
ACRE: Actor Critic Reinforcement Learning for
Failure-Aware Edge Computing Migrations

Marie Siew, Shikhar Sharma, Carlee Joe-Wong, Senior Member, IEEE
Electrical and Computer Engineering, Carnegie Mellon University.

msiew@andrew.cmu.edu; shikhar2@andrew.cmu.edu; cjoewong@andrew.cmu.edu

Abstract—In edge computing, users’ service profiles are mi-
grated in response to user mobility, to minimize the user-
experienced delay, balanced against the migration cost. Due
to imperfect information on transition probabilities and costs,
reinforcement learning (RL) is often used to optimize service
migration. Nevertheless, current works do not optimize service
migration in light of occasional server failures. While server
failures are rare, they impact the smooth and safe functioning of
latency sensitive edge computing applications like autonomous
driving and real-time obstacle detection, because users can no
longer complete their computing jobs. As these failures occur
at a low probability, it is difficult for RL algorithms, which
are data and experience driven, to learn an optimal service
migration policy for both the usual and rare event scenarios.
Therefore, we propose an algorithm ImACRE, which integrates
importance sampling into actor critic reinforcement learning, to
learn the optimal service profile and backup placement policy.
Our algorithm uses importance sampling to sample rare events in
a simulator, at a rate proportional to their contribution to system
costs, while balancing service migration trade-offs between delay
and migration costs, with failure costs, backup placement and
migration costs. We use trace driven experiments to show that
our algorithm gives cost reductions in the event of failures.

Index Terms—Edge Computing, Service migration, Resilient
Resource Allocation

I. INTRODUCTION

Mobile (or multi-access) edge computing (MEC) enables
computationally intensive and latency sensitive mobile ap-
plications such as real time image processing, augmented
reality, interactive gaming, etc, on resource-constrained mobile
devices. In MEC, computing resources such as a cluster
of servers are placed geographically close to end-users, for
example at base stations or WiFi access points [1], [2]. Users
can offload their computationally intensive jobs to the edge
servers. Their geographical proximity helps avoid the wide-
area network delay costs experienced during cloud offloading
[2]. User mobility across geographical areas then presents a
challenge towards task offloading [3]–[5]. As a user moves
across coverage areas, keeping its service profile at its original
location may lead to higher user-experienced latency, due to
the increased network distance. Therefore, service migration
has been proposed as a strategy [4], [5]. Nevertheless, con-
stant service migration in response to user mobility causes
additional energy and operational expenditure. Hence, service

Marie Siew is supported by the SUTD Presidential Postdoctoral Fellow-
ship, under the Singapore Teaching and Academic Research Talent Scheme
(START).

migration while balancing the delay-cost tradeoff, under vari-
ous scenarios, is a widely studied problem [3], [4], [6]–[9].

Few migration works, however, account for another chal-
lenge: the resilience of edge computing systems to rare but
serious events like server failures. They occur due to reasons
such as system overload, hardware failures, or malicious
attacks, and they can be costly: the average cost of outage
at a cloud data center, for example, has increased to $740000
in 2016 [10]. In comparison to the cloud, failures at edge
servers are even more likely, as edge servers are distributed
geographically, making their management and maintenance
more challenging: for example, edge servers do not have
advanced heat management or outage support systems such
as direct liquid cooling, fire suppressing gaseous systems and
fully duplicated electrical lines with transfer switches [11].

Edge server failures may have a particularly sizeable impact
as many edge computing applications are latency-sensitive and
safety-critical, such as the Internet of vehicles, augmented
reality, and video processing [1]. If the user’s service profile
is migrated to an access point that then experiences a server
failure, its job is not able to be completed, jeopardizing the
smooth and safe functioning of edge applications, such as
autonomous driving and real time obstacle detection.

