
Testbeds in Cyber- 
Physical Systems  

Interfaces and Time Scales

Jonathan Sprinkle, PhD
With help from:

Kun Zhang (2015), Dr. Sean Whitsitt (2014), Dr.
Xiao Qin (2013), Matt Bunting

2

Different timescales*

Timescale	 of	 feedback/coupling

Energy	 Bills

Gas	 Prices

Shipping

Surgery

Water	
Temperature

Electricity	 prices

Lifestyle	 change

Agriculture/
watering

*	 Not	 to	 scale.	 It’s	 not	 like	 I	 plotted	 this	 in	 MATLAB	 or	 anything...

Commute

River	 flow
Traffic	
flow

Giving	 Birth

OTC	 Pain	
relievers

Car	 Navigation

Router

Computer	
Clock

Chip	
Thermal	
Mgmt

HVAC	 set	
point	
Mgmt

Java	 GC

Stability	 controller

malloc

3

Testbed 1: Full-sized Ford Escape

4

Down to the wires and back again

• 2008 Ford Escape Hybrid
• Actuated by Torc Robotics
• CAN Bus reader with

dedicated CompactRIO for
control inputs

• 1.2kW power supply based off
the Hybrid battery

• Equipped with
• pause/stop modes for

safety
• emergency-stop:

normally open held closed
• dead-man’s switch:

executes e-stop when no
message received in time
frame

5

Featuring various hardware additions…

6

Velodyne	 64e	 	
3D	 lidar	 (~$80,000)

7

8

NoVaTel	 GPS/  
IMU	 (~$25,000)

9

10

11

Testbed interface

12

With interfaces, we can model.

In Plant Out

Domain-Specific
Modeling

Model
Interpretation

Model Builder

Model Interpreters

Models

DS Modeling
Environment

Application
Domain

App.
1

App.
2

App.
3

Application
Evolution

14

Domain-Specific Modeling

• Create model of the system
• Perform

• Analysis
• Architecture exploration
• Simulation

• Generate
• Configuration
• Code
• Executables

• From the same models!

Example	 Domains	 &	 Environments:	
	 -‐	 VLSI	 Layout	 (e.g.,	 Altera)	
	 -‐	 Engg	 Drawing	 (e.g.,	 AutoCAD)	
	 -‐	 Physical	 Modeling	 (e.g.,	 SolidWorks)	
	 -‐	 Signal	 Processing	 (e.g.,	 LabVIEW)	
	 -‐	 Controls	 (e.g.,	 Simulink)

