
AdaCoOpt: Leverage the Interplay of Batch Size
and Aggregation Frequency for Federated Learning

Weijie Liu1, Xiaoxi Zhang1, Jingpu Duan2, Carlee Joe-Wong3, Zhi Zhou1, Xu Chen1

1Sun Yat-sen University, 2Pengcheng Laboratory, 3Carnegie Mellon University
Email: liuwj55@mail2.sysu.edu.cn, {zhangxx89, zhouzhi9, chenxu35}@mail.sysu.edu.cn

duanjp@pcl.ac.cn, cjoewong@andrew.cmu.edu

Abstract—Federated Learning (FL) is a distributed learning
paradigm that can coordinate heterogeneous edge devices to
perform model training without sharing private raw data. Many
prior works have analyzed the FL convergence with respect to
important hyperparameters, including batch size and aggregation
frequency. However, adjusting the batch size and the number
of local updates can affect the model performance, training
time, and the cost of consuming computation and communication
resources, in different and perhaps complex forms. Their joint
effects have been overlooked and should be exploited to achieve
accurate models with controllable operational expenditure. This
paper proposes novel analytical models and optimization algo-
rithms that leverage the interplay of batch size and aggregation
frequency to navigate the trade-offs among convergence, cost, and
completion time for FL. We first obtain a new convergence bound
of the training error under heterogeneous training datasets across
devices. Based on this bound, we derive closed-form solutions of
a co-optimized batch size and aggregation frequency, a single
configuration for all the devices. We then design an efficient
exact algorithm for assigning different batch configurations
across devices that can further improve the model accuracy to
address the heterogeneity of both data and system characteristics.
Further, we propose an adaptive control algorithm to dynamically
adjust the solutions with estimated network states. Extensive
experiments demonstrate the superiority of our offline optimal
solutions and online adaptive algorithm.

I. INTRODUCTION

Federated Learning (FL) [1]–[3] has gained much atten-
tion as it enables distributed model training through mul-
tiple collaborative devices without exposing their raw data.
In the meantime, with the proliferation of edge computing
technologies [4], [5], deploying FL at edge devices has become
a promising computation paradigm to facilitate data-driven
applications while preserving data privacy. Unlike traditional
distributed machine learning (DML) [6], [7], FL allows each
training device (a.k.a. worker) to perform multiple local up-
dates before uploading their model parameters to the central

Xiaoxi Zhang is the corresponding author.
This work was supported by NSFC grant 62102460, grant 202201011392

under the Guangzhou Science and Technology Plan Project, Young Outstand-
ing award under the Zhujiang Talent Plan of Guangdong province, NSFC
grant 61972432, Guangdong Basic and Applied Basic Research Foundation
(2021B151520008), Guangdong Introducing Innovative and Entrepreneurial
Teams (2017ZT07X355), and NSF grants CNS-2106891 and CNS-1751075.

𝑤1(𝑘𝜏)

Parameter Server

𝑤2(𝑘𝜏) 𝑤3(𝑘𝜏)

𝑤 𝑘𝜏 =

𝑖=1

𝑁
𝐷𝑖𝑤𝑖(𝑘𝜏)

𝐷

Large training
variance

Unbearable
training time

Data-rich
Medium speed

Time vs accuracy

Data-scarce
High speed

Data-rich
Low speed

𝑤 𝑘𝜏𝑤 𝑘𝜏𝑤 𝑘𝜏

𝒘𝒊(𝒕) 𝒘𝒊(𝒕 + 𝟑)

𝒘𝒊(𝒕) 𝒘𝒊(𝒕 + 𝟐)

More Local updates

𝝉 = 𝟑, batch-size = 2k

Larger Batch-size

𝜏 = 2, batch-size = 3k

Local update

Mini-batch

Data samples

Resource (CPU/GPU)

Which is
better?

500KB/s 200KB/s 50KB/s

Fig. 1. Left: Interplay of mini-batch size and aggregation fre-
quency; Right: Heterogeneous mini-batch sizes among clients

server in each aggregation round and does not require parti-
tioning a central pool of data across distributed workers.

Despite its advantages, FL still faces two major challenges:
1) skewed distributions and unbalanced sizes of training data at
different devices (statistical challenge), and 2) heterogeneous
and limited edge resources (system challenge). The former is
also referred to as non-i.i.d. data, which has been comprehen-
sively analyzed for representative FL algorithms, especially
FedAvg [3], [8]. Studies to address the system challenge
have mainly focused on improving the learning efficiency by
mitigating the impact of slow “straggler” devices on the wall-
clock training time [5], [8]. In addition, the cost due to either
the energy consumed over a long training period [9], [10]
or monetary incentives paid to participating clients [11], [12]
can be prohibitive for FL at the edge [13]. Thus, taking both
time and cost into consideration when configuring training
tasks on heterogeneous devices is of vital importance for FL
algorithms. A few inspiring works have analyzed the model
convergence when varying different controls for FL running
at the edge, e.g., balancing the number of local updates and
aggregation rounds [8], or adjusting workers’ mini-batch sizes
under a time budget [5], but the co-optimization of these
control variables are still under-explored. In this work, we
call for a full-fledged FL algorithm that can capture the three-
way trade-off between convergence, training time, and cost
expenditure. We jointly optimize the aggregation frequency979-8-3503-9973-8/23/$31.00 ©2023 IEEE

and batch sizes, as they are the hyperparameters that determine
the amount of data processed in each aggregation round and
thus most affect these performance metrics.

Further, we have the following intuitions. As illustrated in
Figure 1-Left, increasing either the mini-batch size or the
number of local updates can lead to more training samples
processed and thus improve the local model accuracy. How-
ever, doing so can also increase the consumed cost and training
time. Moreover, a larger number of local updates (lower
aggregation frequency) may result in a larger gap between
the local and global models [3], though this effect may also
depend on the batch size at each device. Therefore, we ask:
what is the best way to improve the FL model training when
we can control both of these variables?

This work reveals that strategically choosing different mini-
batch sizes among clients is also crucial. A motivating ex-
ample might be performing an FL task for object detection
on heterogeneous edge devices using their locally captured
pictures. As illustrated in Figure 1-Right, in this scenario, the
“no-straggler” principle [5], which assigns the batch sizes of
different FL devices for ensuring a uniform time per aggre-
gation round [5], [14], may not be optimal. Specifically, the
laptop with high training speed but relatively few data samples
will have a large mini-batch, while other data-rich devices such
as the smartphone can only have a small mini-batch due to
the relatively slow training speed. This could severely impede
the convergence rate, as a small batch size could introduce
a high variance to the stochastic gradients (see Section IV).
On the other hand, if we neglect the clients’ heterogeneous
computing capacities by simply setting a uniform batch size
as FL practitioners usually do [3], [13], [15], the straggler
effects can be severe. Batch sizes, however, cannot help to
limit communication latency during model synchronization.
Therefore, jointly choosing the aggregation frequency and
batch sizes is important for balancing the energy cost, training
time, and model accuracy. To achieve this, we make the
following technical contributions:
1) New convergence bound with respect to batch size and
global aggregation frequency (Section IV). We extend the
FedAvg [3] framework by allowing different clients to use
different mini-batch sizes. We capture FL clients’ non-i.i.d.
local datasets, based on which we then derive an upper bound
of the global training error, with respect to the aggregation
frequency and batch sizes. Prior theoretical works usually
assume a full-batch training setting in analyzing the conver-
gence rates, but practical FL deployments generally adopt
the mini-batch approach. Our error bound can help bridge
this inconsistency by quantifying the impacts of batch sizes
considering heterogeneous data and system characteristics.
2) Novel closed-form results and co-optimization algorithm
design (Section V). We propose an optimization model to
capture the complex trade-offs among accuracy, completion
(computation plus communication) time, and cost. Driven by
our derived convergence bound, we provide closed-form solu-
tions that co-optimize the batch size and aggregation frequency
uniformly across clients. These results capture the interplay

between these two control variables and can be easily adopted
by FL developers. We also propose an efficient algorithm
to optimize the assignment of heterogeneous batch sizes for
different clients, further increasing the model accuracy.
3) Online adaptive joint optimization algorithm (Sections VI
and VII). We design AdaCoOpt, an adaptive control algorithm
to dynamically choose the number of local updates and hetero-
geneous batch sizes among different clients, accommodating
the online estimates of the computation and communica-
tion capabilities in a fluctuating edge network. Extensive
experiments under different testbed settings demonstrate the
superiority of our algorithms in terms of the accuracy, cost,
and training time.

