amounatily receive (0 1) of his/her requested resources
of resources allocated to users sums to the resource capagitya time slot given that (s)he makes requests in this time
cj. Hence, a user may eventually receive a fractional amousibt, where is a cloud-provider-speci ed parameter. In other
of resources. This paper will derive analytical results for bothiords, provided that a user makes= x requests in a given
of the multiplexing schemes and provide insights into theiime slot,q; is the probability that this user can nally receive
numerical results so that a cloud provider can have a better fewer than x token units of resources. Practically,can

idea of which scheme to choose for its real operation. be a fractional number that is close to 1, for exampt8,
this case, our performance metric characterizes the probability
B. Quantifying Users' QoS that a user receives 90% of his/her requested resources. Our

In this paper, we are interested in the analytical form &#0S metric guarantees the tail probability on the fraction of a
a user's received QoS by subscribing to a service class. MS€r's resource requests that are ultimately ful lled. This tail
simplicity, we assume that users are homogeneous in #f@bability guarantee strategy has been widely adopted in the
statistical patterns of their requests. The probability that@Pud computing literature [18], [19].
user has at least one request in a time slot is denoted by>imilar to existing studies on laaS clouds [6], [20], our QoS

. The number of requests that a user makes in a time siBtetric quanti es the resource availability on the infrastructure
given that (s)he has requests to make, is a random varial§i¢e! instead of modeling the application-level performance

2 [L max]\ Z*.4 For example, if a token stands for 1%(e.g., job completion tlme)..A CPU credit (a.k.a. a token) can
of a VCPU, with the maximum resource volume as one vCPR$ intérpreted as aspportunitythat a user can spend to obtain
and guaranteed resources as 2% of a vVCPU @%ntd = 2) resources. Our QoS metric represents the probability that the
for each instance, an instance can request up to 98% ofBU credits can nally turn into the allocated resources. To
VCPU as its burstable resources (i.6nax = 98). To simplify understand the infrastructure-level QoS, users who deploy
our mathematical model, we suppose that> 2 yax, as their applications on the cloud-provided VMs may need to
is typically the case in practiG&Denote the probability that franslate the infrastructure-level QoS to the application-level

takes the valuex by P( = x). The distribution of performance. Although such a translation is out qf the scope
can be estimated from historical data of CPU utilization fdf OUr paper, which targets an laaS cloud, we still provide a
a particular application. We assume tia( = x) > 0, few translation examples in Appendix A. ,
X 2 [L max]\ Z*. This assumption will be later con rmed We mgke comments from a qualitative per;pectlve on how
by real-world traces [5] in Section V. the service .class con guratiorts;, oF andrj WI'|| affect the

By making requests, a user 2 N = f12::Ng QoS for a given number of users in service clas&enerally,

subscribing to service clagsnally receives ; token units of Increasingd; andr; at the token bucket side leads to a higher
chance of the users' requests passing the token bucket, as

4For some applications, the number of requests made in a time slot mayfigiure 1 shows. If the regulator's Capacily is underutilized,

temporally correlated to that made in previous time slots. However, an Iaya?e QoS of users will improve due to the increase®iirand
cloud has neither the knowledge of what applications are running on the VMs ]

nor the control of these applications. Therefore, our user request model dbgs HOwever, if the capacity is already overutilized with a
not consider such temporal correlation. We will show in Section V that oumultiplexing scheme in place, to improve the QoS, we should

model is still accurate for realistic user request patterns from state-of-the-é[go increase; to adapt it to the increased number of requests
public cloud traces [5], which may not be i.i.d. across time. )

5As typical values, suppose one token stands for 1% of a vCPU and H@t reach Fhe regulator. )
maximum resource volume for an instance is one vCPU al%ftd =0, so We continue to derive the analytical QoS. Assume the

max Will go up to 100. Practically, the token bucket size is the total numbeg stem is stationary. We can formula1p by enumerating the
of tokens that can be buffered within 24 hours (see Table I). Therefore, ev ¥

(] fpees .
if the token generation rate i§ = 1, with the duration of a time slot as one probabilities that a user mak_es resource requests, wit
minute, the token bucket size by = 1440, much greater thannay . requests successfully traversing the token bucket, and nally



Nax . Kax X - .~
g= P ;| X =xP(=x= P | X =y =xP =yj =xP( =x @)
x=1 x=1 y=d xe

receives at leastx token units of resources, as equation (1) at (i) When max d bj rj, we have
the top of this page. In equation (B, Xj =x isthe

probability that a user initially makes requests and nally % P =d+rj h d+rj max h
receives at least x token units of resource® =vyj = x Py =< d+rj L

is the probability that exactly requests successfully traverse ' §1 h=d+rj;

the token bucket for a user, given that (s)he initially makes 70 otherwise.
requests,an® |  xj =y, =x isthe probability thata (i) When.b» f+1 d b we have

user nally receives no fewer thanx token units of resources o I

given that (s)he makes requests ang requests successfully P =d+r; h d+r;  max
traverse the token bucket. Consider a user who initially makes h b 1

bucket. In order for this user to receive no fewer thantoken th=
units of resources in the end, a necessary condition is that

y X. Sincey is an integer, in the inner summation with

regard toy in equation (1), we only consider the situations

whend xe 'y x. _ The Markov chain is positive recurrent and aperiodic, so it is
It can be observed from equation (1) that the valueof ergodic [21]. Denote the steady-state probability of sthtey
depends on the following two factor§) How many requests d The physical meaning ofd is the steady-state probability
can get the corresponding tokens and traverse the tolglgt there arai tokens available in the token bucket waiting
bucket, characterized By =yj = x ; (i) Whether enough for potential requests to be processed. We can obtdity
requests that have already traversed the token bucket cansgﬁmg the balance equation.
admitted by the regulator after multiplexing with other peer jith the Markov chain model above, we are ready to derive
users' requests, characterizedBy ;  Xj =y, =x.In p "=yj =x . Note that we always have no fewer than
the rest of this section, we will model the token bucket tokens in the token bucket when requests arrive. For this
mechanism and the resource multiplexing scheme at th&son, when 1 x  rj, all of the requests can traverse the
regulator side to get the expression Bf =vyj =X and token bucket, which means

P X =y =x,respectiely.

P(=Kk+@ ) h=b;
k=1

X requests, withy requests successfully traversing the token P _ g d+yg b;
d §
-0 otherwise.

~ . 81 =X,
1) Modeling the token bucket mechanisive model the P =y =x = §O ztherwise (2)
dynamics of the token bucket as a Markov chain, with the B :
state de ned as the number of tokens in the token bucket indhenr; < x max, however, depending on the token

time slot, after; tokens are generated, but before the potentiavailability in the token bucket, either all or a part of the
requests are made and processed. In this case, the token buekptests can traverse the token bucket, and thus

has at least; tokens, and thus we havg r; + 1 states. Po, ¢ _ .

Let stated = rj;rj + 1,::;;b; be the I rj + 1)th state of the ~ _% yd=>< poyEx

Markov chain withd tokens in the bucket. The state transition P =y =x = X N y<x ©)
probabilities of the Markov chain are given by Proposition -0 othemwise.

1. Note that although this proposition is based on our prior With the expressions ®® ~=yj = x derived above, we

assumption ob; > 2 yax, our derived results can be easily . -
generalized to the cases whergax bj 2 max Using the Can further constrlict the probability mass functien =y
same methodology. (For each service cl&gs, max should of random variable by enumerating all the possible numbers
always hold to meet the users' requests.) of requests that a user initially makes, namely,

Proposition 1. The transition probabilityPy, 1, from stated P "zvy = Ko P “=yj =x P( =x) @

to stateh for the Markov chain is as follows: Y=

: x=1
() Whenrj d  max 1, we have Substituting equations (2) and (3) into (4), we obtain the full
P representation oP =y as
it PO =k h=rj
P =d+r; h rj+1 h §P( =) 1 y<rj,
P 3 d . P - =<p Pbi d P max p( = y
%l h=d+rj; : r Yy max

-0 otherwise. (5)



B D¢ 1 nj 1! ; e 1x 1 Ml *Kl~
P Xj =y, =X = « @a 1 P I C xtHt (6)
k=0 : h=1 =1 --
3 R X e
Py x'=y =x= " otk gmipt g G @)
ko K ,1=1 X -

The rst and second term in equation (5) foy y “max equation (1) shows. Il? :‘:1 "/ is no more tharc; v, the total
corresponds to the cases where at lgatktkens are available number of requests received by the regulator does not exceed
with y requests being made, and where onglytokens are its capacity. In this case, all the requests will be admitted,
available with more thaty requests being made, respectivelyand the examined user will gst token units of resources.
We proceed to deriv@® Xj =y, =x inequation Otherwise, each user will get his/her share of the total capacity
(1). To this end, we will respectively model the two multiplex<; proportional to his/her requested resources. In other words,
ing schemestandom selectiorand proportional allocation ~ the amount of resources that the examined user receives is
2) Modeling the regulator's resource multiplexing schemes Y=Y + =, 1). In view of the QoS metric, we need to
Since we assume that users are homogeneous, it suf&ure that
to derive P Xj =y, =x from the perspective of Cj

—p— X,
an individual user, who is referred to as the examined user y+ K, |y
heremqfter. In wha’F follows, we modehndom selectiorand which yields
proportional allocation

Random selection.Equation (6) at the top of this page x| Cj 1
shows the analytical form oP Xj =y, =x under ! X Y-

random selection First, the amount of resources that the 1=1

examined user can obtain is directly related to the numbEP SUm up, given thak users in service clagshave requests
of requests that also reach the regulator from other pdBr@ time slot, the probability that the examined user can get
users. We denote the number of such peer userk by No fewer than x token units of resources is

equation (6), with the corresponding probability of occurrence L Ci

as ”"kl k@ )" k Yrecall that is the probability a user P o5 1 y*,

makes at least one request), which are the rst three terms =1 -

inside the outer summation of equation (6). which is the last term inside the outer summation of equation