In this work we address the following question: How can the
network operator make edge computing systems resilient and
adaptable to such failures? We propose the use of backups.
When backup services are placed at a different edge server
from the primary service, they can take over if the primary
service’s edge server fails, allowing the application to con-
tinue functioning. However, the number of potential migration
paths of the primary and backup services grows at least
exponentially with the number of access points and timeslots.
Furthermore, the network operator has a lack of knowledge
of the user mobility distributions and the corresponding costs
resulting from mobility. Therefore, Markov decision processes
and reinforcement learning (RL) have been proposed as a
method to solve the service migration problem [3], [6], [12],
[13]. While an RL-based backup placement solution has been
used for virtual network function instance placement [14], to
the best of our knowledge RL-based backups have not been
used for edge computing services.

At the same time, these rare events and failures occur at a
low probability, making it difficult to jointly learn an optimal
policy for the placement of service profiles and backups,

for both the usual and rare event scenarios. This is because
RL relies on past reward data. The low probabilities of rare
events may make the learner miss the importance of rare
events, impacting the training of the learning algorithm [15].
For example, a policy trained on data with few failures
might conclude that always placing backups is not worth
the storage cost. The work on RL-based backups for virtual
network function instance placement [14] did not consider
failures as rare events having low probabilities. Therefore, in
this paper we introduce an importance sampling based actor
critic reinforcement learning framework, for resilient edge
computing service migration. Prior work has proposed using
importance sampling to over-sample rare events for policy
evaluation [15], [16]. However, this involves estimating the
value function given a fixed policy, and does not consider
learning the optimal policy π∗ which entails policy changes.
[17] proposed re-sampling events to accelerate learning for
rare states, but they can only replay historical trajectories
instead of learning on new ones. Our prior work [18] proposed
an importance sampling q-learning algorithm to deal with rare
events. In this work, we extend our prior work to propose an
actor-critic version.

• We present a service migration optimization problem
in light of user mobility across coverage areas, that
introduces the modelling of server failures as rare events.

• We propose an importance sampling based actor critic
algorithm ImACRE, which learns the optimal policy for
the overall system with true rare event probabilities. In
our algorithm, we sample rare events at a rate propor-
tional to their contribution to the value function (i.e.
to system costs), in a simulator training setup. Error
correction is done through the integration of importance
sampling weights on the advantage function.

• We perform trace driven simulations which show that our
algorithm attains cost reductions in the event of failures.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Service Migration Model

We consider an MEC system with N access points, such
as a base station or wifi-access point. Each access point is
equipped with a server, to which users can offload their time-
sensitive computing jobs, and is associated with a region
in which it is the closest access point. Users are mobile
and move across regions at different times of the day. For
example, office workers may move to the city districts for work
during morning rush hours. This changes their nearest access
point. The user’s location at time t is represented by lu(t).
The user’s mobility pattern follows a probability distribution
m(l′u|lu). At each time-slot t, the user sends a service request
to the network operator. The service profile for the applications
run on the user’s mobile devices will be placed at virtual
machines or containers [4] at the access point’s servers. To
maintain a lower job delay for the time-sensitive computing
applications, services are pre-migrated to nearby access points,
thus ensuring they will have finished migrating by the time the

Fig. 1. User mobility, and the placement of service profiles and backups in
light of potential server failures in edge computing.

user moves to a new region. The location of the user’s service
at time t is represented by ls(t), and due to pre-migrations the
network operator makes this placement decision in advance,
before knowledge of the user location at time t is known.

We let dcomm
lu(t),j

denote the communication delay the user
faces when it offloads its computation job, given that the user’s
current location is lu and its service is placed at access point
j. Therefore, the communication delay cost the user faces at
time t would be

D(t) =
∑
j

dcomm
lu(t),j

1{ls(t)=j}, (1)

where 1{ls(t)=j} is the indicator function on the service
location ls. The communication delay dcomm

lu(t),j
consists of the

access latency of job uploading to the user’s associated access
point, and the transfer latency of forwarding the job to the edge
server’s location if the service is placed at another access point
(i.e. lu ̸= j). Therefore, the delay is a function of the distance
between the location of the user and the access point j [4].