15

Thought Experiment: State Models
start

end
State 1

do/act2
State 2

do/act3
ev1[gu1]/act1

ev2[gu2]/act4

State
<<Atom>>

Start
<<Atom>>

End
<<Atom>>

16

Thought Experiment: State Models
start

end
State 1

do/act2
State 2

do/act3
ev1[gu1]/act1

ev2[gu2]/act4

String: doActivity

State
<<Atom>>

Start
<<Atom>>

End
<<Atom>>

String: Event
String: Guard
String: Action

Transition
<<Connection>>

17

Thought Experiment: State Models
start

end
State 1

do/act2
State 2

do/act3
ev1[gu1]/act1

ev2[gu2]/act4

String: doActivity

State
<<Atom>>

Start
<<Atom>>

End
<<Atom>>

String: Event
String: Guard
String: Action

Transition
<<Connection>>

src

dst

18

Thought Experiment: State Models
start

end
State 1

do/act2
State 2

do/act3
ev1[gu1]/act1

ev2[gu2]/act4

String: doActivity

State
<<Atom>>

Start
<<Atom>>

End
<<Atom>>

String: Event
String: Guard
String: Action

Transition
<<Connection>>

src

dst

EndTransition
<<Connection>>

StartTransition
<<Connection>>

19

Thought Experiment: State Models
start

end
State 1

do/act2
State 2

do/act3
ev1[gu1]/act1

ev2[gu2]/act4

String: doActivity

State
<<Atom>>

Start
<<Atom>>

End
<<Atom>>

String: Event
String: Guard
String: Action

Transition
<<Connection>>

src

dst

EndTransition
<<Connection>>

StartTransition
<<Connection>>

src dst

srcdst

20

Thought Experiment: State Models
start

end
State 1

do/act2
State 2

do/act3
ev1[gu1]/act1

ev2[gu2]/act4

String: doActivity

State
<<Atom>>

Start
<<Atom>>

End
<<Atom>>

String: Event
String: Guard
String: Action

Transition
<<Connection>>

src

dst

EndTransition
<<Connection>>

StartTransition
<<Connection>>

src dst

srcdst

Diagram
<<Model>>

0..*

0..*

21

// Template Code Generation

22

Idea: Output code usually correlates to model structs

#includes#

class #class_name# {
 public:
 int messageID;
 #public_vars#

 #public_functions#

 private:
 #private_vars#

 #private_functions#
}

#include <math.h>
using namespace std;

class MixedMessage {
 public:
 int messageID;
 double sentSignal;
 double actualSignal;

 double signal();
 double lieAboutSignal();

 private:
 int signalID;
}

23

Idea 2: we probably already have output code
	 **/	
//	 File	 Name:	 setDataLinkSelectMessage.c	
//	
//	 Written	 By:	 Danny	 Kent	 (jaus	 AT	 dannykent	 DOT	 com),	 Tom	 Galluzzo	 (galluzzo	 AT	 gmail	 DOT	 com)	
//	
//	 Version:	 3.3.0b	
//	
//	 Date:	 09/08/09	
//	
//	 Description:	 This	 file	 defines	 the	 functionality	 of	 a	 SetDataLinkSelectMessage	

#include	 <stdio.h>	
#include	 <stdlib.h>	
#include	 <string.h>	
#include	 "jaus.h"	

static	 const	 int	 commandCode	 =	 JAUS_SET_DATA_LINK_SELECT;	
static	 const	 int	 maxDataSizeBytes	 =	 1;	

static	 JausBoolean	 headerFromBuffer(SetDataLinkSelectMessage	 message,	 unsigned	 char	 *buffer,	 unsigned	 int	 bufferSizeBytes);	
static	 JausBoolean	 headerToBuffer(SetDataLinkSelectMessage	 message,	 unsigned	 char	 *buffer,	 unsigned	 int	 bufferSizeBytes);	
static	 int	 headerToString(SetDataLinkSelectMessage	 message,	 char	 **buf);	

static	 JausBoolean	 dataFromBuffer(SetDataLinkSelectMessage	 message,	 unsigned	 char	 *buffer,	 unsigned	 int	 bufferSizeBytes);	
static	 int	 dataToBuffer(SetDataLinkSelectMessage	 message,	 unsigned	 char	 *buffer,	 unsigned	 int	 bufferSizeBytes);	
static	 void	 dataInitialize(SetDataLinkSelectMessage	 message);	
static	 void	 dataDestroy(SetDataLinkSelectMessage	 message);	
static	 unsigned	 int	 dataSize(SetDataLinkSelectMessage	 message);	

// ...

24

For formulaic code generation...
/*	
	 *	 	 #MESSAGE_FUNCTION_NAME#.c	
	 *	 	 OpenJaus	
	 *	
	 *	 	 Created	 by	 JausMessageML_Interpreter	 on	 #DATE#.	
	 *	
	 */	

#include	 <stdio.h>	
#include	 <stdlib.h>	
#include	 <string.h>	
#include	 <math.h>	
#include	 "jaus.h"	
#include	 "#MESSAGE_FUNCTION_NAME#.h"	

static	 const	 int	 commandCode	 =	 #MESSAGE_COMMAND_CODE#;	
static	 const	 int	 maxDataSizeBytes	 =	 0;	

static	 JausBoolean	 headerFromBuffer(#MESSAGE_OBJECT_NAME#	 message,	 unsigned	 char	 *buffer,	 unsigned	 int	 bufferSizeBytes);	
static	 JausBoolean	 headerToBuffer(#MESSAGE_OBJECT_NAME#	 message,	 unsigned	 char	 *buffer,	 unsigned	 int	 bufferSizeBytes);	
static	 int	 headerToString(#MESSAGE_OBJECT_NAME#	 message,	 char	 **buf);	

static	 JausBoolean	 dataFromBuffer(#MESSAGE_OBJECT_NAME#	 message,	 unsigned	 char	 *buffer,	 unsigned	 int	 bufferSizeBytes);	
static	 int	 dataToBuffer(#MESSAGE_OBJECT_NAME#	 message,	 unsigned	 char	 *buffer,	 unsigned	 int	 bufferSizeBytes);	
static	 void	 dataInitialize(#MESSAGE_OBJECT_NAME#	 message);	
static	 void	 dataDestroy(#MESSAGE_OBJECT_NAME#	 message);	
static	 unsigned	 int	 dataSize(#MESSAGE_OBJECT_NAME#	 message);	

// ...