Therandom selectioscheme can be equivalently describefi’).
as the following. The regulator keeps selecting a user uni-By sequentially substituting equations (2), (3), and (5) into
formly at random to admit his/her requests until all the userB) or (7), and nally into (1), we obtain the analytical form
requests are admitted or the residual capacity is used up.0fngj. When referring to equation (1) as the analytical QoS
the latter case, the regulator will use its residual capacit§’ burstable instances in the rest of this paper, we mean its
to partially satisfy the requests from the last selected useemplete representation after all the above substitutions.
Following this scheme, given that there &getr 1 users in
total (includingk peer users and the examined user) making I1l. EQUILIBRIUM ANALYSIS
requests in the service class, the probability that the examinedsiven the service class con guration parameteyrsc;, and
user is thenth (1 h  k+ 1) user to be selected by ther;, in the last section, we have derived the relationship between
regulator is ¥(k+1). Each peer usek (1 | h 1) the QoSq; that a service clasg can deliver with respect to
has | requests reaching the regulator, whereis a random its number of subscribens;, as shown in equation (1). When
variable that can be obtained from equation (5). The 1 operating multiple service classes of burstable instances, the
previously selected users have.; *| requests reaching thecloud provider assigns a priqg for each service clas to
regulator in total. Therefore, the probability that this examinesharge to the corresponding subscribers. In this section, we
user is admitted with no fewer than token units of resources continue to understand the users' responses, i.e., their preferred

allocated isP ,h=11 TG x. selections of service classes, to the prices issued by the cloud
Proportional allocation. Equation (7) at the top of this provider. Speci cally, let each usdr2 N specify a coef -
page shows the analytical form & | Xj =y, =x cienty; that represents his/her valuation of the received QoS

under proportiorﬁ,al allocation Similar to random selection (e.g., relationship between the received QoS and the resulting
we examine the |k=1 | requests rea?:hingNthe regulator madepplication-level performance); the user will therefore harvest
by the k peer users. The range oflk=1 | is [k k max]. @ utility of ujg; by subscribing to service clags Following
Recall that the examined user now hagequests reaching prior works in the network economics literature [22], [23], we
the regulator. Herey should be no smaller thanx to meet assume that each users value lies on a continuum with
the QoS requirement, as the index of the inner summationrenge (9 ]. Let f(x) be the cumulative distribution function



(CDF) of the random variable; at x 2 (0; ]. Denote the lemma, we qualitatively illustrate the relationship between
reward that user earns by subscribing to service clas®y users' QoS valuations and their service class selections as a
w;;j, which can be calculated by the user's harvested utilityecessary condition for a Nash equilibrium.

minus payment, i.e., . . :
pay Lemma 2. Suppose usdrselects service class(i). For any

Wi;j =Uigp  pj. (8) user k with a QoS valuatiorux > u;j, his/her service class

We focus on deriving th&lash equilibriumof users' service selection (k) satis es (k) OF

class selections. From an individual us&r perspective, at We can also derive a suf cient condition when each user
the Nash equilibrium, (s)he should receive more reward frohas an incentive to subscribe to a service class.
his/her selected service class, denoted §Y, than from other

. . . : Corollary 2. Each user will have an incentive to subscribe to
service classes, which can be mathematically written as

( ) a service class at equilibrium (1.8 2N, 9j 2 M, w;;; 0)
Wi; () MmMax Wi;j;o ;8] 2 Mnf (i)g 9) Iif p1=0.

Let (i) = 0 if useri decides not to subscribe to any service Lemma 2 shows that users' service class selections are
class. According to equation (9), this can happen if all thmonotonic with regard to their QoS valuations: users with
service classes deliver negative rewards to this user. higher QoS valuations;; will subscribe to service classes
Suppose a Nash equilibrium exists and has been reacheilh higher QoS levels (i.e., higher indices) at equilibrium.
(The existence of a Nash equilibrium will be proved inn other words, as usersi; values lie on a continuum within
Proposition 2 later in this section.) Each service clabasn; the region (0 ], we can partition the region into multiple
subscribers and delivers a QoSgpfaccording to equation (1). non-overlapping intervals (o), [vj 1;Vj), | 2 M nfMg
We next analytically characterize the relationship amopg and v 1;vm], wherevy = . Users with QoS valuations
Pj, Qj, Ui, and (i),i 2N, j 2 M, at the Nash equilibrium. u; 2 [vj 1;vj), j 2 M nfMgwill subscribe to service class
Our rst result nds a sufcient condition that a service j, while users withu; 2 [uy 1;um] will subscribe to service
class has no subscribers: classM. Whenp; > 0, users withu; 2 (0;vp) do not have
incentives to subscribe to any service class. On the other hand,
if pp =0, thenvy = 0 according to Corollary 2, meaning that
all users will have incentives to subscribe to service classes.
We know from Lemma 1 that for a service class that charg@iven this quantitative description, we can fully characterize
a higher price but offers a lower QoS than another serviegers' service class selections by determining the boundary
class at equilibrium, the former service class has essentigigintsfv;; j = 0,1,::;M 1gof the intervals, at which a user
no subscribers. The following corollary elaborates a similds indifferent to the choice between the neighboring service
idea for two service classes that charge the same price. classes. We can establish the relationship between the number
of subscribersn; of service classj and the corresponding
boundary points; 1 andv; as

Lemma 1. Consider two service classgsandk, wherep; <
pk. If dj ok, thenng = 0 at equilibrium.

Corollary 1. For two service classeg,andk, wherep; = p,
if gj > ak, thenn, = 0 at equilibrium.

As Corollary 1 suggests, if two service classes charge the n=Nfv fvii ;j2M. (10)

same price but offer different QoS at equilibrium, the servicﬁOte thatf (v ) = f( ) = 1. De ne n as the number of users

I that offer lower ha ntially n ribers. . ) - .
class that offers a lower QoS has essentially no SUbS? b o have no incentive to join any service class. We have
Note that we should prevent a service class from having no

subscribers at equilibrium because the cloud provider will no = N f(vo). (11)
derive no prot from it. Therefore, we learn from Lemma 1

and Corollary 1 that the prices of service classes should Wéth the users' service class selections de ned above, we can
properly set so that at the Nash equilibriina service class analytically characterize a Nash equilibrium as follows.

that charges a higher price should also offer a higher QaSyoposition 2. Equation (12) serves as a necessary and
and (i) the service classes that charge the same price shoglf cient condition thatp;, g, vj, andn;, j 2 M, constitute
offer the same QoS. In the rest of this section, we assume tha{jash equilibrium:

the prices of the service classes are set as aforementioned.

Without loss of generality, we index the service classes in _ X .
non-decreasing order with respect to the QoS that they offer Pj=Voti+ Vk1 G Gk1;82M. (12
at equilibrium (i.e.,q; ok, 8j < kandj;k 2 M). Since k=2

we properly set the prices, we haypg  p«, 8j < k and From an individual user's perspective, the Nash equilibrium
j;k 2 M. Also, if pj = p«, j;k 2 M, theng; = o«. Also, nds the best trade-off in achieving a high utility g; with a
we suppose that if two users,and k with u; < ux, have low paymentp;, as de ned in equation (9). If userattaches
decided to subscribe to different service classes with the samere importance to the received QoS, (s)he should also have
offered QoS (and thus the same price) at equilibrium, therhigher affordability. The user can then take a higher value of
subscriptions follow (i) < (k). u;. At equilibrium, the user will be assigned to a service class
From an individual user's perspective, we continue to deritbat delivers a higher QoS, which correspondingly charges a
which service class the user will subscribe to. In the nekigher price. Otherwise, the user should take a smaller value



of u;, which will potentially lead to a lower QoS deliveredAlgorithm 1 Approximation Algorithm for the Revenue Max-
and a lower price charged to the user at equilibrium. imization Problem in Section IV.

From the cloud provider's perspective, the Nash equilibriutimput: Service class con gurationsb;;cj;rj; 8] 2 Mg,
characterizes users' corresponding responses (i.e., service clasgprovider-speci ed parametensy andvp, user pro lesN,
selections) to the prices set by the provider. In the next , , QoS metric parameter, and the pre-calculated
section, we will continue to study how to take advantage of fn}‘pper, i 2 Mg.
the knowledge of this equilibrium to set optimal prices. Output: p, g, n, andv.

1: Relax constraint (16) as a continuous constraint:

IV. REVENUE MAXIMIZATION FOR THE CLOUD PROVIDER 0 8j2M. 17)

n:

The equilibrium derived from Section Il provides an oppor- . _J ) )
tunity for the cloud provider to maximize its total revenue via 2 Linearly or quadratically approximate constraint (1), and
optimal pricing. More speci cally, with prior knowledge of the @IS0 constraint (10) if it is neither linear nor quadratic.
relationship between users' service class selections and prices, Construct and solve the semide nite relaxed formulation
as given in Proposition 2, the cloud provider can indirectly Of the revenue maximization problem. o
control the number of users in each service class via setting tHe Recover feasible solutiop, g, n, andv to the original
corresponding prices. Because the total revenue of the provider '€venue maximization problem from the optimal solution
is related to both the prices and the actual numbers of users t0 the semide nite relaxed formulation in Step 3.
subscribed to the service classes, we can de ne a revene return p, g, n, andv.
maximization problem to nd the prices that maximize the
provider's total revenue at the Nash equilibrium.