Greedily migrating service profiles along with the user may
be suboptimal, because doing so incurs a service migration
cost for the network operator, requiring the operator to balance
this cost with the communication delay; user mobility may
also be unknown in advance. The migration cost includes the
operational and energy costs on network devices like routers
and switches [4], and hence is a function of the distance across
two access points. The cost of migrating the service profile
from access point i to j is denoted by the variable mij . Hence,
the migration cost at time t, M(t), can be expressed as

M(t) =
∑
i∈A

∑
j∈A

mij1{ls(t−1)=i}1{ls(t)=j}, (2)

where 1{ls(t−1)=i} is the indicator function on the service
profile’s previous location.

B. Failure Model and Backups

In reality, rare events (system anomalies) such as server
failures or shutdowns occur. Such events will impact the
quality of service the user receives, as the user is not able to
have his or her job computed on time, or at all, impacting
the safe and smooth functioning of edge applications and
jeopardizing the low latency benefits of edge computing.

To take into account the potential failures and reduce the
costs experienced by the user, a backup of the user’s service
profile can be placed in the system. This way, even if the
server ls(t) at which the user’s service is placed at experiences
a failure, the user can still offload its job. As seen in Fig. 1,
the vehicle moves from A to C, and its service profile was
pre-emptively placed at C. Despite a server failure at C, job
offloading can occur, as a backup service profile was placed at
B. We formulate a Markov Decision Process (MDP) in which
the system state s(t) ∈ S is (lu(t), ls(t), find(t), bind(t)). lu
is the user’s current location, ls is the location of the service,
find is an indicator on whether the service is placed at a
location with a server failure, and bind indicates whether there
currently is a backup in the system. At each timeslot t, the
network operator takes action a(t) = {ls(t + 1), bu(t + 1)}
pre-emptively, before the user moves to the next location
lu(t + 1). This involves determining the placement location
of the service ls(t+ 1), and the position of the backup in the
system bu(t + 1) ∈ {0, 1, ...N, no backup}, where no backup
refers to the choice of there not being a backup in the system.

Backup costs. There is a cost B(t) incurred by storing the
backup at a server. This cost is a sum of the backup migration
cost and the backup storage cost, as it takes up space and
prevents other content from being stored.

B(t) =
∑
j∈A

ρj1{bu(t)=j}

+
∑
i∈A

∑
j∈A

mij1{bu(t−1)=i}1{bu(t)=j},
(3)

where ρj is the storage cost at access point j. There is also
a failure cost F (t) incurred when there is a server failure at
the user’s service placement location (find(t) = 1), because
the user’s task is not served within the task deadline.

F (t) = F1{find(t)=1}(1{bu(t)=no backup} ∨ 1{bu(t)=ls(t)}) (4)

The failure cost is incurred when there is no backup in the
system (bu(t) = no backup), or when the backup location
bu(t) equals the main service location ls(t). Note that the
presence of failures themselves, i.e., find(t), is independent
of the user actions.

We let s̃ ∈ S̃ refer to the state record without the failure
indicator find:

s̃(t+ 1) = (lu(t+ 1), ls(t+ 1), bind(t+ 1)) ∈ S̃ (5)

At each state s, there is a small probability ϵ(s) (for example
ϵ(s) = 0.0001), that in the next timeslot, a server failure
occurs, i.e. find = 1. We define the set of states in which
a server failure occurs (state set T ⊂ S) as the “Rare event
states”. With a larger probability of 1− ϵ(s), no server failure
occurs, i.e. find = 0. We define these states (S\T) as the set
of “Normal States”. Hence we have

s(t+ 1) = s̃(t+ 1) ∪ find(t+ 1).

The overall state transition probability of the system is

p(s′|s, a) =

{
(1− ϵ(s))h(s̃|s, a), if s′ /∈ T

ϵ(s)h(s̃|s, a), if s′ ∈ T,
(6)

where h(s̃|s, a) = m(l′u|lu)Pr(a), the product of the user’s
mobility distribution and the probability that the network
operator takes a particular action.