25

A new message with a set structure is now
straightforward

26

interpretStuff()

Interpreter1

interpretStuff()

Interpreter2

interpretStuff()

Template

What about more complex output s/w architectures?

• Build the parts
• Insert the parts
• Output an artifact
• Repeat

27

E.g., MATLAB Component
%	 MATLAB	 Level	 2	 S-‐Function	 #S_FUNCTION_NAME#_matlab	
function	 	 #S_FUNCTION_NAME#_matlab(block)	
	 	 	 	 setup(block);	
end	
	 	
function	 setup(block)	
	 	
%	 Register	 number	 of	 input	 and	 output	 ports	
#S_FUNCTION_INPUT_PORTS#	
#S_FUNCTION_OUTPUT_PORTS#	
	 	 %block.SetPreCompInpPortInfoToDynamic;	
	 	 %block.SetPreCompOutPortInfoToDynamic;	
	 	 	 	
	 	 %	 Set	 block	 sample	 time	 to	 variable	 sample	 time	
	 	 block.SampleTimes	 =	 [0	 0];	
	 	 	
	 	 %	 Set	 the	 block	 simStateCompliance	 to	 default	 (i.e.,	 same	 as	 a	 built-‐in	 block)	
	 	 block.SimStateCompliance	 =	 'DefaultSimState';	
	 	
	 	 %	 Register	 methods	
	 	 block.RegBlockMethod('PostPropagationSetup',	 	 	 	 @DoPostPropSetup);	
	 	 block.RegBlockMethod('InitializeConditions',	 	 	 	 @InitConditions);	 	
	 	 block.RegBlockMethod('Outputs',	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 @Output);	 	 	
	 	 block.RegBlockMethod('Update',	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 @Update);	 	
	 	
end	
	 	
function	 DoPostPropSetup(block)	
#S_FUNCTION_DWORK_VECTORS_SETUP#	
end	
	 	
function	 InitConditions(block)	
#S_FUNCTION_INIT_DATA#	
end	

28

E.g., JAUS Component
//#define	 DEBUG_QUERY_ONLY_NO_SERVICE_CONNECTION	 1	

OjCmpt	 #COMPONENT_NAME#::create(std::string	 prettyName)	 {	
	 OjCmpt	 result;	
	 #COMPONENT_NAME#Data	 *data	 =	 NULL;	
	 JausAddress	 vcAddr;	
	 //	 it	 is	 unbelieveable	 that	 I	 have	 to	 do	 this...what	 a	 HACK	
	 char	 szName[256];	
	 strcpy(szName,	 prettyName.c_str());	
	 //	 now,	 we	 create	 it	 using	 the	 global	 (groan)	 methods	
	 result	 =	 ojCmptCreate(szName,	 #COMPONENT_ID#,	 THREAD_DESIRED_RATE_HZ);	
	 	
	 if(result	 ==	 NULL)	 {	
	 	 //	 something	 bad	 happened...	
	 	 std::cout	 <<	 "Error	 starting	 #COMPONENT_NAME#...aborting."	 <<	 std::endl;	
	 	 return	 result;	
	 }	 else	 {	
	 	 //	 ...	 omitted	 for	 brevity	
	 	 data	 =	 (#COMPONENT_NAME#Data*)malloc(sizeof(#COMPONENT_NAME#Data));	

//	 begin	 generated	 code	
#DATA_INIT#	
//	 end	 generated	 code	

//	 begin	 generated	 code	
#SUPPORTED_CONNECTIONS#	
//	 end	 generated	 code	 	

//	 begin	 generated	 code	
#MESSAGE_CALLBACKS#	
//	 end	 generated	 code	

//	 begin	 generated	 code	
#ESTABLISH_SC#	
//	 end	 generated	 code	
	 	 	
	 	 jausAddressDestroy(vcAddr);	

29

Interpreter looks like...