II. RELATED WORK

Convergence analysis for FL has been extensively studied
in recent years. For instance, [3] analyzes the convergence
of the classic FedAvg algorithm on non-i.i.d. data and estab-
lishes an O(1/T) convergence bound for strongly convex and
smooth problems. A refined FL framework FedProx [2] has
accounted for clients’ different amounts of partial work, with
provable convergence guarantees. Further, [16] proves that
the asynchronous FedAvg has near-linear convergence to the
global optimum for strongly convex optimization problems.
A few other works propose FL algorithms and analysis for
non-convex optimizations [17]–[19]. These FL convergence
analysis works mainly focus on the effect of the number of
local updates or the total number of iterations.

Improving the FL efficiency has been studied in several
directions, such as gradient compression [7], [20]–[22] and
hyperparameter selection [5], [8], [23]. This work is orthog-
onal to the former (i.e., it can be combined with gradient
compression), and falls in the latter regime, since we also
aim to choose the best hyperparameters (i.e., batch sizes
and aggregation frequency). To optimize the learning speed,
most studies choose hyperparameters to mitigate the effect of
“straggler” devices, such as client/device selection [11]–[13],
[24] and staleness control [4], [25], [26]. Alternatively, recent
works [5], [27], [28] also consider optimizing batch sizes or
aggregation frequency to improve FL efficiency by equalizing
the epoch time for each device to eliminate the straggler effect.
However, their works either lack theoretical analysis [27] or
neglect the joint impact of data and system heterogeneity
across clients under resource constraints [5], [28], which are
important characteristics in edge systems.

Controlling FL under resource constraints has risen as
one of the major challenges in edge-enabled FL training. An
increasing number of studies have been proposed to improve
FL accuracy under resource budgets, accounting for either
completion time [29]–[31] or operational cost [9], [10]. Luo
et al. [32] propose a cost-effective FL design to choose the
number of participants and local updates for total training cost
minimization. Wang et al. [8] derive a tractable convergence
bound with an arbitrary number of local updates and design an
algorithm for dynamically adjusting the aggregation frequency.
Our work additionally analyzes the interplay between the batch

size and aggregation frequency in convergence, time, and cost
metrics. A few recent works also consider choosing the mini-
batch size. E.g, Ma et al. [5] propose a synchronous FL
algorithm to adjust the batch size for edge FL, and Liu et
al. [22] jointly optimize the batch size, gradient compression
ratio, and spectrum allocation for wireless FL.

III. PRELIMINARIES AND PROBLEM FORMULATION

A. Federated Learning

We consider a parameter-server (PS) architecture, which
consists of a total of N distributed edge devices (clients),
defined as a setN , and a centralized PS for global aggregation.
Each device i ∈ N has a local data set Di with Di = |Di| data
samples xi = [xi,1,xi,2, ...,xi,Di

], and Di is non-i.i.d. across
i. We then define the loss function for each sample xi,j as
f(w,xi,j) and the local loss function of device i as:

Fi(w) =
1

Di

∑
j∈Di

f(w,xi,j). (1)

The ultimate goal is to train a shared (global) model w that
minimizes the global loss function, defined as:

F (w) =
∑
i∈N

Di

D
Fi(w), (2)

where D is defined as D =
∑

i∈N Di.
As in the classic FedAvg [1] framework, in each round

of training, clients divide their local data into mini-batches,
perform multiple local updates, and upload their local models
to the PS, which then broadcasts the global model updated
by aggregating the local models to the clients. Prior works
either assume use of the whole dataset for each round (full-
batch training) [3], [8] or simplify the effects of batch size
on the convergence and training time in their scenarios (e.g.,
[5]). Here we propose a more general FL setting by enabling
customized batch sizes and the number of local updates.

B. FL with arbitrary batch size and aggregation frequency

To capture different batch sizes across clients, we define
the loss function Fi,Si

(w) under a mini-batch instead of the
original local loss function Fi(w) for each end device i:

Fi,Si
(w) =

1

si

∑
j∈Si

f(w,xi,j), (3)

where Si denotes a mini-batch randomly selected from Di and
si is the size of Si, i.e., the batch size that we will optimize
in later Sections. The special case of full-batch training yields
si = Di and thus Fi,Si(w) = Fi(w). With a learning rate
η > 0, the rule of updating each local model at step t is:

wi(t) = wi(t− 1)− ηgi(wi(t− 1)), t ̸= kτ, (4)

where gi(wi(t− 1)) ≜ ∇Fi,Si(wi(t− 1)). We consider that a
total of K aggregation rounds are performed in the training.
The update of the global model at each aggregation step is:

w(t) =

∑N
i=1 Diwi(t)

D
, t = kτ, (5)

where τ is the number of local updates in each aggregation
round, meaning that the PS performs (5) and sends the global
model w(t) to the clients only at steps t = kτ, k = 1, 2, ...,K .

C. Accuracy-time-and-cost joint optimization model

Compared to data centers, edge devices usually have limited
computing resources such as CPUs and GPUs. Their limited
battery lives also restrict their energy utilization. Moreover,
edge devices in FL training often establish the connection with
the PS through the Wide Area Network [33], which could
also incur high bandwidth costs. It is therefore necessary to
consider both computation and communication costs.

Limited budget of the total cost expenditure. Formally,
we suppose that the training consumes a units of computation
cost (e.g., the cost of energy consumption) for processing a
single sample and b units of bandwidth cost for each round of
model synchronization. Let stot =

∑
i∈N si represent the sum

of batch sizes per iteration over all the devices. We consider
that the total cost incurred by the entire training process should
not exceed R, i.e., K(aτstot + b) ≤ R, which conforms to
the conventional definition of model training cost [34]. Here,
R can represent a cost budget of the energy consumption if
the devices are owned by the FL owner, or the budget of
total monetary reward sent to participating clients, e.g., for
compensating their battery consumption or privacy losses [35].