In this study we focus on a single user, as our focus is on
rare events and failure adaptive resource allocation. We will
consider a multi-user system with rare events in future work.

C. Optimizing the Delay-Cost Trade-off in light of Rare Events
To optimize the placement and migration of the user’s

service profile and backup, in light of rare events such as
server shutdowns, we study the following problem:

min
π(s)

Eπ[
∑
t

(wDD(t) + wMM(t) + wBB(t) + F (t))]

(7)
s.t. (lu(t), ls(t), find(t), bind(t)) ∼ p(s′|s, a).

Eqs.(1), (2), (3), (4).
(8)

We aim to minimize the expectation (over the policy π)
of the sum of the delay, migration, storage and failure costs.
The weights wD, wM and wB can be adjusted based on the
priority given to the different costs. The decision variable
π(s, a) = {Pr(a(t) = a|s(t) = s)} is the network operator’s
policy, which indicates the probability it will take each action
a(t) = {ls(t + 1), bu(t + 1)} (service placement and backup
storage decision) given the current state s(t). The first con-
straint indicates that the state dynamics follows the transition
probability in Eq. (6), incorporating rare event transitions,
while Eqs. (1), (2), (3), (4) indicate the delay, migration,
backup and failure costs respectively.

The network operator may not have information on the mo-
bility distributions and the corresponding latency costs, mak-
ing it difficult to solve the migration problem in a look-ahead
manner. Thus, Markov Decision Processes and Reinforcement
Learning have been used to derive service migration policies
in the literature [3], [6], [12], [13].Nevertheless, the difficulty
in our problem further arises because there are occasional
server failures, with a drastically distinct cost from normal
events due to their impact on smooth and safe functioning of
applications. As these failures occur at a low probability, and
because reinforcement learning relies on past reward data, the
learner may miss the importance of these rare events and be
unable to learn an optimal policy adaptive to server failures.
We introduce our solution in the next section.

III. REINFORCEMENT LEARNING IN THE PRESENCE OF
SERVER FAILURES

In this paper, we use an importance sampling - based actor
critic reinforcement learning algorithm to learn optimal service
migration and backup placement policies, in light of potential
server failures.

We are concerned with rare event states if they collectively
have a sizeable impact on the value function, meaning they
have a sizeable impact on system costs. The value function
V π(s) : S → R for the policy π is the expected discounted
sum of rewards, starting from state s, and following π:

V π(s) = Eat,p(s′|s,a)

[∞∑
t=1

γkr(s(t), a(t), a(t+ 1))|s0 = s

]
,

where the reward (cost) is r(s(t), a(t), a(t+1)) = wDD(t)+
wMM(t)+wBB(t)+F (t) is the per-timeslot cost of our opti-
mization problem, under state transition probability p(s′|s, a).
It is the solution to the recursive Bellman equation [19]:

V π(s) =
∑
a∈A

π(s, a)
∑
s′∈S

p(s′|s, a)[r(s, a, s′) + γV π(s′)].

Defining Tπ(s) as the collective contribution of the rare states
towards the value of state s [15], given π, we have

Tπ(s) = ϵ(s)
∑
a∈A

∑
s̃′∈S̃

h(s̃′|s, a)π(a|s)[r(s, a, s′) + γV π(s′)]

Likewise, defining Uπ(s) as the collective contribution of the
non-rare states (states in S\T) towards the value of state s,
given a fixed policy π, we have :

Uπ(s) = (1− ϵ(s))×∑
a∈A

∑
s̃′∈S̃

π(a|s)h(s̃′|s, a)[r(s, a, s′) + γV π(s′)]. (9)

We now give a formal definition of T , the set of rare states:

Definition 1. A subset of states T ⊂ S is called the Rare
Event State Set if the following properties hold:

1. There exists s ∈ S, s′ ∈ T for which p(s′|s, a) > 0.
2. Let Tπ(s) denote the contribution of the rare states

towards the value of state s, according to Eq. (III). For a
given policy π, there exists s ∈ S for which |Tπ(s)| ≫ 0.