	 void	 MessagingModelInterpreter::interpretCPP(std::string	 projectDirectory,	 JausMessageML_BON::Component	 component)	 {	
	 	 //	 create	 the	 skeleton	 files	 for	 each	 necessary	 component	 file	
	 	 Console::Out::WriteLine("InterpretComponent	 CPP	 Begin");	
	 	 Skeleton	 hfile	 =	 Skeleton::Skeleton();	
	 	 Skeleton	 cppfile	 =	 Skeleton::Skeleton();	
	 	 Skeleton	 mainfile	 =	 Skeleton::Skeleton();	
	 	 hfile.load(DEFAULT_COMPONENT_H);	
	 	 cppfile.load(DEFAULT_COMPONENT_CPP);	
	 	 mainfile.load(DEFAULT_COMPONENT_MAIN);	

 //

	 	 Console::Out::WriteLine("Supported	 Service	 Connections");	
	 	 string	 supportedSC	 =	 generateAddSupportedSCs(models);	
	 	 cppfile.replace(SUPPORTED_CONNECTIONS,	 supportedSC);	

	 	 Console::Out::WriteLine("Message	 Callbacks");	
	 	 string	 callbacks	 =	 generateMessageCallbacks(models);	
	 	 cppfile.replace(MESSAGE_CALLBACKS,	 callbacks);	

	 	 Console::Out::WriteLine("Component	 Message	 Includes");	
	 	 //	 generate	 the	 message	 includes	 code	
	 	 string	 messageIncludes	 =	 generateMessageIncludes(models);	
	 	 hfile.replace(MESSAGE_INCLUDES,	 messageIncludes);	

	 	 Console::Out::WriteLine("Command	 Functions");	
	 	 set<Command>	 commands	 =	 component-‐>getCommand();	
	 	 string	 commandFunctions	 =	 generateCommandFunctions(commands,	 component);	
	 	 cppfile.replace(COMMAND_FUNCTIONS,	 commandFunctions);	

	 	 Console::Out::WriteLine("Command	 Prototypes");	
	 	 string	 commandPrototypes	 =	 generateCommandPrototypes(commands);	
	 	 hfile.replace(COMMAND_PROTOTYPES,	 commandPrototypes);	

 //

30

Example: Generating Message Includes
	 std::string	 MessagingModelInterpreter::generateMessageIncludes(std::set<Model>	 models)	 {	
	 	 Console::Out::WriteLine("GenerateMessageIncludes	 Begin.");	
	 	 std::string	 code	 =	 std::string();	

	 	 //	 generate	 code	 for	 each	 model	
	 	 for	 (std::set<Model>::iterator	 ii	 =	 models.begin();	 ii	 !=	 models.end();	 ii++)	 {	
	 	 	 Model	 model	 =	 (Model)*ii;	
	 	 	 std::string	 out	 =	 string("GenerateMessageIncludes:	 ");	
	 	 	 out	 +=	 model-‐>getName();	
	 	 	 Console::Out::WriteLine(out.c_str());	
	 	 	 if	 (hasRole(model,	 "Port"))	 {	
	 	 	 	 Port	 port	 =	 (Port)model;	
	 	 	 	 std::set<JausMessage>	 messages	 =	 port-‐>getJausMessage();	
	 	 	 	 for	 (std::set<JausMessage>::iterator	 jj	 =	 messages.begin();	 jj	 !=	 messages.end();	 jj++)	 {	
	 	 	 	 	 JausMessage	 message	 =	 (JausMessage)*jj;	
	 	 	 	 	 Attribute	 attr	 =	 message-‐>getAttribute(MESSAGE_TEMPLATE_FOLDER_NAME);	
	 	 	 	 	 code	 +=	 "#include	 \"../";	
	 	 	 	 	 code	 +=	 attr-‐>getStringValue(true);	
	 	 	 	 	 code	 +=	 "/";	
	 	 	 	 	 code	 +=	 MessageInterpreter::generateFunctionName(message-‐>getName());	
	 	 	 	 	 code	 +=	 ".h\"\n";	
	 	 	 	 }	
	 	 	 }	
	 	 }	

	 	 Console::Out::WriteLine("GenerateMessageIncludes	 End.");	
	 	 return	 code;	
	 }

31

With models, we extend the user base

32

33

So far, 18 undergraduate REU participants have been able
to use the testbed as part of a 10-week NSF Program

Visit	 http://catvehicle.arizona.edu/	 to	 learn	 more.