We optimize the provider's total revenue given the servio®ay not exactly match the distributiof( ), where the actual
class con gurationsb;, ¢j, andr;. Also, we consideny and revenue achieved by the cloud provider may deviate from
Vo, Which characterize the provider's preference in acceptiitigat derived from our optimization problem. However, this
users, as pre-specied by the cloud provider. (For examplagviation will be negligible when the total number of usés,

a provider that wishes to accommodate every user will takglarge. We can thus interpret the optimal revenue derived by
vo = 0, with all users being accepted.) We also let theur optimization problem as the “expected” revenue (which we

provider specify another parameter, which indicates the still refer to as the revenue hereinafter for brevity) given users'

minimum QoS that each service class should offer. pet statistical characteristics. Our optimal solution also guarantees
[ps::pml™, g = [au oz :::;am]™, n = [ngny:::;nw]T, constraint (14) with probability one for realizations wf

andv = [vg;:::vym 1] be the concatenated vectors of decision As a mixed-integer non-linear program, our revenue max-
variables. With the performance model and user selectionization problem is a hard problem in general, which can

equilibrium respectively de ned in Sections Il and lll, we carincur a high computational complexity to get an optimal

formulate the revenue maximization problem as solution by existing general-purpose solution algorithms for
W mixed-integer programs in the literature (e.g., brute-force

maximize pin;, (13) search) [14]. Therefore, in the.rest' of this .section, we also

pig;m;v =1 propose Algorithm 1, an approximation algorithm, to compute

an approximate solution for the optimization problem in a

subject to constraints (1), (10), and (12), ; . . .
J (1. (10 (12) more ef cient manner. Details of the algorithm are illustrated

9 G+ 8j 2MnfMg (14)  as follows.
811 , (15) Taking a close look at the problem structure, we nd
nj2Z"; 8j2M. (16) that the optimization problem is almost an inhomogeneous

L i L (quadratically constrained quadratic program (QCQ&Xcept
In the objective function (13), the provider's total revenue ig,ot we know the exact form of neither the performance

the sgmmation over the revenpen; gained by each se_rvice model in equation (1) nor the CDE() in equation (10).

classj. Together with constraints (1) and (10), constraint (1 erefore, the core notion of our algorithm is to construct
de nes the relationship among the decision variables at the approximate QCQP of the optimization problem, and
Nash equilibrium. Since vectayis sorted in a non-decreasinGien apply semide nite relaxation (SDR) [24] to relax a few
order at equilibrium, without loss of generality, we con guréonqraints towards an ef ciently solvable convex optimization

the service classes d§  Dj+1, ¢ Cj+1, Fj  Tje1, | 2 problem. Specically, we rst construct an inhomogeneous
Mnf Mg Therefore, it is natural to expect that service class QP of the original optimization problem by relaxing the

with richer resources will offer higher QoS levels, as indicateflgrete constraint (16) as a continuous constraint (17) and
in constraint (14). Meanwhile, constraints (14) an_d (15)j9intl¥pproximating constraint (1), indicated by step 1 and step 2,
guarantee that the Qo8 offered by each service clags |ggpectively, in Algorithm 1. Depending on the actual form
satis es the minimum requirement of f (), we also need to approximate constraint (10) if it is

_ Following similar models from the network economiC$either finear nor quadratic (but not necessarily convex). We
literature [22], [23], we use users' statistical characteristics

(|'e" eX_'Stmg the CDF OfJi) f_or optlmal P“C'UQ: as shown in 8According to the de nition in [24], an inhomogeneous QCQP is a QCQP
constraint (14). The realizations of users' utility parametgrs with linear terms in its objective function and/or constraints.



TABLE II: Service class con gurations. 20% of a VCPU are excluded from the simulations because

i r; | b; ¢ Resource volume (vCPUS) a9'"td they de nitely cannot receive their requested resources and
Maximum[ — Mean are thus not suitable for our burstable instance services. (These

1 4 | 1152 | 100 0:05 VMs may subscribe to traditional static instances due to their

2 6 | 1,728 | 200 0:07 1% -

3 5 2304 300 1 009 of a high volumes of CPU resources requested.)

4 || 14 | 4032 | 400 0.15 vCPU We sort the instance records in chronological order, and

5 [[19 | 5472 | 500 0:2 randomly select 200 of the rst;200 record$ as samples to

estimate the parameterand the distribution of the random

variable 2 [1;99]\ Z*. We use these estimates to set
present Algorithm 1 as a general framework that allows amur parameters throughout this section. The remainjfip®
approximation method for a linear or quadratic approximatioistance records are used @sting data in the simulations
The reason for not allowing higher-order approximations is this sub-section. The value and the distribution are
that the resulting formulation after approximation has to bespectively obtained by simply counting the number of times
an inhomogeneous QCQP so that SDR can be appliedtiat users have resource requests to make and the frequency
the following steps. We will demonstrate in Section V thef appearance of differentvalues in the 200 sample instance
detailed approximation method that we use in deriving ouecords. Our obtained value is 09948. Interested readers
numerical results. As SDR is a widely-used technique, we dan refer to Figure 8 in Appendix E-A for the obtained
not elaborate the details of constructing a semide nite relaxegimulative distribution of . We con rm from the traces that
formulation in step 3 here, but refer interested readers R{ = x) for random variable is positive at all integral points
Appendix D-A. The constructed convex optimization problerw 2 [1;99]\ Z*, meaning that our prior assumption in Section
can be ef ciently solved by well-developed algorithms (e.gl]-B holds. We also observe that the distribution ofhas a
interior-point methods [25]). In step 4, we recover a feasibleng tail, indicating that the users' resource requests are indeed
solution to the original revenue maximization problem frorbursty (i.e., varying signi cantly over time). The parameter
the optimal solution to the semide nite relaxed problem. Thim the QoS metric and the QoS lower boundare set to be
detailed algorithm that we use for recovery is presented @® and 01, respectively.

Appendix D-B. 2) Results:Our performance model in Section II-B presents
the analytical performance of an individual service class given
V. NUMERICAL VALIDATION AND CASE STUDY its con guration parametersb(, ¢;, andrj) and the number

Above, we have dened our theoretical framework t1®f subscribersr(j). Due to the limited space, we take three

analytically model the performance of burstable instanced, the service classes from Table Il, namejy= 1, 3, and
analyze the user selection equilibrium, and maximize i as representatives to validate our performance model. Note
total revenue of a cloud provider. In this section, we rsihat all ve service class con gurations listed in Table II will

numerically validate this framework and then demonstraf considered as we move on to cloud-level simulations with

how it can be used to price a public cloud. A Java—basé'&umple service classes later in this section. We simulate a

simulator is implemented to simulate the operations of tokdfi@! period of ve days, and play back the workloads in
traces. Our performance models with both thadom

buckets, regulators, and VMs. The simulations are driven X : : ) :
the Microsoft Azure traces [5]. Released in 2017, these tracdgectionandproportional allocationschemes will be veri ed.

are the latest characterization of VM resource utilization in N Figure 2, we show comparisons between our analytical
public clouds. (from Section 1l) and simulated QoS curves, both obtained

by varying the number of userg from 1 to 100 for service
N classeg = 1, 3, and 5, wittrandom selectiomandproportional
A. Validating Qur Performance Model allocation, respectively. In the simulated QoS curves, a point
We validate our performance model (SeCtion “) in this Surtorresponding tmj users shows the average QoS over 25
section. runs, withn; instance records randomly drawn from th€@0
1) Simulation settingsThe Microsoft Azure traces recordtesting records in each run. Qualitatively, it can be observed
CPU utilization of VMs at a time granularity of ve minutes. from the gure that our analytical curves are close to their
Therefore, the duration of a time slot in our simulations |§|mu|ated Counterparts_ The average error ratios of our ana-
also set to be ve minutes, and a token refers to 1% of thgtical curves to the simulated curves for service class1,
full capacity of a vCPU for ve minutes. Five different servicez and 5 is 276%, 232%, and 9% for random selection
class con gurations, listed in Table Il, are considered in thgnd 296%, 292%, and 676% for proportional allocation
simulations. We set the token bucket stgeas the number of respectively, which are relatively small. Thus, our analytical
tokens earned in 24 hours, as done in Amazon EC2 [7] apdrformance model can both qualitatively and quantitatively
Microsoft Azure [8]. At the beginning of the time horizon,ye|| approximate the actual QoS.
every instance is assigned initial tokens for a smooth bootstrapg) |nsights: Next, we elaborate the insights delivered by

the amount of which is equivalent ta8 of its token bucket the QoS curves shown in Figure 2. Under the same service
size. Meanwhile, since the average resource volume received

per instance is Ile larger than 20% of a VC_PU a_ccording 07l of these 5200 instances start in the rst time slot of the time horizon
Table 1I, VMs with an average CPU utilization higher tharand have durations longer than ve days.



o resources) can be ful lled in this time slot. Howeverraindom
05p ooz _— i O = -=a _— i . . . . .
) selectionis applied to the same situation, some of the users

04 . will be selected to receive their full requested resources, while
g 035 g 03 other users' requests will be rejected. In this case, even if more
7 os oz thanc;= requests arrive at the regulator, there will still be

0.25

some users whose QoS requirements can be satis ed.
The observations above implyp&rformance-fairness trade-
1 20 40 e 80 100 10 4 e 8 100 off behind the multiplexing schemes. When users' QoS re-
' ' quirements cannot be satis ed simultaneously, each user still
receives an equal proportion of his/her resource requests that
I pe——— . reach the regulator under tipgoportional allocationscheme,
T e e although none of the users' received resources can achieve
the QoS-required amount (i.e., of the requested resources).
In contrast, users are no longer guaranteed to receive any
resources under thendom selectioscheme for this situation.
Only some of the users can receive their requested resources
with the corresponding QoS requirements satis ed, while the
oo e PRm " remaining users will be allocated no resources at all.
() j = 3, random selection (d) j = 3, proportional allocation To further illustrate the_ _fairness_ of the multiplexing
schemes, we calculate th@ini coef cienf on the ratio of

0.2

0.15

(@) j = 1, random selection (b) j = 1, proportional allocation

QoS

1

T Anabvieal T Analtical each user's received resources to the requests that the regulator
09 oe receives for this user in a given time slot. Figure 3 reports the
904 5% average Gini coef cient with three servige class con ggrations,
e e j =1, 3, and 5, for bothrandom selectiorand proportional

allocation when we varyn; from 1 to 100. Since users
receive the same proportion of their requests that reach the
T 0 4@ s 0 10 T 20 4 s s a0 regulator, the Gini coef cient forproportional allocationis

" " always 0. Withrandom selectionit can be observed that when
(e) j = 5, random selection  (f) j = 5, proportional allocation  the number of users in the service clasg)(is small, the

gorresponding Gini coef cient is close to 0 because each user
varying n; from 1 to 100 for service classgs= 1, 3, and 5, réceives the full amount of resources that (s)he requests to the

whose parameters are listed in Table II. Bathdom selection fégulator most of the time. However, with an increasenpf

and proportional allocationare considered. The error ratiod"€ CGini coef cient also increases, as the regulator's resource
of our analytical curves from (a) to (f) are7B%, 296%, Capacity can no longer satisfy all users. In this case, only
2:32%, 292%, 049%, and 676% In summary, our analytical & selected group of users are able to receive their requested

performance model can approximate the actual QoS resources, making the proportions of received resources for
different users more diverse. Note that the average resources

received by each user over time is the same forrtrelom

selectionand proportional allocation schemes, butandom
class con guration (e.g.j = 1), the QoS achieved byandom selectionensures users' requests are occasionally matched.
selectionand proportional allocationat n; = 1 is the same.
This is because whem; = 1, the examined user has noB. Validating Our Equilibrium and Revenue Maximization
other peer users to compete with for resources. Meanwhile
the resource capacity at the regula}tor is always suf cient m) and revenue maximization scheme (Section IV).
accommodate this user's requests (icg., max). Therefore, 1) Results: Consider that users' QoS valuatioos follow

the QoS forny = 1 represents the probability that of a - 4 ypiform distribution within (OL]. The CDF atv; is thus
user's requests can traverse the token bucket, and such a QoS

is not in uenced by the multiplexing scheme at the regulator f(vi)=v; j=0L: M. (18)

aslongawj  max. On the other hand, with the increase of it ting equation (18) into (10), (11), and (12), we obtain
n;, the QoS achieved bygroportional allocationdeteriorates the analytical equilibrium representation.

rbnuch fasterdthanhthat agh|e\/|ed|ItIgInQOm Sﬁlectlonah's 'i Two classes of approaches can be applied to solve our
ecause under theroportional allocationscheme, when the o anue maximization problem in Section IV, the general-

total number of requests received by the regulator exqe‘?ﬂfrpose methods for solving mixed-integer programs [14]
the resource capacity, each user gets an equal proportion of

his/her requested resources that are received by the regulatémhe Gini coef cient is a widely used measure of dispersion on a set of
That is to say. if service cIasts regulator receives more thandata. A Gini coef cient takes a fractional value within the rangel[) where

_ ts i ticular ti lot fth \ Q?S;neans the values of the elements in the data set are exactly equal to each
Cj= requests In a particular ume siot, none or the users Q er, while 1 expresses the maximal inequality among the elements. Details

requirements (i.e., receiving at leastof the user's requested of the Gini coef cient can be found in [26].