Heterogeneous system capabilities. In practice, different
edge devices can have heterogeneous computation and com-
munication capacities, and the training time in each round is
determined by the slowest device (straggler). Let pi denote the
computation speed (number of samples processed per time) of
device i. We then define tci as the computation time of i for
a single local update and assume that it is proportional to the
batch size, i.e., tci = si/pi. Further, tui is the communication
time of each device i incurred by synchronizing her local
model with the PS. These definitions are consistent with
practical system modelings for FL training [5], [12]. Suppose
that the FL task has a completion time deadline θ. We then
have the following constraint on the training time:

max
i∈N

K(τtci + tui) ≤ θ. (6)

Our goal is to find the optimal solutions of batch sizes s =
[s1, s2, ..., sN] and the number of local update steps τ for N
devices, to minimize the gap between the expected global loss
function E[F (w(Kτ))] and the optimum F ∗ after performing
K communication rounds, while satisfying the cost and com-
pletion time constraints. We define [X] ≜ {1, · · · , X}. The
optimization problem is formulated as follows:

Minimize
s,τ

E[F (w(Kτ))]− F ∗ (Training error) (7)

S.t. max
i∈[N]

K(τtci + tui) ≤ θ (Completion time) (8)

K(aτstot + b) ≤ R (Cost) (9)
si ∈ [Di], ∀i, τ ∈ [τmax] (Feasibility) (10)

To solve the above optimization problem, we need to first
navigate the complex trade-offs among the expected error,

completion time, and total cost incurred by the training pro-
cess, via controlling our decision variables s (batch sizes)
and τ (the number of local updates). We emphasize that, in
addition to τ > 1, unlike centralized DML, edge FL faces
heterogeneous distributions and sizes of local datasets (Di),
and thus may yield heterogeneous optimal batch sizes si across
workers, which we shall show in Section V. In contrast, the
number of local updates τ is assumed uniform across clients,
as unequal aggregation frequencies for different clients can
cause objective inconsistency, i.e., the model converges to
a mismatched objective function [36]. Existing works [24],
[36] have addressed exogenously determined heterogeneous
τ across different clients through new aggregation methods.
Combining these works to control τ is complex however, and
we leave this to our future work. To solve (7)-(10), our first
challenge is to simultaneously quantify the effects of s and τ
in the training error, formalized in our next section.

IV. TRAINING ERROR BOUND ANALYSIS

In this section, we derive a new convergence bound to
approximate (7), considering the joint effects of mini-batch
sizes si and the number of local update steps τ . We first list our
assumptions posed on the training model, which are generally
adopted in pioneering FL works [37], [38].

Assumption 1. ρ-quadratic-continuous: There exists a ρ > 0
that, for each device i ∈ N , the batch loss function Fi,Si

sat-
isfies: ∥Fi,Si(w1)− Fi,Si(w2)∥ ≤ ρ ∥w1 −w2∥22 , ∀w1,w2.

Assumption 2. β-smooth: For each client i ∈ N , and
some β > 0, Fi,Si satisfies: ∥∇Fi,Si(w1)−∇Fi,Si(w2)∥ ≤
β ∥w1 −w2∥ for all w1,w2.

The local and global loss functions satisfy Assumptions 1
and 2 straightforwardly due to the definition of Fi(·) and F (·).

Assumption 3. Polyak-Łojasiewicz condition [39]: There ex-
ists some constant c that 0 < c ≤ β and c ≤ 2ρ, and for
each device i ∈ N , the global loss function F (w) satisfies:
∥∇F (w)∥22 ≥ 2c(F (w)− F ∗), ∀w.

Assumption 4. (First and Second Moment Limits) For some
scalars µG ≥ µ > 0 and Mi > 0, under any given model w
and batch of data samples ξt randomly selected from ∪iDi at
step t, the global batch-gradient g(w, ξt) and the variance of
the gradient under any single data xi,j ∈ Di of each client i,
denoted as Vxi,j

[∇f(w,xi,j)], satisfy:

∇F (w)TEξt [g(w, ξt)] ≥µ ∥∇F (w)∥22 ,
∥Eξt [g(w, ξt)∥2 ≤µG ∥∇F (w)∥2 ,

Vxi,j
[∇f(w,xi,j)] ≤Mi, ∀i ∈ N .

Assumption 5. (Bounded Gradient Divergence, a.k.a. Non-
i.i.d. Degree) Let g(w) denote the global gradient under the
dataset ∪iDi. For some bounded scalar δi > 0, the local
gradient gi(w) of each client i under her dataset Di satisfies:

∥gi(w)− g(w)∥ ≤ δi, ∀w, i.

Theorem 1 (Error bound with heterogeneous batch sizes
si). Suppose that the loss functions satisfy Assumptions 1–5.
Assuming F ∗ ≥ 0, given a fixed learning rate 0 ≤ η ≤ µ

βµ2
G

and the initial global parameter w(0), the expected error after
K aggregation rounds with τ local updates per round is:

E[F (w(Kτ))]− F ∗ ≤ qKτ [F (w(0))− F ∗] +

1− qK

1− q

(
βη2(1− qτ)

2D2(1− q)

∑
i∈N

MiD
2
i

si
+ ρh(τ)2

)
,

(11)

where q = 1 − ηcµ, h(τ) = δ
β ((ηβ + 1)τ − 1) − ηδτ , and

δ =
∑

i∈N
Diδi
D . Especially, when τ = 1 and si = si′ , ∀i ̸=

i′, the above theorem is consistent with the DML convergence
rate in prior work [38].

We provide the basic idea of proving Theorem 1 below and
defer the full proof to our technical report [40].

Proof sketch. We first extend the convergence bound of DML
[3] with i.i.d. datasets and a uniform batch size to heteroge-
neous batch sizes in the non-i.i.d. scenario. In particular, we
analyze the variance in model gradient computation among
clients. Then, motivated by [5], [8], we upper bound the gap of
global loss between DML and FL, allowing clients to use dif-
ferent batch sizes. Formally, we capture the local bias resulted
from local updates τ , i.e., F (w(t)) − F (v[k](t)) ≤ ρh(τ)2,
where v[k](t) is an auxiliary parameter vector that follows
a centralized gradient descent. Finally, we combine these two
bounds and apply them recursively over K rounds to derive the
bound w.r.t. both aggregation frequency and batch sizes.

Our bound (11) has a richer structure than those in [5], [8],
[22] to show the effects of si, τ , and the data distributions.
The first term is determined by the initial global loss, which
continuously decreases during training. The term associated
with Mi can be interpreted as the “gradient variance loss”
resulting from the error of using a randomly selected batch to
estimate the loss gradient under the entire local dataset. The
last term ρh(τ)2 can be regarded as the “local bias” which
monotonically increases with τ , since a larger τ means less
frequent communications between the clients and server and
thus a larger gap between the global and local models.

V. OFFLINE OPTIMIZATION: THEORY AND ALGORITHM

In this section, we provide optimal solutions for co-
optimized stationary batch sizes and the number of local
updates in two cases. The total number of aggregation rounds
K is pre-determined in our problem [15], [24], [36]. We
assume they are both offline settings, where the parameters
related to the model (in (11)) and the system (in the opti-
mization constraints) can be obtained, e.g., through pre-run
tests [6], [13]. We will design an adaptive control algorithm
with parameters estimated online in Section VI.

A. Case 1: Co-optimizing uniform s and τ

We first consider the most common FL scenario in practice
[1], [2] where every device has the same batch size s and

number of local updates per round τ . Based on our bound
(11), we derive closed-form solutions of s and τ in Theorem
2, by solving (7)–(10) with si = si′ , ∀i ̸= i′.

Theorem 2 (Interplay of uniform s and τ). Given the number
of aggregation rounds K, and a feasible deadline (θ > Ktui)
and cost budget (R > Kb), the optimal uniform batch size s∗

and the number of local updates τ∗ satisfy:

s∗(τ) = min

{
R−Kb

aτn
,min
i∈N

{
pi(θ −Ktui)

Kτ

}}
, (12)

τ1 = ⌊τ̂⌋, τ2 = ⌈τ̂⌉, ∂f(τ̂)
∂τ

= 0, (13)

τ∗ = argmin
τ∈{τ1,τ2}

f(τ), s∗ = ⌊s∗(τ∗)⌋, (14)

where h(τ) = δ
β ((ηβ + 1)τ − 1) − ηδτ , f(τ) =

qKτG(0) + 1−qK

1−q

(
βη2(1−qτ)
2D2(1−q)

∑
i∈N

MiD
2
i

s∗(τ) + ρh(τ)2
)

, G(0) =

[F (w(0))− F ∗], and q = 1− ηcµ.