34

Testbed for Research!

Project Objects

Available Objects

Port Connections

Components

Senders Receivers

35

Example model of component interconnection

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

Steering Angle (%)

Ve
lo

ci
ty

 (m
/s

)

Full Data
Restricted Data

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

Velocity (m/s)

St
ee

rin
g

An
gl

e
(%

)

Captured Data
Best Fit

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

Steering Angle (%)

Ve
lo

ci
ty

 (m
/s

)

Full Data
Restricted Data

36

Gather data about driving behaviors when turning

0 2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

120

140

(vn, δa)
(va, δa)

(vd, δd)

(0, δamax)

(0, δdmax)

st
ee

rin
g

an
gl

e
(%

)

velocity (m/s)

0 1 2 3 4 5 6 7 8 9
0

50

100

150
Best Fit Lines

St
ee

rin
g

An
gl

e
(%

)

Velocity (m/s)

normal
conservative
parking lot

0 1 2 3 4 5 6 7 8 9
−25

−20

−15

−10

−5

0

5
Derivatives

St
ee

rin
g

R
at

e
(%

/s
)

Velocity (m/s)

Fig. 2: The operating range for the vehicle controller in this
research is the range in which the vehicle velocity (v) versus
the steering angle (�) for the vehicle is nearly linear as shown
in the top graph for all three data sets.

vehicle should not change at all. Data analysis shows that
this velocity occurs once the comfort line has fallen to about
4% of the maximum turning rate for all data sets. As such,
the valid operating regions should fall between about 2 m/s

and the point at which the comfort line reaches 4% of it’s
maximum value.

B. System Definition

A canonical state feedback formalism was used to define
the system for this research, with x = [�

a

v

a

]T , where the
current steering angle is �

a

and the current velocity is v

a

.
The input to the state-space system for this will be assumed
to be the new desired steering angle as defined by the output
of the Hoffman Controller or �

d

.
To do the linearization consider three points in the field

of steering angle versus velocity: the desired point (v
d

, �

d

),
the actual point (v

a

, �

a

), and the current point (v
n

, �

d

).
Figure 3 shows these three points and describes them and
the y-intercepts (�

amax

and �

dmax

) for the tangent lines for
the actual and desired points. From this we can define the
equations for the velocities as shown in (2) and (3). Where
M

a

and M

d

are the respective slopes of the tangent lines at
the actual and desired points respectively.

v

n

=
�

a

� �

amax

M

a

(2)

v

d

=
�

d

� �

dmax

M

d

(3)

Additionally, (4) and (5) may be defined to represent the
expected values for the change in the steering angle (d�

d

)
and the acceleration (a). These changes reflect the differences
between the desired values and the actual values, with gains
(the K variables) that determine how important each value is.

0 2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

120

140

(vn, δa)
(va, δa)

(vd, δd)

(0, δamax)

(0, δdmax)

st
ee

rin
g

an
gl

e
(%

)

velocity (m/s)

Fig. 3: This figure shows the three points from which the
controller values are derived using the normal comfort line.
These points are: the actual point that the vehicle is currently
at (v

a

, �

a

), the desired point that the vehicle should be at in
the future (v

d

, �

d

), and the translated point that the vehicle
should be at currently (v

n

, �

d

). Note that the actual point is
shown to the right of the comfort line where it should never
be while using the passenger comfort controller.

Tweaking these gains changes how quickly the vehicle reacts
to changes in steering angle as determined by the Hoffman
Controller.

d�

d

= �K

�a

�

a

� K

�d

�

d

(4)

a = K

d

(v
d

� v

a

) + K

a

(v
n

� v

a

) (5)

From (4) and (5) the output and state model of any given
operating point can be defined as shown in (6) and (7) .

y =
h

Kva
Ma

� (K
va

+ K

vd

)
i

�

a

v

a

�
+

K

vd

M

d

�
�

d

(6)

dx =

�K

�a

0
Kva
Ma

� (K
va

+ K

vd

)

�
�

a

v

a

�
+

�K

�d

Kvd
Md

�
�

d

(7)

IV. IMPLEMENTATION

After determining the state space equations for the general
case of any given operating region, those regions must be
determined. For simplicity’s sake, this paper will split the
comfort line into operating regions for �

a

, �

d

, and v

a

that
are all one unit long (1 m/s for velocity and 1% for steering
angles).