0.2

0.6

Fig. 2: The analytical and simulated QoS curves obtained

This sub-section validates our equilibrium analysis (Section
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Fig. 3: The Gini coef cients for the six @) () prop
simulated QoS curves in Figure 2. Fig. 4: Provider's total revenue under different schemes by varjing
(among which we use the brute-force search algorithm for taed n; = n;'PP®" otherwise. Finally,ny is calculated by

simulations in this section), and the SDR-based Algorithm dquation (1d). Th&aussianbenchmark is formally presented
speci cally designed based on our problem structure. We wils Algorithm 4 in Appendix E-B. By employing tHeaussian
evaluate the performance of both approaches. In the SDbenchmark, we aim to randomly add some non-linearity to
based approach, a least-squares quadratic approximatiomhés solution and see if a better performance can be achieved.
used to approximate; in Step 2 of Algorithm 1. Sincey;  After vectorn is worked out for the two benchmarks, other
is non-increasing im;, we rst use a bi-section method todecision variablep, g, andv are then determined by equations
nd the maximumn; that can satisfy the QoS requirement (1), (10), and (12) to ensure that they constitute a Nash
denoted byn''PP®" whereq; n; < , 8n; > n;’pper. Note equilibrium. Other simulation settings stay unchanged from
that nPP®" will also be used later in constructing heuristidhose in Section V-A2. The simulation parameters are properly
benchmarks to be compared with our proposed approachegected to ensure the feasibility of the revenue maximization
Next, we numerically calculatey(n;) for nj = 1, nj = problem.

nPPe", and all then; that are integral multiples of 20. For When varyingN, the total number of users, the correspond-

example, ifn“PPe" = 90, we calculatey (n;) for nj = 1, 20, ing revenues generated by our proposed _approaches_ and the
40, 60, 80, and 90. These numerically calculajggh;) points benchmarkg for.andom selecthrand proportlonal.allocatlon

are used for the least-squares quadratic approximation. We @i Shown in Figure 4a and Figure 4b, respectively. It can be
demonstrate in the upcoming results that this simple approffen from the gures that theptimalapproach always derives
mation method can provide suf ciently good results. Note thdf€ maximum revenue. Our propos8®Rapproach is also a

our Algorithm 1 can be combined with any approximatio§0d approximation of theptimal approach.

algorithm that returns linear or quadratic approximations of 2) Insights: Table il lists the prices ), analytical QoS
q; (ny). (gj), numbers of admitted users;§, and the QoS valuation

boundary points\() generated by our proposed approaches

We compare the results derived from the general-purpoggd the benchmarks for each service clasghen N = 250.
method (referred to as theptimal approach hereinafter) and(Due to the limited space, we take the statisticNof 250 as
SDR-based Algorithm 1 (referred to as ti#DR approach an example.) This table offers us insights into three interesting
hereinafter) with two benchmarks: theniform benchmark observations from Figure 4.
and the Gaussianbenchmark, both of which heuristically First, we elaborate the reasons Why our proposed approaches
determinen;, j 2 M. Note thatny users with the lowest gutperform the benchmarks, as shown in Figure 4. It can be
QoS valuationsu; do not have incentives to subscribe t®bserved from Table Ill that our approaches attach more im-
service classes; we then sgtN = 0:1. Among the remaining portance to improving the QoS offered by service classes with
N no users, the basic idea for theniform benchmark is richer resources (i.e., with larger indices) by restricting them
to admit an equal number of users to each service clags.fewer users. These users also have higher QoS valuations
Nevertheless, if N no)=M > n/'PP" for service classj, u; according to Lemma 2, resulting in higher utilities; ;)
i.e., a strict uniform allocation would lead to infeasible QO%eing achieved. They are thus willing to pay higher prices,
in classj, we aSSigm;mper users to this service class, and,ltimately leading to an increase in the provider's revenue.
equally assign the remaining users to other service classes witlthe second observation from Figure 4 is thrandom
richer resources (i.e., with indices larger thgnThe uniform  selectionderives a slightly higheoptimal revenue tharpro-
benchmark is formally presented as Algorithm 3 in Appendigortional allocationwhenN 230, while the opposite is true
E-B. The Gaussianbenchmark determinesj, j 2 M nfMg whenN < 230. To understand this better, we additionally list
sequentially, starting fronj = 1. To determine amj, we the service-class-wise results obtained bydhgmalapproach
rst draw a rangom number from a Gaussian distribution for N = 200 in Table IV. Note that the price for a service
with mean ( } in)=(M j+1) and standard deviation class depends on the differences in the offered QoS between it

(N i:%) n)=8(M j+1). We letn; = if n;’pper, and its neighboring service classes according to equation (12).



Intuitively, a service class charges more if it “distinguishesPABLE Ill: Service-class-wise results for thd = 250 case
itself more from its lower-level service classes in terms dff Figure 4. The result that generates the median revenue over
QoS. Meanwhile, Figure 2 shows that given the same numiget 'uns for theGaussianscheme is reported.

of users in a service clasgndom selectiorcan offer a better | j [z [2 [3 [ 4 [5 |
QoS thanproportional allocation Therefore, when the total | Random Selection ]
number of userd\ is not large (e.g.N = 200), proportional Pj 0:0142] 0:3409] 0:4488] 0:4768] 0:4799
allocation offers worse QoS for low-level service classes (with optimal Ch (1)619419 2:7514 3’19512 g;39935 2%9972
small indices) tharrandom selectionIn high-level service \,J.' 05360 054001 0:6640 | 0:8160 T:0000
classes (with large indices), however, there are still few userg D 0:01841 0:2657] 0:2855] 0:4136] 0:4166
and thus little competition among users so thaiportional <oR gj 3:41841 2:7514 2:17956 259919 2:89957
aIIocaU_oncan still offer gooq QosS. Inthl_s case, the inter-class le TA360 4980 05530 6080 L0500
QoS differences forpro.portlc.)nal aIIocaUgnare h|gher than b 00336 01071 01344 036711 03917
those forrandom selectionultimately leading to a higher total q; 0:3362] 0:5950| 0:6515| 0:9948| 1.0000
revenue. However, with the increase Nf the QoS offered Gaussian n; 46 50 63 37 29
by low-level service classes fqroportional allocationwill Vi [| 0:2840] C:4840] 0:7360] O:8840] 1-0000
reach their lower bounds. To accommodate more users (e.g., gjj 8gg2§§ 8;5%2 gggégg 8;3%3 8;38?2
when N = 250), the QoS of high-level service classes must| uniform [ 45 45 45 45 45
be impaired. On the contrarggndom selectiorcan still offer Vj 0:2800 | 0:4600] 0:6400] 0:8200] 1:0000
high QoS for high-level service classes. In this casedom | Proportional Allocation |
selectionproduces larger inter-service-class QoS differences gjl 8;21%3 8;(1"11% 85%;2 8;‘9“%‘3‘ 8;3‘7‘%
and thus a higher revende. Optimal [ |39 9 i3 a3 51
Our third observation from Figure 4 is that Bkincreases, Vi 0:2560| 0:4520| 0:6240] 0:7960| 1:0000
the total revenues derived by the benchmarks get closer to the Pj 0:0113] 0:0293| 0:2071)| 0:4098 | 0:4847

q; 0:1129| 0:1835| 0:5803| 0:9010| 0:9928
SDR nj 39 48 46 46 46

optimal revenue forproportional allocation but get farther

away for random selection Note that both our proposed Vi 02560 0:4480 0:6320| 0-8160 10000
approaches and the benchmarks should guarantée lower Pj 0.0113] 0:0089] 0:2710] 0:2963] 0.2965
bound of the QoS offered by service classes. We de ne LA 0:1129] 0:4552] 0:8574] 0:9010]| 0:9012
n;PP*" as the corresponding maximum number of users that Gaussiai CJ’ 8:92720 3:34480 8:86320 3:68280 i:goooo
service cIagsl can admit to guarantee. I_:lgure 2 §h0ws b 00113 0.0551] O-18551 03742 | 0.4619
that ni'PP®" is lower for proportional allocationthan it is for qj 0:1129| 0:2840( 0:5803| 0:8827| 0:9908
random selectiorwith the same service class con gurations, | Uniform [ nj ] 39 46 46 47 47