Proof. Given that the objective function is monotonically
decreasing with the client batch size, we can obtain the
optimal uniform batch size s∗(τ) by finding its maximum
value under both completion time and training cost constraints.
Then we can substitute s∗(τ) into the objective function, i.e.,

f(τ) = qKτG(0) + 1−qK

1−q

(
βη2(1−qτ)
2D2(1−q)

∑
i∈N

MiD
2
i

s∗(τ) + ρh(τ)2
)

,

which can be easily proved to be a convex function when
τ < 2/log(1/q). Since the value of q = 1 − ηcµ is only
slightly less than 1 , this interval of τ can be large enough.
Thus, we can solve τ̂ to minimize the expected error bound
by letting the derivative of f(τ) to be zero. However, τ̂ can
be fractional, so we need to compare the values of f(⌊τ̂⌋) and
f(⌈τ̂⌉) to find the optimal τ∗.

Our result quantitatively verifies an intuitive common
practice that communicating with the PS every iteration
(τ = 1) is the optimum, if the number of aggregation
rounds K and thus the total number of training iterations
are sufficiently large (shown in Remark 1).
Remark 1. As the number of aggregation rounds K increases,
the optimal solution τ∗, which is expressed in (14), will
decrease to 1, i.e., lim

K→∞
τ∗ = 1.

Proof. When K is small, the first term qKτG(0) dominates
f(τ), and it monotonically decreases with τ . As K grows
larger, the second term dominates f(τ) and monotonically
increases with τ . Thus the optimal number of local update
steps τ∗ decreases with the increase of K.

Remark 1 can be intuitively explained as follows. When K
is small, e.g., due to the high communication cost or limited
bandwidth, a bigger τ leads to a larger total number of model
updates and thus higher accuracy. In contrast, one should
reduce τ if K is sufficiently large especially in later training
iterations, since a larger τ may increase the gap between the
global and local models and thus lead to a large final error.
This implication is consistent with the intuition in [8].

B. Case 2: Co-optimizing τ and heterogeneous si

In this case, we generalize Case 1 by enabling different
batch sizes assigned for different clients. Since edge devices
can have different and potentially limited computation and
communication capacities, increasing the batch size leads to
longer computation time. Following [5], [12], the computa-
tion time of each step of local update can be modeled by
tci = si/pi. For the clarity of the following analysis, we first
fix the value of τ , and then our optimization problem becomes:

Minimize
s=[s1,s2,...sN]

τ∈[τmax]

∑
i∈N

MiD
2
i

si
(15)

S.t. si ≤ pi

(
θ

Kτ
− tui

τ

)
, si ∈ [Di], ∀i (16)

stot =
∑
i∈N

si ≤ (R−Kb) / (aτ) (17)

Directly applying an integer programming optimizer such as
Gurobi [41] to solve (15)–(17) or using a brute force algorithm
may incur a high time complexity with at least O(κNτmax),
where κ = stot

N >> 1. Instead, we design a more efficient
exact algorithm, as we state in the following theorem.

Theorem 3. Given the number of aggregation rounds K and
the number of local updates per round τ , Algorithm 1 outputs
the optimal batch sizes s∗ = [s1, s2, ..., si] and τ∗ for FL
training with at most O(N2τmax) time complexity.

The detailed proof is deferred to our technical report [40].
Intuition of Algorithm 1. Since the objective function (15)

decreases with si, the time constraint (16) defines the largest
batch size allowed for any device i under deadline θ, i.e.,
si(θ) = pi

(
θ

Kτ −
tui

τ

)
. Similarly, the cost constraint (17) is

equivalent to defining a total batch size under the cost budget
R, i.e.,

∑
i∈N si = stot(R) = R−Kb

aτ . If neglecting si(θ)
firstly, the Cauchy–Schwarz inequality yields:∑

i∈N

MiD
2
i

si
·
∑
i∈N

si ≥
∑
i∈N

(√
MiDi

)2
. (18)

Since
∑

i∈N
(√

MiDi

)2
and stot(R) are both constants, we

can minimize the objective function
∑

i∈N
MiD

2
i

si
when the

equality holds with
√
M1D1

s1
=

√
M2D2

s2
= · · · =

√
MNDN

sN
, i.e.,

si ∝
√
MiDi. Then, considering si(θ), we need to reduce si

to si(θ) for time-constrained devices which have si > si(θ)
(Lines 9-10). The si of those devices will not be revised again
(Line 11) since they reach the maximum allowed batch size. In
addition, we will re-assign (increase) the si of other devices
while keeping si ≤ si(θ) satisfied to make the best use of
the extra data samples due to the reduced si of those time-
constrained devices, which is in fact a sub-problem of our
original optimization problem. We can get the final solution
by repeating the previous procedure recursively (Lines 6-11),
which can be proved optimal by using the Cauchy inequality
again for

∑
i∈C si = stot(R) −

∑
i∈N\C si(θ), where N \

C denotes the set of clients whose si have been regulated

to be equal to si(θ). Since we always round down si (line
8), we may still have some remaining resource budget. due
to the round down operation in the previous steps. We then
increase the batch size of the device in the decreasing order
of MiD

2
i

si(si+1) =
MiD

2
i

si
− MiD

2
i

si+1 one at a time until the total batch
size of all devices equals stot(R) or C = ∅ (Lines 14-17).
Finally, we can find τ∗ that yields the smallest error bound
according to (11), by enumerating each feasible τ under which
s∗ is optimized using the above method (Line 18).

Implication I. If the time constraint is not the bottleneck,
s∗i is proportional to

√
MiDi (Line 8 of Algorithm 1). This

insight is intuitive, as devices with larger data sizes (Di)
have the potential to contribute more samples each step, while
datasets with a higher diversity (larger Mi) need larger batch
sizes to reduce the local variances of their computed gradients.
This result reveals that using either full-batch (si = Di)
training [3] or uniform batch size [8], as FL practitioners
usually adopt, can be ineffective under non-i.i.d. data.

Implication II. Other batch size assignment schemes (e.g.,
[5], [27]), on the other hand, focus on eliminating straggler ef-
fects. They choose clients’ batch sizes according to their com-
putational capacity in order to minimize the average waiting
time. However, this “no-straggler” strategy is sub-optimal
when cost constraints are present, a common scenario in
edge systems [32]. Using their strategies [5], [27], devices
with higher computation capacities but possibly a smaller
Di

√
Mi of data always have bigger batch sizes, which could

significantly undermine the model accuracy. Our Algorithm
1 instead captures both the data heterogeneity (Di

√
Mi) and

system heterogeneity (mitigated straggler effects), as well as
navigating the trade-off between the completion time and
resource consumption.

VI. ONLINE ADAPTIVE CONTROL ALGORITHM

Section V provides optimal solutions for devices’ batch
sizes and the number of local updates, but it does not consider
how to adapt them online as we update estimates of poten-
tially unknown parameters, including the computation speed
ci, communication time tui, and the parameters associated
with the model. Therefore, in this section, we propose an
adaptive algorithm to adjust s and τ at the beginning of each
aggregation round, based on our online parameter estimation,
realizing a more practical FL training by considering fluctuat-
ing network characteristics at the edge.