The first property means that transition to the rare event
state set T is possible. The second property means that the
rare event states in T collectively have a meaningful (sizeable)
impact on the value function, and hence on system costs.

A. Importance Sampling

To solve our optimization problem, we will use importance
sampling to sample the rare events (server failures) at a
higher rate than they are expected to occur, to help the
model learn an optimal policy in light of these server failures.
We use importance sampling because if rare events such as
server failures are sampled at their natural probabilities, the
reinforcement learning algorithm is not able to converge to
the optimal policy as it may decide that the storage cost
isn’t worth having backups, or may place the backups in
suboptimal locations. This can be catastrophic in the event
of failures. Specifically, we want to sample the server failures
at a rate proportional to their contribution to system costs, i.e.
proportional to the contribution they have to the value of state
s. As mentioned in Section II, the rare event probability at
state s is ϵ(s). We let ϵ̂(s) denote the importance sampling
probability at which we sample the rare events.

As we want to sample the server failures at a rate propor-
tional to their system costs, a possibility for ϵ̂(s) is ϵ̂(s) =

Tπ(s)
Tπ(s)+Uπ(s) . Nevertheless, we do not have a fixed policy π,
as we are constantly updating the policy while learning the
optimal policy π∗. Therefore, in our algorithm we set

ϵ̂(s)← min(max(δ,
|T (s)|

|T (s)|+ |U(s)|
), 1− δ). (10)

The bounds (δ, 1 − δ) help to ensure sufficient rare event
sampling. T (s) is updated via the following equation:

T (st)← (1− αT)T (s
t) + αT ϵ(s

t)(rt+1 + γV (st+1)), (11)

where αT is the learning rate. U(s) is updated via:

U(st)← (1− αU)U(st) + αU (1− ϵ(st))(rt+1 + γV (st+1)),
(12)

where αU is the learning rate.

B. ImACRE: Importance Sampling based Actor Critic for
Resilient Service Migration in Edge Computing

Our algorithm makes use of a simulator which trains an
optimal service migration and backup placement policy in light
of rare events. Such a simulator would likely be used in prac-
tice to train a migration algorithm, in order to avoid incurring
the large failure costs experienced during server failures in
reality. The transition probabilities h(s̃|s, a), which is mostly
dependent on the user mobility probabilities (Eq. (??)), can be
obtained from historical data. The converged policy trained by
the simulator is then applied to online scenarios, where rare
events happen at their natural probabilities.

Algorithm description: The algorithm is presented in Al-
gorithm 1 (ImACRE). As usual in actor-critic methods [20],
we use neural networks to approximate the “actor” function
that chooses the optimal policy according to a reward estimate
given by the “critic” function. Firstly, we initialise the neural
networks θ and c randomly, T̂ (s) and Û(s) to be 0 (for all
states), and ϵ̂(s) to be 1

2 for all states. We also initialise
the learning rates αθ, αc, αT , αU . For every timeslot, the
importance sampling rare event probability ϵ̂(s) will determine
whether or not a rare-event (failure) occurs. Thereafter, the rest
of the state transition will occur according to the probability
distribution h(s̃|s, a), where s̃(t) = (lu(t), ls(t), bind(t)).
This would result in a new state st+1, and a reward value
rt+1 = r(st, at, st+1) (line 4). Based on the next state st+1,
a new action at+1 is selected according to the current policy
network πθ (line 5).

Because the rare events are sampled at the probability
ϵ̂ instead of their actual probability ϵ, we need a method
of correction, in order to learn the optimal policy for the
original system with transition probability p(s′|s, a) (Eq. (6)).
The importance sampling correction weight w(s, a, s′) will be
defined by the actual probability divided by the importance
sampling based probability (line 6):

wt(st, at, st+1)←

{
ϵ(st)/ϵ̂(st), if st+1 ∈ T.