The maximum number of users thatoportional allocation vj [[ ©:2560] 0:4400] 0:6240] 0:8120] 1:0000

pan admit under Table Il's serglice class con gurations is
n

J!V': HPPET = 597, In contrast, !\11 n'PPe" is larger than TABLE IV: Service-class-wise results for thie = 200 case
1000 for random selection Therefore, whenN is getting in Figure 4 by theoptimal approach.
closer to 297, especially within [22B50], as shown in Figure j 1 2 3 K s l
4b, the decision space (i.e., the number of feasible combi D, || 0:0176] 0:3284] 0.4406] 0:4656] 0:4667
nations) inn for proportional allocationis shrinking, while Random q;j || 0:1758] 0:7514] 0:9572] 0:9975| 0:9989
that for random selectionis still expanding. Thus, as dis- | Selection | nj || 88 1 ] 34 42

cussed above, the optimal revenue for proportional allocatiok Vi ll 0:5490] 95459 162991 0:7900] 10900
: P prop ' b || 0:0113] 0:0108] 0:4500] 0:4862] 0:4871

increases less than for random selection with the number of proportional q; [ 0:1129] 0:1418] 0.9568] 0:9975| 0:9987
users. Expanding the decision space, to the contrary, enlargeg\location [ nj | 39 49 21 31 40
the range, and reduces the chances that good performances vj [| 0:2950] 0:5400] 0:6450] 0:8000] 1.0000
will be generated by the benchmarks. Takke = 250 for
proportional allocation as shown in Table Ill, as an example.
The number of users admitted by service class 1 reachesvaduations satisfyu; 2 [ng=N; ] will be admitted by service
upper boundh; PP’ = 39 for both our proposed approacheslasses at equilibrium. To understand hagin uences the
and the benchmarks, meaningis always at its optimal value. revenue, we varyyy with N xed as 150 and 250, and report
3) Impact of np on total revenue: From the provider's the correspondingptimal revenues in Figure 5 forandom
perspective,np=N can be interpreted as the rejection rateelection Due to the limited space, results fproportional
of users. A smallerng=N means more users whose Qo%llocation are not presented as they are similar to those for
. _ _ _ _ random selectionln Figure 5, whemy=N starts to increase
_Practlcally, whether to |mplen_1emandom selectl_omr proportional allo-  from 0, the overally; values of the admitted users also
cationdepends on the cloud provider's understanding of the market as to what .
the corresponding parametr and distribution ofu; will be. For example, increase. As fewer users are admitted, the offered Q]OS
proportional allocationmay attract fewer users thamndom selectiordue  increases for service classes. According to equation (8), higher
to the lower absolute QoS offered. Interested readers may refer to resezﬁécqj values leave more room for providers to set higher prices

on consumer behaviors for this. The aim of this paper is to help provider

understand the performance and set prices for burstable instances givenH'hve so the correspondlng revenue rises. On the other hand,

system parameters. whenng=N is too high, the number of admitted users becomes
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Fig. 5: Optimal total revenues under
different ng=N for random selection Fig. 6: Hourly revenue over ve days for the case study in Section V-C.

extremely low. Setting higher prices can no longer compensdie peak demand, the actual number of VMs in a service
for the smaller number of users admitted, ultimately leadingass is smaller than the designed number most of the time.
to a decrease in the total revenue. In this case, VMs can receive higher actual QoS than that
guaranteed by our pricing approach during off-peak periods.
When an existing VM terminates, we simply remove it from

its service class. We regard our derived prices as the payment

In this sub-section, we apply our framework to pricing @af an active VM for a time slot's (i.e., ve minutes') duration.
public cloud for burstable instance services. The Microsdflor example, a VM subscribing to service clgsir an hour
Azure traces are used as the VM workloads. Through tragkould pay 2f; in total. We plot the hourly-based revenues
analysis, we nd that although VMs are dynamically creategh the time horizon under both our proposed approaches and
and terminated over time, the number of simultaneously ruthe benchmarks in Figure 6. Ooptimal approach is shown
ning VMs is periodic on a daily basis. Therefore, we regang yield the best revenues for bottandom selectionand
the workload records from day 1 and day 2 as historical dajoportional allocation Our SDRapproach also generates the
which we use to calculate the prices. We then run simulatiosgcond-best revenues as a good approximation.
to evaluate our derived prices using the workload records in a
ve-day period from day 3 to day 7.

To accommodate the large number of concurrently running
VMs in the traces, we duplicate each service clasin Existing works on burstable instances fall into two classes.
Table Il 675 times, and refer to such a duplicated servié@n the infrastructure level, the rst class of works studies
class as a typg¢-service class. In this case, we hav8? how the CPU credit mechanism works. Through extensive
service classes from ve types in total. Other parameters stepeasurements, Leitnet al. [27] verify that the CPU credit
the same as those in Section V-B. We $ét= 135000, mechanism works as advertised by cloud providers (e.g., Table
corresponding to the peak number of VMs in the system ovgr Wang et al. [13] further point out that this mechanism
time. We then patrtition the service classes into 675 grougssentially follows a token bucket model [15], [16], [17]. This
with ve different types of service classes and 260N=675) nding has motivated us to model burstable instances and
users in each group, A group can be implemented using afalytically study the performance. To bridge the gap between
(= a9 N=675+ ., cj, wheread "¢ = 0:01) vCPUs. the performance of burstable instances and their commercial
Since a group represents a separate set of VMs, a VMiperation, we continue to study how a cloud provider should
received QoS depends only on the behaviors of other VNgsice burstable instances for the maximum revenue. To the best
within the same group. We can thus calculate the prices fof our knowledge, we are the rst to study optimal pricing for
our proposed approaches and the benchmarks within a grdwpstable instances.
at equilibrium, the same as in Section V-B. Since groups areThe second class of existing works focuses on use cases of
homogeneous, all typg-service classes essentially have thburstable instances. Wargg al. [10] present the deployment
samepj, gj, nj, andv;. The simulation parameters are selectedf backup services on burstable instances, while Baetzi
to ensure that we eventually get non-trivial results, which agt. [28] present another deployment of web servers and in-
not extreme cases and can gain us insights. memory cache. Also, both Yaet al. [29] and Ali et al.

The cloud assigns VMs to service classes upon their c80], [31] discuss how to shape the CPU resource utilization
ations and removes them upon their terminations. When a nefvapplications to make full use of the initial CPU credits
VM i needs to be created, we rst check s to decide assigned to burstable instances. This class of works on the ap-
which service class type it should go to. The VM is theplication level is different from ours. From a cloud provider's
assigned to the service class that has the minimum numberspective on the infrastructure level, we have no control over
of active VMs within this type, i.e., VMs that are currentlythe behaviors of applications, but just take and process their
running. As the QoS and prices are designed with regard riesource requests.

C. Pricing a Public Cloud: A Use Case Scenario

VI. RELATED WORK



Burstable instances and the correspondingly introduced re- REFERENCES

source provisioning mechanism have been.attract'mg more aﬂﬁi Y. Jiang, M. Shahrad, D. Wentzlaff, D. H. K. Tsang, and C. Joe-Wong,
more attention from the research community. While burstable” “Burstable instances for clouds: Performance modeling, equilibrium
instances were initially designed for computation resources, analysis, and revenue maximization,”fmoc. IEEE Int. Conf. Comput.

; : Commun,. 2019.
Parket al. [32] extend them to storage services. In their Pro12) “Amazon EC2 pricing” [Online]. Available:

posed system, /O credits, which follow the same philosophy " hitps://aws.amazon.com/ec2/pricing/

as CPU credits of burstable instances, take the role to reguldfé CH- Reiss, A._Tumeantév, G.R. Gapgler,c:?. H. Kaltz, énd l\lll A. Kozucr|1,
' - “Heterogeneity and dynamicity of clouds at scale: Google trace analy-

users _receIVEd _Storage resources. . sis,” in Proc. ACM Symp. Cloud Compu012, pp. 7:1-7:13.

Similar technigues to those employed in our work, such ag] M. babbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Toward energy-

token bucket models and optimal pricing, have been used to efcient cloud computing: Prediction, consolidation, and overcommit-

address different problems in the literature. For example, tokeg, E"egtérEZEEANeBt‘(’)"'n;Z" ig',\;l‘ﬁ'zi(z)' R %Gu_s?s%r’]ozv(i)it?. M. Fontoura. and

bucket models have been extensively adopted to regulate data r. Bianchini, “Resource central: Understanding and predicting work-
traf ¢ [15], [16], [17]. Other works have priced service classes loads for improved resource management in large cloud platforms,” in

. . : - Proc. ACM Symp. Operating Syst. Principl€917, pp. 153-167.
with differentiated QOS levels in data networks [23]’ [33]' 6] X. Meng, C. Isci, J. Kephart, L. Zhang, E. Bouillet, and D. Pendarakis,

However, due to different system dynamics and characteris- «gfcient resource provisioning in compute clouds via VM multiplex-
tics, these results cannot be directly applied to our burstable ing,” in Proc. Int. Conf. Autonomic Compp2010, pp. 11-20.

instance scenario. Similarly, the distinct features of burstablg! "CPY ~~ credits and  baseline  performance ~ ~ for
burstable performance instances. [Online]. Available:

instances compared to traditional static cloud instances prevent ntps://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-
existing models on cloud pricing (e.g., [34] and [35]) from  credits-baseline-concepts.html
being applied to our scenario [8] “Microsoft Azure: B-series burstable virtual machine sizes.”

. [Online].  Available: https://docs.microsoft.com/en-us/azure/virtual-
Some early works have proposed alternative resource pro- machines/linux/b-series-burstable

visioning ideas to tackle bursty workloads in clouds. Wantg [9] “Google Cloud Platform: Shared-core machine types.” [Online]. Avail-
al [36] propose to aggregate the bursty workloads in a Clozﬂ) able: https://cloud.google.com/compute/docs/machine-types#sharedcore
ap

. C. Wang, B. Urgaonkar, A. Gupta, G. Kesidis, and Q. Liang, “Exploiting
broker for cost savings to users. The broker reserves ch spot and burstable instances for improving the cost-efcacy of in-

long-term resources from the cloud provider and prots from  memory caches on the public cloud,” #roc. European Conf. Comput.
; i ; ind i Syst, 2017, pp. 620-634.
the aggregation. A similar notion h.as been Stu.dIGd n [37]’ bﬁ%} J. Lin and A. Kolcz, “Large-scale machine learning at twitter,Froc.
the brokerage str_atggy follows a different business model and acm sIGMOD Int. Conf. Manage. Dat&012, pp. 793-804.
system characteristics to ours. The model we study stems frii?i M. Shahrad, C. Klein, L. Zheng, M. Chiang, E. Elmroth, and D. Went-

; ; ; zlaff, “Incentivizing self-capping to increase cloud utilization,” Roc.
current practices in the industry. Another stream of works has ACM Symp. Cloud Comput2017, pp. 52—65.

investigated, from the applicgtions' pe_rspectivg, _hOW resourfi@) c. wang, B. Urgaonkar, N. Nasiriani, and G. Kesidis, “Using burstable
requests should be made via proactive prediction [38], [39] instances in the public cloud: Why, when and howbc. ACM on

or online algorithmic decision processes [40], [41], while onlr Measurement and Anal. Comput. Systl. 1, no. 1, p. 11, 2017.