A. Marginal Error bound
Revisiting our offline optimization problem (7)–(10), the

objective function derived in (11) with static parameters and
decision variables is no longer suitable for our online setting.
Therefore, we use a marginal upper bound, which is defined as
the gap between the optimum F ∗ and the expected global loss
that will be improved in aggregation round k, formalized as
E[F (w(k))] − F ∗. We derive this in Lemma 1 of which the
detailed proof is deferred to the technical report [40].

Lemma 1 (Marginal bound with heterogeneous batch size sik).
Suppose that the loss function satisfies Assumptions 1-5 and

Algorithm 1: An exact offline algorithm to Co-
Optimize batch sizes and the number of local updates
for FL training (CoOptFL)
Input : G,Mi, Di,K, τmax, a, b, R, θ, pi, tui, ∀i
Output: τ∗, s∗ = [s1, s2, ..., sN]

1 foreach τ ∈ [1, τmax] do
2 Set C = N , stot = R−Kb

aτ , sr = stot;
3 foreach node i ∈ N do
4 si(θ) = ⌊pi

(
θ

Kτ −
tui

τ

)
⌋

5 repeat
6 flag = 0;
7 foreach node i ∈ C do
8 si = ⌊ sr

√
MiDi∑

i∈C

√
MiDi

⌋;
9 if si ≥ si(θ) then

10 si = si(θ), sr = sr − si(θ);
11 Remove node i from set C, flag = 1;

12 until flag = 0 or C = ∅;
13 repeat
14 Find i

′
= argmaxi∈C

D2
i

si(si+1) , si′ = si′ + 1 ;
15 if si′ = si′ (θ) then
16 Remove node i from set C;

17 until
∑

i∈N si = stot or C = ∅;
18 Find the optimum (τ∗, s∗) = argmin(τ,s)G;
/* Offline:G ≜ (11) Online:G ≜ (21) */

F ∗ ≥ 0. For a fixed learning rate 0 ≤ η ≤ µ
βµ2

G
, the expected

error of the empirical loss after k global communication
rounds with the number of local updates τk and batch sizes
sik for round k, defined as E[F (w(k))]− F ∗, is at most

qτk [E[F (w(k−1))]−F ∗]+
βη2(1− qτk)

2D2(1− q)

∑
i∈N

MiD
2
i

sik
+ρh(τk)

2,

(19)
where q = 1 − ηcµ, h(τ) = δ

β ((ηβ + 1)τ − 1) − ηδτ , and
F (w(k−1)) ≜ F (w(

∑k−1
i=1 τi)).

Compared to Theorem 1, Lemma 1 is defined for a more
practical setting where the unknown parameters, system char-
acteristics and decision variables need to be estimated online.
It upper-bounds the error E[F (w(k))] − F ∗ incurred until
round k. Our optimization problem (7)–(10) can be adapted
to the following to solve for τk and batch size assignments
sk = [s1k, s2k, ...sik] for each client i ∈ N at round k ∈ [K].

Minimize
sk,τk

E[F (w(k))]− F ∗ (Approximated by (19))

S.t. max
i∈N

K∑
k=1

(τktci + tui) ≤ θ, tci = sik/pi (20)

K∑
k=1

(aτk
∑
i∈N

sik + b) ≤ R, sik ≤ Di, τk > 0

To solve (20), the remaining work is to estimate the unknown

Algorithm 2: AdaCoOpt (Procedure at the PS)
Input : θ,R,K, τmax, η
Output: w(R)
Initialize: θc ← θ,Rc ← R, t← 0, k ← 0

τ1 ← 1,w(0)← 0, s1
1 Receive Di,Mi, ∀i ∈ N ;
2 repeat
3 k ← k + 1, K ← K − 1;
4 Send w(t), τk, sik to each node i;
5 t0 ← t, t← t+ τ ;
6 Receive wi(t), pi from all the working nodes;
7 Execute global update according to (5) ;
8 if t0 > 0 then
9 Receive ρi, βi, ci, Fi,Si(w(t0)),∇Fi,Si(w(t0));

10 Calculate g(w(t0))←
∑N

i=1 Digi(wi(t0))

D
δi ← ∥gi(wi(t0))− g(w(t0))∥ ;

11 Estimate ρ←
∑N

i=1 Diρi

D , β ←
∑N

i=1 Diβi

D ;

12 Estimate c←
∑N

i=1 Dici
D , δ ←

∑N
i=1 Diδi

D ;
13 Estimate remaining resources θc, Rc and

communication time of each device tui ;
14 Define function G to be (21);
15 τk+1, sk+1 =

CoOptFL(G,Mi, Di,K, τmax, a, b, Rc, θc, pi, tui)

16 until K = 0 or θc < 0 or Rc < 0;
17 Send STOP flag to all devices;

parameters ci, tui and those in (19) and (20) on the fly, as
elaborated in Section VI-B.

B. Online Parameter Estimation

To simplify the problem (20), we first set F ∗ = 0 as it is
impossible to accurately evaluate it for model training. We
then approximate the first term in (19), i.e. F (w(k−1)) =∑N

i=1 DiFi(w
(k−1))

D ≈
∑N

i=1 DiFi,Si
(w(k−1))

D ≜ F̂ (w(k−1)) by
replacing the local loss Fi(·) with the batch loss Fi,Si

(·), since
it can be quite time-consuming to calculate the exact value of
Fi(w

(k−1)), especially for a large number of data samples.
For ρ, β, c, and δ, we evaluate them in two steps. First, each

client estimates these parameters ρi, βi, ci, and Fi,Si
(w(t))

using the global model w(t) just received at the beginning
of every round k before synchronizing their local model
wi(t) with the global model. Since the training can take a
large number of iterations, e.g., 105, the estimates based on
taking the average of empirical measurements will be accurate,
at least in probability converging to their true expectations,
according to the law of large numbers. One can also pick
a good online estimation approach, such as OMD, FTRL,
and bandits methods [42], which are not the focus of this
work and thus left for future work. Then the clients will
send these results back to the PS to calculate ρ, β, c, and δ
as a weighted average of ρi, βi, ci, and δi. Note that these
parameter estimates do not expose extra information of clients’
raw data compared to sending the computed gradients. Finally,

Algorithm 3: AdaCoOpt (Procedure at client i)
Initialize: Di, t← 0

1 Estimate Mi using the local dataset;
2 Send the local dataset size Di and Mi to the server;
3 repeat
4 Receive w(t), τ, si from the server;
5 t0 ← t;
6 if t0 > 0 then
7 Compute Fi,Si

(w(t)) and ∇Fi,Si
(w(t));

8 ci ← ∥∇Fi,Si
(w(t))∥2 / 2Fi,Si

(w(t));
9 ρi ←

∥Fi,Si
(wi(t))− Fi,Si

(w(t))∥ / ∥wi(t)−w(t)∥2 ;
10 βi ←

∥∇Fi,Si(wi(t))−∇Fi,Si(w(t))∥ / ∥wi(t)−w(t)∥ ;
11 wi(t)← w(t);
12 for r = 1, 2, ..., τ do
13 t← t+ 1;
14 Execute local update according to (4);

15 Record the average computation time per iteration tci
and estimate the computing capacity by pi = si/tci;

16 Send wi(t), pi to the parameter server;
17 if t0 > 0 then
18 Send ρi, βi, ci, Fi,Si

(w(t0)), and ∇Fi,Si
(w(t0))

to the PS ;

19 until STOP flag is received;

we set µ = µG = 1 for simplicity in experiment, since
∇Fi,Si(w, ξt) can be seen as an unbiased estimate of ∇Fi(w)
and our objective function (19) can be approximated by the
following error bound:

qτk F̂ (w(k−1)) +
βη2(1− qτk)

2D2(1− q)

∑
i∈N

MiD
2
i

sik
+ ρh(τk)

2. (21)

C. The workflow of our adaptive control algorithm

In this subsection, we present our Online Co-Optimization
based FL algorithm, named AdaCoOpt, for the PS (Algorithm
2) and clients (Algorithm 3) to solve our refined batch size and
aggregation frequency co-optimization problem shown in (20).