To simplify the problem further: (8) and (9) show that
this paper is reducing the effective number of gain values
for this controller down to two. K

d

is the gain value used

0 1 2 3 4 5 6 7 8 9
0

50

100

150
Best Fit Lines

St
ee

rin
g

An
gl

e
(%

)

Velocity (m/s)

normal
conservative
parking lot

0 1 2 3 4 5 6 7 8 9
−25

−20

−15

−10

−5

0

5
Derivatives

St
ee

rin
g

R
at

e
(%

/s
)

Velocity (m/s)

Fig. 2: The operating range for the vehicle controller in this
research is the range in which the vehicle velocity (v) versus
the steering angle (�) for the vehicle is nearly linear as shown
in the top graph for all three data sets.

vehicle should not change at all. Data analysis shows that
this velocity occurs once the comfort line has fallen to about
4% of the maximum turning rate for all data sets. As such,
the valid operating regions should fall between about 2 m/s

and the point at which the comfort line reaches 4% of it’s
maximum value.

B. System Definition

A canonical state feedback formalism was used to define
the system for this research, with x = [�

a

v

a

]T , where the
current steering angle is �

a

and the current velocity is v

a

.
The input to the state-space system for this will be assumed
to be the new desired steering angle as defined by the output
of the Hoffman Controller or �

d

.
To do the linearization consider three points in the field

of steering angle versus velocity: the desired point (v
d

, �

d

),
the actual point (v

a

, �

a

), and the current point (v
n

, �

d

).
Figure 3 shows these three points and describes them and
the y-intercepts (�

amax

and �

dmax

) for the tangent lines for
the actual and desired points. From this we can define the
equations for the velocities as shown in (2) and (3). Where
M

a

and M

d

are the respective slopes of the tangent lines at
the actual and desired points respectively.

v

n

=
�

a

� �

amax

M

a

(2)

v

d

=
�

d

� �

dmax

M

d

(3)

Additionally, (4) and (5) may be defined to represent the
expected values for the change in the steering angle (d�

d

)
and the acceleration (a). These changes reflect the differences
between the desired values and the actual values, with gains
(the K variables) that determine how important each value is.

0 2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

120

140

(vn, δa)
(va, δa)

(vd, δd)

(0, δamax)

(0, δdmax)

st
ee

rin
g

an
gl

e
(%

)

velocity (m/s)

Fig. 3: This figure shows the three points from which the
controller values are derived using the normal comfort line.
These points are: the actual point that the vehicle is currently
at (v

a

, �

a

), the desired point that the vehicle should be at in
the future (v

d

, �

d

), and the translated point that the vehicle
should be at currently (v

n

, �

d

). Note that the actual point is
shown to the right of the comfort line where it should never
be while using the passenger comfort controller.

Tweaking these gains changes how quickly the vehicle reacts
to changes in steering angle as determined by the Hoffman
Controller.

d�

d

= �K

�a

�

a

� K

�d

�

d

(4)

a = K

d

(v
d

� v

a

) + K

a

(v
n

� v

a

) (5)

From (4) and (5) the output and state model of any given
operating point can be defined as shown in (6) and (7) .

y =
h

Kva
Ma

� (K
va

+ K

vd

)
i

�

a

v

a

�
+

K

vd

M

d

�
�

d

(6)

dx =

�K

�a

0
Kva
Ma

� (K
va

+ K

vd

)

�
�

a

v

a

�
+

�K

�d

Kvd
Md

�
�

d

(7)

IV. IMPLEMENTATION

After determining the state space equations for the general
case of any given operating region, those regions must be
determined. For simplicity’s sake, this paper will split the
comfort line into operating regions for �

a

, �

d

, and v

a

that
are all one unit long (1 m/s for velocity and 1% for steering
angles).