14] D. Li and X. Sun,Nonlinear Integer Programming Springer Science
work focuses on how resource requests already made by USErs g gysiness Media, 2006, vol. 84.

can be accommodated by a cloud provider. [15] C. Courcoubetis and V. A. Siris, “Managing and pricing service level
agreements for differentiated services,”Rmoc. IEEE/ACM Int. Symp.
VIl. CONCLUSION Quality Service 1999, pp. 165-173.

[16] B. Raghavan, K. Vishwanath, S. Ramabhadran, K. Yocum, and A. C.
This paper presents a framework to analytically model the Snoeren, “Cloud control with distributed rate limitingfCM SIGCOMM

performance of burstable instances given service class con g-, S0mput. Commun. Rewol. 37, no. 4, pp. 337-348, 2007.

. . . , . .ng] F. M. F. Wong, C. Joe-Wong, S. Ha, Z. Liu, and M. Chiang, “Improving
urations (Section Il), characterize users' selections of service yser QoE for residential broadband: Adaptive traf c management at the

classes at the Nash equilibrium (Section Ill), and maximize network edge,” inProc. IEEE/ACM Int. Symp. Quality Servic015,

N . : ; . 105-114.
the providers total revenue by nding the optimal prices a1118] f\)/lp Bjorkqvist, N. Gautam, R. Birke, L. Y. Chen, and W. Binder

eqUi"briLllm (SefCtion IV). We validate our framework via trace- ~ «optimizing for tail sojourn times of cloud clusterdEEE Trans. Cloud
driven simulations. The results show that our performance Comput, vol. 6, no. 1, pp. 156-167, 2018.

model can estimate the QoS received by burstable instanE&b W- Zheng, M. Zhou, L. Wu, ¥. Xia, X. Luo, S. Pang, Q. Zhu, and Y. Wu,
Percentile performance estimation of unreliable laaS clouds and their

With'al"l average error ratio Ipwer than 3%, anq our revenue  cost-optimal capacity decision[EEE Accessvol. 5, pp. 2808-2818,
maximization scheme can increase the provider's revenue 2017.

ot ; [20] Z. Huang and D. H. Tsang, “M-convex VM consolidation: Towards a
COX]par:ed to heuns(tjlc bmethogls (.SeCtlon V)f h ical better VM workload consolidationfEEE Trans. Cloud Computvol. 4,
s the rst to study burstable instances from a theoretica no. 4, pp. 415-428, 2016.

perspective, we regard this work as an initial framework thgdl] R. G. Gallager, “Finite state Markov chains,” Discrete Stochastic
captures the fundamental features of burstable instances. To Processes Springer, 1996, pp. 103-147.

P h K . . . I[ﬁz C. Joe-Wong, S. Sen, and S. Ha, “Offering supplementary network
extend the work, more diverse settings can be 'nteQr‘_ﬂed I technologies: Adoption behavior and of oading bene tdEEE/ACM
our framework. For example, we can consider a hybrid cloud Trans. Netw.vol. 23, no. 2, pp. 355-368, 2014.

that offers both static and burstable instances. By allocatiffg] S: Shakkottai R. Srikant, A. Ozdaglar, and D. Acemoglu, "The price of
. . simplicity,” IEEE J. Sel. Areas Commurvol. 26, no. 7, 2008.
different proportions of the resources to the two types g4] 2.-Q. Luo, W.-K. Ma, A. M.-C. So, . Ye, and S. Zhang, “Semide nite

instances, users' selection behaviors and the cloud provider's relaxation of quadratic optimization problems$EEE Signal Process.
optimal revenue could be further studied. Another direction Mag. vol. 27, no. 3, pp. 20-34, 2010. . :

. . dv the th ical b d of ] N. Karmarkar, “A new polynomial-time algorithm for linear program-
is to continue to study the theoretical bound of our propos€d” 1ing™ in Proc. 16th Annu. ACM Symp. Theory Compui984, pp.

SDR-based algorithm for revenue maximization. 302-311.



[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

(36]

(37

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

C. Gini, “Concentration and dependency ratioRivista di Politica
Economicavol. 87, pp. 769792, 1997.

P. Leitner and J. Scheuner, “Bursting with possibilities—an empirical
study of credit-based bursting cloud instance typesProc. IEEE/ACM

Int. Conf. Utility Cloud Comput.2015, pp. 227-236.

A. F. Baarzi, T. Zhu, and B. Urgaonkar, “Burscale: Using burstable
instances for cost-effective autoscaling in the public cloud,Pioc.
ACM Symp. Cloud Comput2019, pp. 126-138.

F. Yan, L. Ren, D. J. Dubois, G. Casale, J. Wen, and E. Smirni, “How
to supercharge the Amazon t2: Observations and suggestiorBtom resource management and enhanced vertical integra-
|IEEE Int. Conf. Cloud Compyt2017, pp. 278-285. tion. He has experience studying and building real
A. Ali, R. Pinciroli, F. Yan, and E. Smirni, “Cedule: A scheduling cloud systems, for which he won the USENIX Community Award in 2020.
framework for burstable performance in cloud computing,”Rroc.
IEEE Int. Conf. Auton. Compyt2018, pp. 141-150.

——, “It's not a sprint, it's a marathon: Stretching multi-resource
burstable performance in public clouds,”®toc. Int. Middleware Conf.
Ind. Track 2019, pp. 36—42.

H. Park, G. R. Ganger, and G. Amvrosiadis, “More IOPS for less:
Exploiting burstable storage in public clouds,” Rroc. 12th USENIX
Workshop Hot Topics Cloud Compu2020.

A. Odlyzko, “Paris metro pricing for the internet,” ifroc. ACM Conf.
Electronic Commercel999, pp. 140-147.

L. Zheng, C. Joe-Wong, C. W. Tan, M. Chiang, and X. Wang, “How
to bid the cloud,” iInACM SIGCOMM Comput. Commun. Rexol. 45,
no. 4, 2015, pp. 71-84.

H. Xu and B. Li, “Dynamic cloud pricing for revenue maximization,”
IEEE Trans. Cloud Compuytvol. 1, no. 2, pp. 158-171, 2013.

W. Wang, D. Niu, B. Li, and B. Liang, “Dynamic cloud resource
reservation via cloud brokerage,” Proc. IEEE Int. Conf. Distributed
Computing System&013, pp. 400-409.

L. Zheng, C. Joe-Wong, C. G. Brinton, C. W. Tan, S. Ha, and M. Chiang,
“On the viability of a cloud virtual service providet\CM SIGMETRICS
Performance Evaluation Rewol. 44, no. 1, pp. 235-248, 2016.

J. Tai, J. Zhang, J. Li, W. Meleis, and N. Mi, “ARA: Adaptive resource
allocation for cloud computing environments under bursty workloads,” graduation, he joined the Department of Computer

in Proc. IEEE Int. Performance Comput. and Commun. G&€f11, pp. Science at Dalhousie University in Canada. He later
1-8. joined the Department of Electronic and Computer

D. J. Dubois and G. Casale, “Performance prediction for burstable Engineering at The Hong Kong University of Sci-
cloud resources,” inProc. EAI Int. Conf. Performance Evaluation ence and Technology (HKUST) in 1992 and is now
Methodologies and Toql2017, pp. 217-218. a Professor in the department. He has also served
H. Zhang, G. Jiang, K. Yoshihira, and H. Chen, “Proactive workload as Leader of the Internet of Things Thrust Area at
management in hybrid cloud computinglEEE Trans. Netw. Serv. HKUST (Guangzhou Campus) since 2020. He was a Guest Editor for IEEE
Manag, vol. 11, no. 1, pp. 90-100, 2014. Journal of Selected Areas in Communications' special issue on Advances
N. Morris, C. Stewart, L. Chen, R. Birke, and J. Kelley, “Model-drivenin P2P Streaming Systems, an Associate Editor for Journal of Optical
computational sprinting,” ifProc. EuroSys Conf2018, pp. 38:1-38:13. Networking published by the Optical Society of America, and a Guest Editor
Y. Jiang, Z. Huang, and D. H. K. Tsang, “On power-peak-awartor IEEE Systems Journal. He currently serves as Technical Editor for IEEE
scheduling for large-scale shared clusteif&EE Trans. Big Datavol. 6, Communications Magazine. He was nominated to become an IEEE Fellow
no. 2, pp. 412-426, 2020. in 2012 and an HKIE Fellow in 2013. During his leave from HKUST in

H. Xu and B. Li, “Reducing electricity demand charge for data cente000-2001, Dr. Tsang assumed the role of Principal Architect at Sycamore
with partial execution,” inProc. ACM Int. Conf. Future Energy Syst. Networks in the United States. He was responsible for the network architecture
2014, pp. 51-61. design of Ethernet MAN/WAN over SONET/DWDM networks. He invented

C. Szegedy, S. loffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4the 64B/65B encoding (US Patent No.: US 6,952,405 B2) and contributed it to
inception-resnet and the impact of residual connections on learning,”time proposal for Transparent GFP in the T1X1.5 standard that was advanced
Proc. AAAI Conf. Arti cial Intell, 2017. to become the ITU G.GFP standard. The coding scheme has now been
Z. Xiong, Y. Zhang, D. Niyato, R. Deng, P. Wang, and L.-C. Wangadopted by International Telecommunication Union (ITU)'s Generic Framing
“Deep reinforcement learning for mobile 5G and beyond: Fundamentafocedure recommendation GFP-T (ITU-T G.7041/Y.1303)) and Interfaces for
applications, and challenge$EEE Veh. Tech. Magvol. 14, no. 2, pp. the Optical Transport Network (ITU-T G.709). His current research interests
44-52, 2019. include cloud computing, edge computing, NOMA networks and smart grids.