At the beginning of the model training, the PS initializes the
allowed remaining time to finish the task (denoted by θc) to
be the deadline θ, the remaining cost budget Rc to be the total
budget R, the current time step t to be zero, the number of
local updates per round τ1 to be one, and the model weights to
be w(0) = 0. The batch size configuration s1 is initialized to
be a uniform value for each client. In each aggregation round
k, the server sends the global model w(t), number of local
updates τk, and batch sizes sik of round k to the corresponding
clients. Besides, it estimates the unknown parameters of the
FL model (e.g., ρ, β, and c) and the edge network (e.g., θc
and Rc) (Lines 9–13 of Algorithm 2) after receiving estimated
parameters from all the clients.

On the client side, each device first estimates Mi through
pre-run tests over its local dataset. Then it performs local
updates and uploads the local model wi(t) along with the
estimated ci, ρi, βi, pi, Fi,Si

(w(t0)), and ∇Fi,Si
(w(t0)) to the

PS (Lines 7–18 of Algorithm 3). Finally, the server will per-
form an aggregation step to update the global model and adopt
our CoOptFL (Algorithm 1) with the estimated parameters to
compute τk+1 and sk+1 for all clients in the next round using
the remaining budget Rc and θc (Line 15 in Algorithm 2).
The key is to utilize the marginal error bound (21) instead of
the cumulative error bound (11) when using our subroutine
algorithm CoOptFL. It finally outputs the optimal solution
of (τk+1, sk+1), which is the combination of τ and s that
minimizes the value of (21) for the next aggregation round.

VII. EXPERIMENTAL VALIDATION

In this section, we validate our theories and proposed
algorithms in three parts: 1) Offline optimal local update step τ
and uniform batch size s; 2) Optimal batch size assignment in
CoOptFL (Algorithm 1); 3) Online adaptive control algorithm
AdaCoOpt (Algorithms 2 and 3) presented in Section VII-B.

A. Experiment setup

1) Testbed: To simulate the system heterogeneity, we first
conduct our experiments in a small-scale testbed with various
types of edge devices, including 1 laptop PC (CPU: Intel i5-
7300HQ 4-core @2.50GHz), 1 desktop PC (CPU: Intel i5-
1135G7 8-core @2.40GHz), and 3 docker containers [43]
launched from a workstation. We manually assign different
numbers of CPU cores (3, 6, 12) to each container. The PS
instance is deployed on the container with the most CPU cores,
while the rest of the containers and devices are used as clients.

To further evaluate our proposed algorithms CoOptFL and
AdaCoOpt, we conduct two larger scale experiments: 1) 100
clients simulated in a lab server cluster; and 2) a 20-client
testbed deployed at 20 geo-distributed VM instances rented
from Hetzner [44], including six 1-vCPU instance (2GB RAM,
20GB storage), seven 2-vCPU instances (4GB RAM, 40GB
storage), and seven 4-vCPU instances (8GB RAM, 80GB
storage) for reflecting computational heterogeneity among
clients. We deploy our PS on one of the 4-core instances.

2) Models and datasets: We implement all the FL training
models with TensorFlow. We use MNIST and CIFAR-10
datasets to train a convex SVM model and a non-convex
CNN model. We adopt a similar non-i.i.d. data distribution
setting in [8] to simulate data heterogeneity among clients.
To evaluate our (offline) algorithm CoOptFL, we initialize its
input parameters (tui, Mi, ρ, c, β, δ, pi, and tci) using the same
estimation method as in our online algorithm AdaCoOpt.

3) Baselines: To demonstrate the effectiveness of our care-
fully chosen batch size configurations for different clients
using CoOptFL, we compare with Uniform, a widely-adopted
method with uniform batch size [8] for all the clients, and with
No-straggler, a time-efficient strategy proposed by [5].

To evaluate the performance of our online algorithm Ada-
CoOpt under imperfect estimation of the model and system

0 200 400 600 800 1000

Global aggregation round

0.82

0.84

0.86

0.88

T
e
s
t
a
c
c
u
ra

c
y
 (

%
)

 = 2, s=30

 = 5, s=12

 = 10, s=6

(a) Test Accuracy

0 200 400 600 800 1000

Global aggregation round

2

4

6

8

10

 p
ro

p
o
s
e
d
 b

y
 T

h
e
ro

re
m

 2

5

10

15

20

25

30

s
 p

ro
p
o
s
e
d
 b

y
 T

h
e
ro

re
m

 2 (Local update)

s (batch size)

(b) τ , s proposed in Theorem 2

Fig. 2. Optimal τ and s (squared-SVM, MNIST)

parameters, we compare with FedAvg, which maintains τ
and batch size unchanged after their initialization, an adaptive
algorithm Dynamic-τ proposed by [8], and the No-straggler
algorithm provided in [5].

4) Parameters and run-time traces of the FL training:
We initialize models with w(0) = 0 and set the default
local update step τ = 2, mini-batch size s = 60, and step
size η = 0.005 unless otherwise specified. To evaluate the
training cost and the completion time, we set the computation
cost per sample a = 0.0005 and the communication cost per
round b = |N |/10. On each of our testbeds, the clients are
training the same FL model, but they have different resource
configurations and run-times. In particular, the run-time logs
of the 5-client and 20-client experiments are real; but in the
100-client simulation, we sample the run-time of each client
from the run-time trace collected at the 20 VM instances
located in different edge clusters to simulate the real-world
communication and computation overhead.

B. Experimental results and interpretation

1) Optimal number of local updates per round τ and
uniform batch size s: We find the optimal combination
τ∗ and s∗ using our Theorem 2 for a squared-SVM model
training and testing under the MNIST dataset. We compare
three different combinations: τ = 10, s = 6; τ = 5, s = 12;
τ = 2, s = 30. Fig. 2a shows the optimal τ and s combination
varying K, e.g., (τ = 10, s = 6) for K < 50, (τ = 5, s = 12)
for K ≈ 300, and (τ = 2, s = 30) for K > 800 achieve the
highest accuracy respectively. We also mark the optimal τ and
batch size proposed in our Theorem 2 at the corresponding
rounds in Fig. 2b for better visualization. Besides, Fig. 2b
shows that the optimal τ decreases with the increase of K,
supporting our theoretical result in Remark 1.