To simplify the problem further: (8) and (9) show that
this paper is reducing the effective number of gain values
for this controller down to two. K

d

is the gain value used

0 1 2 3 4 5 6 7 8 9
0

50

100

150
Best Fit Lines

St
ee

rin
g

An
gl

e
(%

)

Velocity (m/s)

normal
conservative
parking lot

0 1 2 3 4 5 6 7 8 9
−25

−20

−15

−10

−5

0

5
Derivatives

St
ee

rin
g

R
at

e
(%

/s
)

Velocity (m/s)

Fig. 2: The operating range for the vehicle controller in this
research is the range in which the vehicle velocity (v) versus
the steering angle (�) for the vehicle is nearly linear as shown
in the top graph for all three data sets.

vehicle should not change at all. Data analysis shows that
this velocity occurs once the comfort line has fallen to about
4% of the maximum turning rate for all data sets. As such,
the valid operating regions should fall between about 2 m/s

and the point at which the comfort line reaches 4% of it’s
maximum value.

B. System Definition

A canonical state feedback formalism was used to define
the system for this research, with x = [�

a

v

a

]T , where the
current steering angle is �

a

and the current velocity is v

a

.
The input to the state-space system for this will be assumed
to be the new desired steering angle as defined by the output
of the Hoffman Controller or �

d

.
To do the linearization consider three points in the field

of steering angle versus velocity: the desired point (v
d

, �

d

),
the actual point (v

a

, �

a

), and the current point (v
n

, �

d

).
Figure 3 shows these three points and describes them and
the y-intercepts (�

amax

and �

dmax

) for the tangent lines for
the actual and desired points. From this we can define the
equations for the velocities as shown in (2) and (3). Where
M

a

and M

d

are the respective slopes of the tangent lines at
the actual and desired points respectively.

v

n

=
�

a

� �

amax

M

a

(2)

v

d

=
�

d

� �

dmax

M

d

(3)

Additionally, (4) and (5) may be defined to represent the
expected values for the change in the steering angle (d�

d

)
and the acceleration (a). These changes reflect the differences
between the desired values and the actual values, with gains
(the K variables) that determine how important each value is.

0 2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

120

140

(vn, δa)
(va, δa)

(vd, δd)

(0, δamax)

(0, δdmax)

st
ee

rin
g

an
gl

e
(%

)

velocity (m/s)

Fig. 3: This figure shows the three points from which the
controller values are derived using the normal comfort line.
These points are: the actual point that the vehicle is currently
at (v

a

, �

a

), the desired point that the vehicle should be at in
the future (v

d

, �

d

), and the translated point that the vehicle
should be at currently (v

n

, �

d

). Note that the actual point is
shown to the right of the comfort line where it should never
be while using the passenger comfort controller.

Tweaking these gains changes how quickly the vehicle reacts
to changes in steering angle as determined by the Hoffman
Controller.

d�

d

= �K

�a

�

a

� K

�d

�

d

(4)

a = K

d

(v
d

� v

a

) + K

a

(v
n

� v

a

) (5)

From (4) and (5) the output and state model of any given
operating point can be defined as shown in (6) and (7) .

y =
h

Kva
Ma

� (K
va

+ K

vd

)
i

�

a

v

a

�
+

K

vd

M

d

�
�

d

(6)

dx =

�K

�a

0
Kva
Ma

� (K
va

+ K

vd

)

�
�

a

v

a

�
+

�K

�d

Kvd
Md

�
�

d

(7)

IV. IMPLEMENTATION

After determining the state space equations for the general
case of any given operating region, those regions must be
determined. For simplicity’s sake, this paper will split the
comfort line into operating regions for �

a

, �

d

, and v

a

that
are all one unit long (1 m/s for velocity and 1% for steering
angles).

To simplify the problem further: (8) and (9) show that
this paper is reducing the effective number of gain values
for this controller down to two. K

d

is the gain value used

0 1 2 3 4 5 6 7 8 9
0

50

100

150
Best Fit Lines

St
ee

rin
g

An
gl

e
(%

)

Velocity (m/s)

normal
conservative
parking lot

0 1 2 3 4 5 6 7 8 9
−25

−20

−15

−10

−5

0

5
Derivatives

St
ee

rin
g

R
at

e
(%

/s
)

Velocity (m/s)

Fig. 2: The operating range for the vehicle controller in this
research is the range in which the vehicle velocity (v) versus
the steering angle (�) for the vehicle is nearly linear as shown
in the top graph for all three data sets.

vehicle should not change at all. Data analysis shows that
this velocity occurs once the comfort line has fallen to about
4% of the maximum turning rate for all data sets. As such,
the valid operating regions should fall between about 2 m/s

and the point at which the comfort line reaches 4% of it’s
maximum value.