Mohammad Shahrad(Member, IEEE) is an incom-
ing Assistant Professor of Electrical and Computer
Engineering at The University of British Columbia.
He received his M.A. and Ph.D. degrees from
Princeton University in 2016 and 2020, respectively.
Prior to that, he received his B.Sc. in Electrical
Engineering from Sharif University of Technology
in 2014. Dr. Shahrad's research aims to improve
the ef ciency of public cloud systems through better

David Wentzlaff (Member, IEEE) is currently an
Associate Professor with the Electrical Engineer-
ing Department, Princeton University. His research
interests include parallel computer architecture, ar-
chitectures for cloud computing, and biodegradable
computing systems. He has received the NSF CA-
REER award, the DARPA Young Faculty Award, the
AFOSR Young Investigator Prize, and the Princeton
E. Lawrence Keyes Faculty Advancement Award.
Wentzlaff received the master's and Ph.D. degrees
in electrical engineering and computer science from
the Massachusetts Institute of Technology.

Danny H.K. Tsang (Fellow, IEEE) received the

Ph.D. degree in electrical engineering from the
Moore School of Electrical Engineering at the Uni-
versity of Pennsylvania, U.S.A., in 1989. Upon

Carlee Joe-Wong(Member, IEEE) is an Assistant
Professor of Electrical and Computer Engineering at
Carnegie Mellon University. She received her A.B.,

Yuxuan Jiang (Member, IEEE) received his Ph.D.

degree from The Hong Kong University of Science
and Technology in 2019 and his B.Eng. degree from
Huazhong University of Science and Technology,
Wuhan, China in 2013. He was a visiting scholar
at Carnegie Mellon University, working with Prof.

Carlee Joe-Wong. His research interests lie in the
broad area of networking and distributed systems,

M.A., and Ph.D. degrees from Princeton University
in 2011, 2013, and 2016, respectively. Dr. Joe-
Wong's research is in optimizing networked systems,
particularly on applying machine learning and pric-
ing to data and computing networks. From 2013 to
2014, she was the Director of Advanced Research
at DataMi, a startup she co-founded from her Ph.D.
research on mobile data pricing. She has received

with a focus on resource management in cloud/edg few awards for her work, including the ARO Young Investigator Award

computing and big data systems.

in 2019, the NSF CAREER Award in 2018, and the INFORMS ISS Design

Science Award in 2014.



APPENDIXA job completion time as the performance indicator). Therefore,

EXAMPLES ON TRANSLATING OUR the QoS translation from the infrastructure level to the applica-
INFRASTRUCTURELEVEL QOS TO THE PERFORMANCE OF tion level may be more complicated than what we have stated
USER-DEPLOYED APPLICATIONS above.
Similar to other studies on laaS clouds, our QoS metric
guanti es the infrastructure-level resource availability. With APPENDIX B
the control of low-level resources, such as the CPU, laaS PROOF OFPROPOSITIONL IN SECTION I

cloud users deploy their applications onto the infrastructure N N .

(ie., the VMs) provided by the laaS clouds. Since an lagyoof. '_I'he proposmor_\ de nes the tran§|t|on probapll|ty from
cloud provider has neither the knowledge of what applicatio§éted in the current time slot to state in the next time slot
the users are running on their VMs, nor the control of thestder the following three different scenarios, with the V|_sual-
applications, the QoS metric for an laaS cloud does n'@_lations of their state transition probabiliti€%, , shown in
directly capture the performance of user-deployed applicatiofi§ure 7.

(e.g., the completion time of a Hadoop job [42]). Having the () Whenrj d  max 1, we rst examine the case
full knowledge of his/her deployed applications, the user m;yy,here the user has resource requests in the current time slot.
translate the infrastructure-level QoS to the application-leveepending on, the number of requests, there are two possible
performance to get a better understanding of the quality $#b-scenarios for the state transition:

an laaS cloud service. Although such a translation is out When d, the number of currently available tokens,
of the scope of our work, which focuses on the resource d, is sufcient to satisfy all the requests. Therefore,
provisioning of an laaS cloud, we still shed some light on how tokens will be consumed in the current time slot, and
this translation may be done for the two sample applications r; more tokens will be accumulated in the beginning of
mentioned in Section I, namely, hot standbys and periodically the next time slot, so the Markov chain will transit to

updating machine learning models. stateh=d  +r;. We re-write the above equation with
Hot standbys and updating machine learning models belong regard to as =d+r; h. Therefore, with probability
to a class of applications that tolerate partial execution [43]. P( =d+r; h), the Markov chain transits from state

In other words, although these applications may receive only a d to stateh, with the range oh asr; h d+r; 1.

part of their requested resources from the underlying burstable When > d, d out of requests will be ful lled by the

instances, they can run with these partial resources and achieve currently available tokens, with the rest of the requests

a certain performance. being discarded. After accumulating new tokens in the
The function of a hot standby is to execute as many work- beginning of the next time slot, the Markov chain will

loads as possible for the main service when the main service transi{,to statdn = r;. The probability for such a transition

is down, in order to reduce the amount of pending workloads is e PO =K).

when the main service recovers. From our |nfrastructure—leyel|f the user does not have resource requests in the current

QoS, the user, by making resource requests, can have an igea (ot with probability 1

of how many of them will be accepted. Although the user may,m stated to stateh = d+r

only receive a part of his/her requested resources, his/her ians are consumed in th

standby can still use these resources to process some Of J0& mylated in the beginning of the next time slot. Meanwhile,
workloads submitted to the main service, and the applicatiofa pMarkov chain cannot transit to states d+r

, the Markov chain will transit
j in the next time slot, because no

i+
level performance improves when more workloads can , the state transition probabilities when dJ 1.m1;c))( SUT
processed by the hot standby to mitigate the workload of the, \\ritten as
main service when it is recovered. )
In the example of training a machine learning model, its oy PC=Kk) h=rj;
performance can be quanti ed by the accuracy of the trained P =d+r;j h rj+1 h
model. In many cases, the training process is iterative and Py n=2< d+r. 1
the more iterations that the training process undergoes, the ' B ) -
higher the accuracy of the trained model will be. Therefore, %1 h=d +.rj'
the actual amount of resources that the user receives in the :0 otherwise.

infrastructure level can translate to the number of iterations .. Wh d b r. we alwavs have suf cient
that the machine learning model will be trained with, and IE") ¢ en t.max ‘ Jif th 'r’ Wr W zr v tu Intb th
nally be translated to the accuracy of the trained model. F(B? ens to satisfy requests €re are such requests sent by the

. . N ; r with probability . In this case, The Markov chain will
example, if a user receives 90% of his/her requested resour é;%sit trom stated to stateh = d +1; with probability

(s)he can complete 90% of the desired iterations and get wit Eﬁp( = d+r; h). If there are no requests sent by the user in
= i )

less than 10% of the targeted training effor. / ) . .
We should (;cknowledge that in regl-world systems uselﬂs«Le current time slot with probability 1, the Markov chain
d ¥ ’ will transit from stated to stateh = d+r;. The Markov chain

applications may not tolerate partial execution (e.g., with the .
P Y P eg cannot transit to statds< d+r; max orh>d+r; 1.In

10The marginal improvement in the model accuracy usually decreases wrHmMmary, the_ state transition pmbab'“t'es Wheihx d
the number of iterations increases [44], [45]. b; rj are written as






class j + 1, which meansvjgj+1  pj+1 vjg; pj. If write the optimization problem after the completion of Step 2
Ui < Vj, the user will subscribe to service clgssvhich means in Algorithm 1 in the following form:
limy, v, gy pj limy, v, Uibje1 Pjea - Therefore,  (inhomogeneous QCQP)

at the turning point/;, we should have maximize <" G(1ds
S

Vidi Py =ViGie P 81 2MEMG (19 gupectto STaMs+asTg = @ 8j2M;

The same notion holds for boundary poigt so that SGM0g 4+ 28T 10 = (10). g 5 -
j j i :
Voo p1=0. (20) s'G{Ps+2s"g("? = 0 8j 2 M;
We can thus recursively write equations (19) and (20) with STG](14)S+ ZSTgJ(“) 0 8j2MnfMg
regard top; from j=1toj =M 1 as equation (12). As a T G(@)s+ 28T g19)

result, equation (12) holds at the Nash equilibrium.
Suf ciency: Consider a user with his/her QoS valuation

asui. .If Ui = Vo, gccordlng_ to the de hitions of; andy; n here G is the coef cient matrix of the quadratic term in
equation (12), this user will have no incentive to subscribe 10 ]

any service class because all the service classes will delig@pstraint k) with index j, while gj(k) is the coef cient vector
negative rewards to this user. As shown in equation (9), thisaéthe linear term and (k) js the constant term. Particularly, we
by de nition the Nash equilibrium and the suf ciency is thushave noj index in the objective function and constraint (15),
proved for this particular case. s0 G113 and G™ directly represent the coef cient matrices
We continue to focus on cases wheare Vo. According of the quadratic terms in the objective function (13) and
to the de nitions ofn; andv; in equation (12), suppose thisconstraint (15), respectively. We refer to constraints (1) and
user should subscribe to a particular service clgsehere (10) in the above inhomogeneous QCQP formulation as their
u 2 [v; 3vlif j = M andu 2 [vj 1;vj) otherwise. We convex forms after the approximations in Step 2 of Algorithm
prove the suf ciency by contradiction. Supposg q;, vj, and 1. To apply SDR to the inhomogeneous QCQP formulation,
nj, j 2 M, satisfy equation (12) but do not constitute a Nasie rst need to transform it to a homogeneous QC®&Ho
equilibrium. In other words, usdr will subscribe to service this end, we rst introduce an additional decision variable
classj® wherej®, j, at the Nash equilibrium. According tot that satis est? = 1. Let vectorz = [s" t]" be the new
the de nition of a Nash equilibrium, as shown in equation (9)jecision variable vector. To merge the linear terﬁ@ into
we should have the quadratic terrrsTG](k)s, we introduce a new coef cient

pjo < O. 1 matrix H_(k) for each constraint in the inhomogeneous QCQP
formulation so that

In what follows, we respectively delve into the two cases k)  AK)
0 a5 0 -RG 9
wherej < jYandj > j~ HW =B B =

() Whenj < j° M, we haveu; < vj. We can then i 0
get equations (22a) to (22k) shown on the next page, Whex® can therefore re-write the optimization problem witas
equation (22c) is obtained by substituting equation (12) intRe decision variable vector:
equation (22b) and equations (22d), (22f), (22h), and (22k)(homogeneous QCQP)
are obtained by < vj < v, 8k > j andgk  gjo, 8k < j°

s'G{Ms+2sTg(" 0, 8j2M,

Wij  Wijo= Ui pp - uigpe

From equations (22a) to (22k), we know thvat; wi.jo O, maximize Z'H(9Z
:/,vvhich V<\:Iontr<a(czl)icts our prior assumption in equation (21) that subject to ZTHJ(l)S: 1_(1); 8j2M;