2) Optimal heterogeneous batch sizes s across clients:
We compare our offline algorithm CoOptFL to No-straggler
[5], which configures batch sizes si according to clients’
computing capacities (si ∝ pi) so as to eliminate the straggler
effect across clients, and Uniform (s = 60). We set the
communication round K = 80 and K = 3000 for the MNIST
(SVM) and CIFAR-10 datasets (CNN), respectively. For fair-
ness, we set the total batch size stot =

∑
i∈N si as a constant

to ensure that clients will process the same amount of data
samples in total while using different batch size assignment
strategies. Fig. 3 shows that CoOptFL can converge faster

0 20 40 60 80

Global aggregation round

0.2

0.4

0.6

0.8

1
T

e
s
t

a
c
c
u

ra
c
y
 (

%
)

CoOptFL

Uniform

No-straggler

(a) Accuracy (MNIST) 5-client

1000 2000 3000

Communication round

0.4

0.45

0.5

0.55

0.6

T
e

s
t

a
c
c
u

ra
c
y
 (

%
)

CoOptFL

Uniform

No-straggler

(b) Accuracy (CIFAR) 20-client

Fig. 3. Our batch size assignment in offline algorithm
CoOptFL achieves the highest accuracy for both datasets

0 2000 4000 6000 8000 10000

Training Cost

0.3

0.4

0.5

0.6

T
e

s
t

a
c
c
u

ra
c
y
 (

%
)

AdaCoOpt

Dynamic-

No-straggler

FedAvg

(a) Cost-dominant (20-client)
R = 10000, θ = 5000s

0 500 1000 1500 2000

Training time(s)

0.3

0.4

0.5

0.6

T
e

s
t

a
c
c
u

ra
c
y
 (

%
)

AdaCoOpt

Dynamic-

No-straggler

FedAvg

(b) Time-dominant (20-client)
R = 20000, θ = 2000s

0 10000 20000 30000 40000

Training Cost

0.3

0.4

0.5

0.6

T
e

s
t

a
c
c
u

ra
c
y
 (

%
)

AdaCoOpt

Dynamic-

No-straggler

FedAvg

(c) Cost-dominant (100-client)
R = 40000, θ = 5000s

0 200 400 600 800 1000

Training time(s)

0.3

0.4

0.5

0.6

T
e

s
t

a
c
c
u

ra
c
y
 (

%
)

AdaCoOpt

Dynamic-

No-straggler

FedAvg

(d) Time-dominant (100-client)
R = 80000, θ = 1000s

Fig. 4. AdaCoOpt achieves the highest accuracy under
CIFAR-10 in both cost-sensitive and time-sensitive scenarios

and achieve better final testing accuracy compared to the two
baselines in both 5-client and 20-client settings. Note that No-
straggler always tends to assign bigger batch sizes to devices
with higher computing capacities regardless of their non-i.i.d.
data properties, which leads to lower model accuracy and
resource utilization than Uniform, especially when devices
with higher computing capacity have fewer and similar data
samples (Theorem 3). Similar results can be found in Fig. 4c
and Fig. 5a in the following online experiments as well.

3) Adaptive control for co-optimized aggregation fre-
quency and heterogeneous batch sizes: We further compare
our AdaCoOpt with three benchmarks for CIFAR-10 FL
training: the first two are vanilla FedAvg [3] and the time-
efficient No-straggler [5]; the third one is Dynamic-τ [8]
which dynamically adjusts τk for each round k. We compare
the strategies in two different scenarios of our optimiza-
tion problem, where the cost constraint and time constraint
dominates, respectively. We set different values of R and
θ to simulate these two different scenarios. Fig.4 and Fig.5
together show that AdaCoOpt can outperform the baselines

20-client (60%) 100-client (55%)

Setting (Target accuracy)

0

10000

20000

30000

40000

T
ra

in
in

g
 c

o
s
t

AdaCoOpt

Dynamic-

No-straggler

FedAvg

(a) Cost-dominant scenario

20-client (60%) 100-client (55%)

Setting (Target accuracy)

0

500

1000

1500

2000

2500

T
ra

in
in

g
 t

im
e

(s
)

AdaCoOpt

Dynamic-

No-straggler

FedAvg

(b) Time-dominant scenario

Fig. 5. Our online algorithm AdaCoOpt consumes minimal
cost and time to achieve the target accuracy under CIFAR-10
in both cost-sensitive and time-sensitive scenarios

0 500 1000 1500

Training cost

0.3

0.4

0.5

0.6

T
e

s
t

a
c
c
u

ra
c
y
 (

%
)

AdaCoOpt (Full)

AdaCoOpt (Static-)

AdaCoOpt (Uniform)

FedAvg

(a) Cost-dominant (20-client)

0 500 1000 1500

Training time(s)

0.3

0.4

0.5

0.6

T
e

s
t

a
c
c
u

ra
c
y
 (

%
)

AdaCoOpt (Full)

AdaCoOpt (Static-)

AdaCoOpt (Uniform)

FedAvg

(b) Time-dominant (100-client)

Fig. 6. Optimizing the aggregation frequency (resp. batch size)
has the greatest effect in cost- (resp. time-) dominant scenarios

in both scenarios under different settings. For instance, in the
cost-dominant scenario, AdaCoOpt can achieve a 2.7%–7.9%
higher final test accuracy than FedAvg and reduce the cost by
37.6%–58% when achieving the same accuracy. In the time-
dominant scenario, it achieves a 3.8%–8.4% higher final test
accuracy and 45.4%–59.6% less completion time if achieving
the same accuracy. These results indicate the great adaptability
of AdaCoOpt.

Moreover, we conduct ablation experiments on both 20-
client and 100-client settings to test the value of co-optimizing
τk and sik of our AdaCoOpt in both cost-dominant and
time-dominant scenarios. We compare our AdaCoOpt with
AdaCoOpt (Static-τ), which only optimizes the batch sizes
using a fixed aggregation frequency and AdaCoOpt (Uni-
form), which uses a uniform batch size among clients, only
adjusting the local update steps adaptively. Fig. 6a shows that
a timely adjusted global aggregation frequency (AdaCoOpt
(Uniform)) can effectively reduce the training (communica-
tion) cost and thus is more critical in a cost-dominant training
scenario. On the other hand, Fig. 6b shows that a careful batch
size assignment (AdaCoOpt (Static-τ)) can well capture the
system and data heterogeneity so as to achieve a better model
accuracy in a time-dominant scenario. These results also match
our experiments in Fig. 4, where Dynamic-τ performs better
than No-straggler in the cost-sensitive scenario, but worse
than No-straggler in the time-sensitive scenario.

VIII. CONCLUSION

This work proposes a novel framework to quantify and
leverage the interplay of the number of local update steps

and heterogeneous batch sizes across clients for federated
learning performed at distributed edge devices. Technically, we
derive a novel convergence bound with respect to those control
variables and analyze the performance metrics of cost and
training time as well. We then provide closed-form solutions
for our joint optimization in a typical case and propose an
efficient exact algorithm for the general case. Our strategies
consider both heterogeneous system characteristics and non-
i.i.d. data, which can improve the common strategies that FL
practitioners adopt. Moreover, we adapt our offline strategy to
dynamically adjust the decisions on the fly, with superiority of
several performances demonstrated in extensive experiments.

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. of Artificial intelligence and statistics, 2017.

[2] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” Proceedings of
Machine Learning and Systems, vol. 2, pp. 429–450, 2020.

[3] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of fedavg on non-iid data,” in Proc. of International Conference on
Learning Representations, 2019.

[4] J. Liu, H. Xu, L. Wang, Y. Xu, C. Qian, J. Huang, and H. Huang,
“Adaptive asynchronous federated learning in resource-constrained edge
computing,” IEEE Transactions on Mobile Computing, early access,
2021.

[5] Z. Ma, Y. Xu, H. Xu, Z. Meng, L. Huang, and Y. Xue, “Adaptive batch
size for federated learning in resource-constrained edge computing,”
IEEE Transactions on Mobile Computing, early access, 2021.

[6] X. Zhang, J. Wang, G. Joshi, and C. Joe-Wong, “Machine learning on
volatile instances,” in Proc. of IEEE INFOCOM, 2020.

[7] K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger,
P. B. Gibbons, and O. Mutlu, “Gaia:{Geo-Distributed} machine learning
approaching {LAN} speeds,” in Proc. of USENIX NSDI, 2017.