(1− ϵ(st))/(1− ϵ̂(st)), if st+1 /∈ T.
(13)

The importance sampling correction weight wt(st, at, st+1)
will be used when calculating the advantage function in (line
8). To obtain the advantage function, we first obtain the value
of state st from the critic network c (line 7). The advantage
function characterizes by how much better it is to take action
at at state st, as compared to the average action at state st

[20]. In our algorithm, we multiply V (st), the value of state st,

by the importance sampling correction weight wt(st, at, st+1)
(line 8). The advantage value A(st, at) is then stored in the
buffer (line 9). It will be used for optimizing the loss function
at the end of every epoch.

We then update either T (st) or U(st), depending on
whether the next state st+1 is a rare event state or not (lines
10-11), according to Eqs. (11) and (12) respectively. Finally,
based on T (st) and U(st), the importance sampling rare
events probability ϵ̂(st) is updated in line 12, according to

|T (st)|
|T (st)|+|U(st)| , and bounded by δ and 1 − δ. The process
iterates for every timeslot.

At the end of every epoch, which consists of K timeslots,
the actor critic network is optimized via gradient descent. The
gradient for the actor network will be

∇θ

K∑
i=1

[
1

K
logπθ(a

i|si)A(si, ai)], (14)

and the gradient for the critic network will be

∇c

K∑
i=1

1

K
[A(si, ai)]2. (15)

Algorithm 1 ImACRE: Importance Sampling based Advan-
tage Actor Critic for Rare Events

1: Initialise: parameters θ, c randomly, T̂ (s), Û(s) ← 0,
ϵ̂(s)← 1

2 , learning rates αθ, αc, αT , αU .
2: Select the initial state s0 and action a0.
3: for all timeslots t do
4: ϵ̂(st) determines if an anomaly happens. Thereafter,

sample according to h(s̃|s, a). The new state st+1 and a
reward value rt+1 = r(st, at, st+1) is observed.

5: Sample next action at+1 ∼ πθ(a|st+1)

6: wt ←

{
ϵ(st)/ϵ̂(st), if st+1 ∈ T.

(1− ϵ(st))/(1− ϵ̂(st)), if st+1 /∈ T.

7: V (st)← c(st)
8: Advantage function A(st, at) ← rt+1 + γV (st+1) −

wt(st, at, st+1)V (st)
9: Store A(st, at) in buffer.

10: T (st)← (1−αT)T (s
t)+αT ϵ(s

t)(rt+1 + γV (st+1))
11: U(st) ← (1 − αU)U(st) + αU (1 − ϵ(st))(rt+1 +

γV (st+1))

12: ϵ̂(st)← min(max(δ, |T (st)|
|T (st)|+|U(st)|), 1− δ)

13: for every K steps do
14: Update policy parameters using data in buffer:

θ ← θ − αθ∇θ

∑K
i=1[

1
K logπθ(a

i|si)A(si, ai)]

15: Update critic c← c− αc∇c

∑K
i=1

1
K [A(si, ai)]2

16: Empty buffer.
17: end for
18: end for

IV. SIMULATIONS

In this section, we provide numerical simulations to show
the performance of our algorithms ImACRE. We perform our
experiments with the help of real world traces.

Parameter setting: In our experiments, we have 9 access
points (base stations). We use the ns-3 network simulator [21],
which simulates realistic network conditions involving dy-
namic channels, to obtain realistic latency (delay) costs across
different user-server (access point) location pairs. The latency
costs obtained are in the range (2,10), and are dependent
on the user-server distance. As the migration cost is also a
function of the distance, we set mij to be dcomm

i,j + ϵ, where
ϵ ∈ (−0.5, 0.5). The natural failure rate is set to be 0.00001
and user mobility is modeled with uniformly drawn transition
probabilities between user locations.