5 i;j0 < Y. -

(i) When 1 j%< j, we havev; 1 uj. We can then ZTHJ(lO)Z: ngo); 8j2M;
get equations (23a) to' (23k) shown'on. the next'page, where 7THIZ = o 8j2M:
equation (23c) is obtained by substituting equation (12) into T ’(14) .
equation (23b) and equations (23d), (23f), (23h), and (23k) z H™z 0 8 2MnfMg
are obtained by  vj > v, 8k < j andgk  gjo, 8k > j° STH(15),

From equations (23a) to (23k), we know thvat; wi.jo O, THAD, o 8i 2 M
which contradicts our prior assumption in equation (21) that Zhprz Yol
Wi:j  Wijo<0. Z7HOZz=1,

whereH® is a matrix with only one non-zero entry valued
1 at the bottom right. The constraint associated wtH)
APPENDIXD guarantees that® = 1. Denotez = [3" f]T as the optimal
DETAILS OF STEPS3 AND 4 IN ALGORITHM 1 solution to the homogeneous QCQP formulationf I 1,
A. Constructing a Semide nite Relaxed Problem in Step 3 $ is also an optimal solution to the inhomogeneous QCQP

— T AT AT T1T
Let Vec"_ofs— [p_ q n_ v ] be_ th_e C_Oncatenated vector 11According to the de nition in [24], a homogeneous QCQP is a QCQP
of the decision variables in the optimization problem. We catith solely quadratic terms in both its objective function and constraints.



Wi;j  Wjo= Uuigj P uigje pjo (22a)
= Uigp Uigjo + pjo pj (22b)
. X°
=U Qg Qo +.Vj Q+1 @ + Ve1 Ok Ge1l (22¢)
1 k=j+2 .
XO
Vi 0j Qo +.Vj Q+1 O + Vel Ok G1l (22d)
, k=j+2 -
XO
=V Qi+ g0 *.Vj+1 Q+2 Qi1 Va1 G 1l (22e)
, k=j+3 B
. X°
Vist Gi+1 G0 +.Vir1 Gaz Gs1 +  Vk1 Gk Gk 1/ (22f)
k=j+3 .
XO
=Vj+1 Q+2 Qo *.Vj+2 Qj+3 Qj+2 * V1 Gk Gkl (229)
, k=j+4 .
Vjo 2 q10 2 qjo + VJ'O 2 CIjO 1 CIJO 2 +Vj0 1 qjo qjo 1 (22h)
=Vjop Qo1 0jo +Vjog Qo Qjoy (22i)
Vio 1 Cjo1 (o +Vjoy Qo (o (22))
= 0. (22K)
Wi;j  Wi;jo= UiQp P uigjo pjo (23a)
= Uigy Uigpo + pjo P (23b)
. X1
=U q Qo +.vj1 01 Q + Vi1 Ok 1 G (23c)
k=jo+1 .
" X1
Vi1 0 Qo +.vj10Q 1 @ + Vel Q1 Ok T (23d)
, k=jo1 .
. X2
=Vi1 Q1 Qo +.Vj20Q 2 Q1+ V1 Ok Ok T (23e)
, k=jOr1 .
% X2
Vi2 Q1 Qo +.Vj2 02 Q1+ Vi1 Ok 1 G (23f)
, k=jo1 -
. X3
=Vj20Q 2 Qo *+.vj3 Q3 Q2 + Vi1 Ok Ok T (239)
, k=jOr1 .
Viar Qja2  Qjo + Vjor Qjoaer  Ojorp +Vjo Qjo  Cjorg (23h)
=Vju Qjeer  gjo +Vjo Qo (o (23i)
Vio gjorp Qo +Vjo Qjo  jory (23))

=0.

(23K)



formulation. Otherwise, if = 1, §is an optimal solution Speci cally, in steps 2 to 8, we rst construct a feasilte

to the inhomogeneous QCQP formulation.
Let Z = zZ". Observe that

ZTHMz=Tr 2TH{z
=Tr H{9z
=Tr H{Z

where Tr() denotes the trace of a matrix. The above reld0 the optimization algorithm. Th
tionship allows us to equivalently transform the homogeneo@gnstraint (10), the relationship that, nj = N

vector by proportionally rounding th@& vector with regard to

N so that constraint (10) can be satis ed. Since we use ceiling
functions during the proportional rounding process in step 4,
if vector f after proportional rounding is still not feasible,
the only possibility is that the summation of all its entries
exceeddN ng. (Note that the decision variable vectodoes

not includeng, which is a provider-speci ed input argument
y if we recursively write
nop can be

QCQP formulation to a rank-constrained semide nite prografierived.) We thus deduct the values of some entries to

(SDP) as follows:
(rank-constrained SDP)

maxzimize Tr HA3Z

subject to TrHl(l)Z = j(l); 8j2M;

construct a feasiblé vector in step 7. In steps 9 to 13, we
check whether the deriven;, j 2 M n f Mg can satisfy the
minimum QoS requirement by comparingn; with n?’pper.

If nj > n'PP®" we need to equally assign the difference
n/PPe" nj to the service classes: j < k M that have
richer resources, and then truncaiedown ton:'"P®". With
such operations, we can guarantee thatj 2 M nfMgare
feasible. Note thany  ny/"®" is also guaranteed as the
parameters that we select for simulations ensures that feasible
solutions exist for the revenue maximization problem. Now we
have obtained a feasible vector. We further construdai, v,

and p sequentially according to their dependency constraints

in step 14.

Algorithm 2 Feasible Solution Recovery in Step 4 of Algo-

T H{PZ = (9 gj2om;
T H{PZ = (2 gj2Mm;
T H{*¥Z 0 8j2MnfMg
Tr H®®Z

T H{Z 0 8j2M;

Tr HOZ =1,

Rankg) =1

rithm 1.

Note that the last constraint regulates the rank of fhe Input: Optimal solutionZ to the semide nite relaxed for-

matrix to be 1, so that we are able to recover the original
optimal z vector from the optimalZ matrix. Observe that

mulation in Step 3 of Algorithm 1 and all the inputs to
Algorithm 1.

the only non-convex constraint in the rank-constrained SBDButput: Feasible solutionp, g, n, and v to the original

formulation is the rank constraint. Therefore, the core idea

of SDR is to relax the rank constraint so that the remaining.:

convex optimization problem can be solved efciently. In

other words, after removing the rank constraint, we have:

successfully constructed the semide nite relaxed formulation

to be solved in Step 3 of Algorithm 1. 3:

The major drawback of removing the rank constraint is that

the rank of the obtained optimal solutioch is no longer 4:

guaranteed to be 1. Therefore, we may not be able to directly
recover a feasible vector using the equatiah = zz" . We will

demonstrate in Appendix D-B the detailed recovery approach:
for a feasible solution to the original revenue maximizatione:

revenue maX|m|zat|$1_problem in Section IV.
Construct vectoz = , where is the largest eigen-
value of Z, while ~is its correspondlng eigenvector.
Extract thef vector from thez vector, and ceil theh
vector: i = dhe.
if the summation of all the entries in vectdrdoes not
equalN np, i.e., sumf) , np, then

Proportionally scale vectof asrii = dN np)
fi=sum f)e for all the entries in vectom, where
denotes théth entry in vectom.
end if

if sum@) , no then

problem in Section V. 7 Deduct the last sunfij (N ng) entries inA whose
values are larger than 1 by 1.
B. Recovering Feasible Solutions to the Original Problem in end_lf
9:for j=12:;M 1do

Step 4

10:
In this sub-section, we elaborate step 4 in Algorithm 1
on how to recover a feasible solution to the original revil

enue maximization problem from the optimal solution to the

semide nite relaxed problem. Our proposed recovery approa&ﬁ: d 1
3: end for

is summarized as Algorithm 2.

The core idea of the recovery algorithm is the eigenvalue ap*

proximation approach [24]. In the beginning of the algorithm,
we construct an initial solution from the largest eigenvalue
and its corresponding eigenvector of matix in step 1.

15:

if nj > n/PP*" then
Amortize the difference n'PP®"  n;

N, j <k M. Then letn; = n:’pe’er
end if

equally to

Let n = A. Constructg from n according to equation (1).
Constructv from n according to equation (10). Construct
p from g andv according to equation (12).

return vectorsp, g, n, andv.

Afterwards, we construct feasible g, v, andp sequentially.



APPENDIXE
SUPPLEMENTAL CONTENT TOSECTION V

A. Supplemental Figure to Section V
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Fig. 8: The empirical cumulative distribution ofderived from
the traces.

The cumulative distribution of that we derive from the
Microsoft Azure traces [5] is shown in Figure 8. It can be
observed that has a long-tail distribution. Most of the time Algorithm 4 The GaussianBenchmark in Section V.
the amount of resources that a user requests is small, {
occasionally, (s)he may request a large amount of resour
(i.e., having a bursty workload). Meanwhile, we con rm from

ut The same as the input to Algorithm 1.
tput Feasible solutiom.

- : . " 1: for j=1,2:;M 1do
_the traces '_[halP( = _X) for relndom V‘T"”ab'e 'SP ositive at a_II 2: Draw a random npmper from a Gaussian distri-
integral pointsx 2 [1;99]\ Z*, meaning our prior assumption I N
in Section II-B thatP( = x) > 0, X 2 [L max]\ Z* holds. butlc;r: 1Wlth mean bM—ch and standard deviation

N

_n Nk
k=0
szM j+1) C.

B. Formal Presentation of th&niform and GaussiarBench-

3 f n}”’per then
marks in Section V 4 nj =
In this sub-section, we formally present theiformbench-  5: else
mark in Section V as Algorithm 3, and th@aussianbench-  6: nj = n'PPer,
mark as Algorithm 4. 7: end if
8: end for
Algorithm 3 The Uniform Benchmark in Section V. ony=N " MIn.

Input: The same as the input to Algorithm 1. 10: return vectorn = [ng; ny; i:inw ]
Output: Feasible solutiom.
1 for]—1;2J ;M 1do

2: if bM—ch nj’pper then

1
3: nj = bN+J+°1nkc.
4 else
5: n; = n'PPer,
6: end if
7: end for
gny=N MIn.

9: return vectorn = [ny; ny; ::znm]T.