[8] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “Adaptive federated learning in resource constrained edge com-
puting systems,” IEEE Journal on Selected Areas in Communications,
vol. 37, no. 6, pp. 1205–1221, 2019.

[9] X. Mo and J. Xu, “Energy-efficient federated edge learning with joint
communication and computation design,” Journal of Communications
and Information Networks, vol. 6, no. 2, pp. 110–124, 2021.

[10] Q. Zeng, Y. Du, K. Huang, and K. K. Leung, “Energy-efficient resource
management for federated edge learning with cpu-gpu heterogeneous
computing,” IEEE Transactions on Wireless Communications, vol. 20,
no. 12, pp. 7947–7962, 2021.

[11] Y. Ruan, X. Zhang, and C. Joe-Wong, “How valuable is your data?
optimizing client recruitment in federated learning,” in Proc. of WiOpt,
2021.

[12] F. Lai, X. Zhu, H. V. Madhyastha, and M. Chowdhury, “Oort: Efficient
federated learning via guided participant selection,” in Proc. of USENIX
OSDI, 2021.

[13] B. Luo, W. Xiao, S. Wang, J. Huang, and L. Tassiulas, “Tackling system
and statistical heterogeneity for federated learning with adaptive client
sampling,” arXiv preprint arXiv:2112.11256, 2021.

[14] S. Tyagi and P. Sharma, “Taming resource heterogeneity in distributed
ml training with dynamic batching,” in Proc. of 2020 IEEE International
Conference on Autonomic Computing and Self-Organizing Systems (AC-
SOS), 2020.

[15] Z. Charles, Z. Garrett, Z. Huo, S. Shmulyian, and V. Smith, “On large-
cohort training for federated learning,” in Proc. of NeurIPS, 2021.

[16] C. Xie, S. Koyejo, and I. Gupta, “Asynchronous federated optimization,”
arXiv preprint arXiv:1903.03934, 2019.

[17] L. Zhu, H. Lin, Y. Lu, Y. Lin, and S. Han, “Delayed gradient averaging:
Tolerate the communication latency for federated learning,” Advances
in Neural Information Processing Systems, vol. 34, 2021.

[18] A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and R. Pedarsani,
“Fedpaq: A communication-efficient federated learning method with
periodic averaging and quantization,” in Proc. of AISTATS, 2020.

[19] A. Fallah, A. Mokhtari, and A. Ozdaglar, “Personalized federated
learning with theoretical guarantees: A model-agnostic meta-learning
approach,” Advances in Neural Information Processing Systems, vol. 33,
pp. 3557–3568, 2020.

[20] L. Wang, W. Wang, and B. LI, “Cmfl: Mitigating communication
overhead for federated learning,” in Proc. of IEEE ICDCS, 2019.

[21] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “Qsgd:
Communication-efficient sgd via gradient quantization and encoding,”
Advances in Neural Information Processing Systems, vol. 30, 2017.

[22] S. Liu, G. Yu, R. Yin, J. Yuan, and F. Qu, “Adaptive batchsize selection
and gradient compression for wireless federated learning,” in Proc. of
IEEE GLOBECOM, 2020.

[23] J. Zhang, S. Guo, Z. Qu, D. Zeng, Y. Zhan, Q. Liu, and R. A. Akerkar,
“Adaptive federated learning on non-iid data with resource constraint,”
IEEE Transactions on Computers, 2021.

[24] Y. Ruan, X. Zhang, S.-C. Liang, and C. Joe-Wong, “Towards flexible
device participation in federated learning,” in Proc. of AISTATS, 2021.

[25] J. Cipar, Q. Ho, J. K. Kim, S. Lee, G. R. Ganger, G. Gibson, K. Keeton,
and E. Xing, “Solving the straggler problem with bounded staleness,”
in Proc. of 14th Workshop on Hot Topics in Operating Systems (HotOS
XIV), 2013.

[26] Q. Ma, Y. Xu, H. Xu, Z. Jiang, L. Huang, and H. Huang, “Fedsa:
A semi-asynchronous federated learning mechanism in heterogeneous
edge computing,” IEEE Journal on Selected Areas in Communications,
vol. 39, no. 12, pp. 3654–3672, 2021.

[27] J. Park, D. Yoon, S. Yeo, and S. Oh, “Amble: Adjusting mini-batch and
local epoch for federated learning with heterogeneous devices,” Journal
of Parallel and Distributed Computing, vol. 170, pp. 13–23, 2022.

[28] D. Shi, L. Li, M. Wu, M. Shu, R. Yu, M. Pan, and Z. Han, “To talk
or to work: Dynamic batch sizes assisted time efficient federated learn-
ing over future mobile edge devices,” IEEE Transactions on Wireless
Communications, vol. 21, no. 12, pp. 11 038–11 050, 2022.

[29] G. Zhu, Y. Wang, and K. Huang, “Broadband analog aggregation for
low-latency federated edge learning,” IEEE Transactions on Wireless
Communications, vol. 19, no. 1, pp. 491–506, 2019.

[30] H. Wang, Z. Kaplan, D. Niu, and B. Li, “Optimizing federated learning
on non-iid data with reinforcement learning,” in Proc. of IEEE INFO-
COM, 2020.

[31] W. Shi, S. Zhou, and Z. Niu, “Device scheduling with fast convergence
for wireless federated learning,” in Proc. of IEEE ICC, 2020.

[32] B. Luo, X. Li, S. Wang, J. Huang, and L. Tassiulas, “Cost-effective
federated learning design,” in Proc. of IEEE INFOCOM, 2021.

[33] J. Yuan, M. Xu, X. Ma, A. Zhou, X. Liu, and S. Wang, “Hierarchi-
cal federated learning through lan-wan orchestration,” arXiv preprint
arXiv:2010.11612, 2020.

[34] R. Schwartz, J. Dodge, N. A. Smith, and O. Etzioni, “Green ai,”
Communications of the ACM, vol. 63, no. 12, pp. 54–63, 2020.

[35] C. Li, D. Y. Li, G. Miklau, and D. Suciu, “A theory of pricing private
data,” Communications of the ACM, vol. 60, no. 12, 2017.

[36] J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor, “Tackling the ob-
jective inconsistency problem in heterogeneous federated optimization,”
in Proc. of NeurIPS, 2020.

[37] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al.,
“Advances and open problems in federated learning,” Foundations and
Trends® in Machine Learning, vol. 14, no. 1–2, pp. 1–210, 2021.

[38] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-
scale machine learning,” Siam Review, vol. 60, no. 2, pp. 223–311, 2018.

[39] H. Karimi, J. Nutini, and M. Schmidt, “Linear convergence of gradient
and proximal-gradient methods under the polyak-lojasiewicz condition,”
2020. [Online]. Available: https://arxiv.org/pdf/1608.04636.pdf

[40] “Adacoopt: Leverage the interplay of batch-size
and aggregation frequency in federated learning,”
https://www.dropbox.com/s/myo3j1vet9yy6sk/AdaCoOpt-IWQOS-
TR.pdf?dl=0.

[41] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2022. [Online]. Available: https://www.gurobi.com

[42] E. Hazan et al., “Introduction to online convex optimization,” Founda-
tions and Trends® in Optimization, vol. 2, no. 3-4, pp. 157–325, 2016.

[43] D. Merkel et al., “Docker: lightweight linux containers for consistent
development and deployment,” Linux journal, vol. 2014, no. 239, p. 2,
2014.

[44] Hetzner Online GmbH. [Online]. Available: https://www.hetzner.com/
cloud