Convergence of ImACRE: Figure 2a. illustrates that algo-
rithm ImACRE converges to the optimal reward. We set the
cost of server failures to be -500, representing the high cost
the user experiences when it is no longer able to get its task
computed.The learning rate used is 0.05 and both the actor
and critic have a network structure of [24, 48, 24]. ImACRE is
able to learn the optimal actions through importance sampling,
enabling the user to avoid the large cost of server failures.

We compare our proposed algorithm ImACRE with the
following baselines. Firstly, we train ImACRE and three
Actor-Critic baselines on a simulator to avoid the large cost of
failures. Next, we compare the cost incurred by the converged
policy of each algorithm in an online scenario where the rare
events occur at their natural rate ϵ(s).

AC with No Importance-Sampling (NIS): Rare events are
simulated at their natural rate, and backups are permitted.

AC without Backups as an Action (WBA): Backups are not
used. Rare events are still simulated, at their true rate.

AC without Rare Events Sampled (RES): Rare events are
not considered (not modelled) at all during training. Likewise,
backups are not considered.

Cost Comparisons: Next, in Figs. 2b-c. we illustrate how
our algorithm ImACRE performs in comparison to the base-
lines NIS, WBA and RES. In Fig. 2b, we plot the average cost
experienced at rare event states, and in Fig. 2c, we plot the
cost breakdown at ‘normal’ (non-rare event) states. We run all
algorithms 10 times, and plot the average results, showing
the standard deviation. It can be seen that our algorithm
ImACRE gives a lower average cost at rare states in the
online scenario, because our importance sampling algorithm
sufficiently samples the rare events to learn an optimal policy.
Our results show that it is optimal to place backups, and to
place the main service at a different location from the backup.
This allows users to offload their jobs at another location when
the server at which their service was migrated to fails. The
algorithm NIS is able to avoid the high rare event cost during
some of the runs, nevertheless there is a higher variance in
its performance, as can be seen in Fig. 2b. WBA and RES
yield the highest costs during rare events, because backups
are not used at all, and because rare events are not sampled
at all during the simulator training (for RES). In Fig. 2c, we
show how the average normal state cost breakdown differs
across our algorithm and the baselines. It can be seen that our
algorithm results in a higher cost at the non-rare event states,
especially with respect to migration and storage, as a trade-

(a) Convergence of our Importance Sampling
Algorithm ImACRE.

(b) Comparison of Costs at Rare Event States,
averaged across 10 runs.

(c) Comparison of Costs at Non-Rare
Event ‘Normal’ States, averaged across 10
runs.

Fig. 2. Numerical Simulations

off for being more risk-averse and preparing for rare events/
server failures. As an extension of this, we can propose an
algorithm which takes the user risk level as input, which it uses
to make a risk level-weighted decisions over our algorithm’s
policy (risk-averse) and the baseline’s policy (risk-taking).

V. CONCLUSION

In edge computing, service profiles are migrated in light
of user mobility to maintain quality of service. Concurrently,
server failures may occur, due to system overload and over-
heating. Failures are rare but serious. They have an impact
on the smooth and safe functioning of edge computing’s
latency sensitive applications. We propose the use of service
profile backups. Nevertheless, as server failures occur at a low
probability, it is challenging to jointly learn an optimal service
migration and backup placement solution for both the usual
and rare event scenarios. Therefore, we propose ImACRE,
an importance sampling-based actor critic algorithm. It uses
importance sampling in a simulator training setup to sample
rare events at a rate proportional to their contribution to
system costs, to learn an optimal service migration and backup
placement policy. Finally, we use trace driven simulations to
show that ImACRE converges, and is resilient towards server
failures, subject to a higher preparation cost.

For future work, we will study the service migration multi-
user scenario, where there is coupling across users in the
computing delay. Our framework can be extended and applied
to other resource allocation problems in communications and
networking involving rare events with large consequences.

REFERENCES

[1] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358,
2017.

[2] P. Mach and Z. Becvar, “Mobile edge computing: A survey on ar-
chitecture and computation offloading,” IEEE Communications Surveys
Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.

[3] S. Wang, R. Urgaonkar, M. Zafer, T. He, K. Chan, and K. K. Leung,
“Dynamic service migration in mobile edge computing based on markov
decision process,” IEEE/ACM Transactions on Networking, vol. 27,
no. 3, pp. 1272–1288, 2019.

[4] T. Ouyang, Z. Zhou, and X. Chen, “Follow me at the edge: Mobility-
aware dynamic service placement for mobile edge computing,” IEEE
Journal on Selected Areas in Communications, vol. 36, no. 10, pp. 2333–
2345, 2018.

[5] S. Wang, J. Xu, N. Zhang, and Y. Liu, “A survey on service migration in
mobile edge computing,” IEEE Access, vol. 6, pp. 23 511–23 528, 2018.

[6] S. Wang, Y. Guo, N. Zhang, P. Yang, A. Zhou, and X. Shen, “Delay-
aware microservice coordination in mobile edge computing: A rein-
forcement learning approach,” IEEE Transactions on Mobile Computing,
vol. 20, no. 3, pp. 939–951, 2019.

[7] B. Gao, Z. Zhou, F. Liu, F. Xu, and B. Li, “An online framework for joint
network selection and service placement in mobile edge computing,”
IEEE Transactions on Mobile Computing, pp. 1–1, 2021.

[8] M. Siew, K. Guo, D. Cai, L. Li, and T. Q. Quek, “Let’s share vms:
Optimal placement and pricing across base stations in mec systems,” in
IEEE INFOCOM 2021-IEEE Conference on Computer Communications.
IEEE, 2021, pp. 1–10.

[9] T. Kim, S. D. Sathyanarayana, S. Chen, Y. Im, X. Zhang, S. Ha, and
C. Joe-Wong, “Modems: Optimizing edge computing migrations for
user mobility,” in IEEE INFOCOM 2022-IEEE Conference on Computer
Communications. IEEE, 2022, pp. 1159–1168.

[10] L. Ponemon, “Cost of data center outages,” Data Center Performance
Benchmark Serie, 2016.

[11] A. Aral and I. Brandić, “Learning spatiotemporal failure dependencies
for resilient edge computing services,” IEEE Transactions on Parallel
and Distributed Systems, vol. 32, no. 7, pp. 1578–1590, 2020.

[12] D. Zeng, L. Gu, S. Pan, J. Cai, and S. Guo, “Resource management
at the network edge: A deep reinforcement learning approach,” IEEE
Network, vol. 33, no. 3, pp. 26–33, 2019.

[13] S. Wang, R. Urgaonkar, M. Zafer, T. He, K. Chan, and K. K. Leung,
“Dynamic service migration in mobile edge computing based on markov
decision process,” IEEE/ACM Transactions on Networking, vol. 27,
no. 3, pp. 1272–1288, 2019.

[14] W. Mao, L. Wang, J. Zhao, and Y. Xu, “Online fault-tolerant vnf chain
placement: A deep reinforcement learning approach,” in 2020 IFIP
Networking Conference (Networking). IEEE, 2020, pp. 163–171.

[15] J. Frank, S. Mannor, and D. Precup, “Reinforcement learning in the
presence of rare events,” in Proceedings of the 25th international
conference on Machine learning, 2008, pp. 336–343.

[16] D. Precup, “Eligibility traces for off-policy policy evaluation,” Computer
Science Department Faculty Publication Series, p. 80, 2000.

[17] L. Szlak and O. Shamir, “Convergence results for q-learning with
experience replay,” arXiv preprint arXiv:2112.04213, 2021.

[18] M. Siew, S. Sharma, K. Guo, C. Xu, T. Q. Quek, and C. Joe-Wong, “Fire:
A failure-adaptive reinforcement learning framework for edge computing
migrations,” arXiv preprint arXiv:2209.14399, 2022.

[19] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[20] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International conference on machine learning.
PMLR, 2016, pp. 1928–1937.

[21] “ns3 network simulator.” [Online]. Available: https://www.nsnam.org/