B. System Definition

A canonical state feedback formalism was used to define
the system for this research, with x = [�

a

v

a

]T , where the
current steering angle is �

a

and the current velocity is v

a

.
The input to the state-space system for this will be assumed
to be the new desired steering angle as defined by the output
of the Hoffman Controller or �

d

.
To do the linearization consider three points in the field

of steering angle versus velocity: the desired point (v
d

, �

d

),
the actual point (v

a

, �

a

), and the current point (v
n

, �

d

).
Figure 3 shows these three points and describes them and
the y-intercepts (�

amax

and �

dmax

) for the tangent lines for
the actual and desired points. From this we can define the
equations for the velocities as shown in (2) and (3). Where
M

a

and M

d

are the respective slopes of the tangent lines at
the actual and desired points respectively.

v

n

=
�

a

� �

amax

M

a

(2)

v

d

=
�

d

� �

dmax

M

d

(3)

Additionally, (4) and (5) may be defined to represent the
expected values for the change in the steering angle (d�

d

)
and the acceleration (a). These changes reflect the differences
between the desired values and the actual values, with gains
(the K variables) that determine how important each value is.

0 2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

120

140

(vn, δa)
(va, δa)

(vd, δd)

(0, δamax)

(0, δdmax)

st
ee

rin
g

an
gl

e
(%

)

velocity (m/s)

Fig. 3: This figure shows the three points from which the
controller values are derived using the normal comfort line.
These points are: the actual point that the vehicle is currently
at (v

a

, �

a

), the desired point that the vehicle should be at in
the future (v

d

, �

d

), and the translated point that the vehicle
should be at currently (v

n

, �

d

). Note that the actual point is
shown to the right of the comfort line where it should never
be while using the passenger comfort controller.

Tweaking these gains changes how quickly the vehicle reacts
to changes in steering angle as determined by the Hoffman
Controller.

d�

d

= �K

�a

�

a

� K

�d

�

d

(4)

a = K

d

(v
d

� v

a

) + K

a

(v
n

� v

a

) (5)

From (4) and (5) the output and state model of any given
operating point can be defined as shown in (6) and (7) .

y =
h

Kva
Ma

� (K
va

+ K

vd

)
i

�

a

v

a

�
+

K

vd

M

d

�
�

d

(6)

dx =

�K

�a

0
Kva
Ma

� (K
va

+ K

vd

)

�
�

a

v

a

�
+

�K

�d

Kvd
Md

�
�

d

(7)

IV. IMPLEMENTATION

After determining the state space equations for the general
case of any given operating region, those regions must be
determined. For simplicity’s sake, this paper will split the
comfort line into operating regions for �

a

, �

d

, and v

a

that
are all one unit long (1 m/s for velocity and 1% for steering
angles).

To simplify the problem further: (8) and (9) show that
this paper is reducing the effective number of gain values
for this controller down to two. K

d

is the gain value used

0 1 2 3 4 5 6 7 8 9
0

50

100

150
Best Fit Lines

St
ee

rin
g

An
gl

e
(%

)

Velocity (m/s)

normal
conservative
parking lot

0 1 2 3 4 5 6 7 8 9
−25

−20

−15

−10

−5

0

5
Derivatives

St
ee

rin
g

Ra
te

 (%
/s

)

Velocity (m/s)

Fig. 2: The operating range for the vehicle controller in this
research is the range in which the vehicle velocity (v) versus
the steering angle (�) for the vehicle is nearly linear as shown
in the top graph for all three data sets.

vehicle should not change at all. Data analysis shows that
this velocity occurs once the comfort line has fallen to about
4% of the maximum turning rate for all data sets. As such,
the valid operating regions should fall between about 2 m/s

and the point at which the comfort line reaches 4% of it’s
maximum value.

B. System Definition

A canonical state feedback formalism was used to define
the system for this research, with x = [�

a

v

a

]T , where the
current steering angle is �

a

and the current velocity is v

a

.
The input to the state-space system for this will be assumed
to be the new desired steering angle as defined by the output
of the Hoffman Controller or �

d

.
To do the linearization consider three points in the field

of steering angle versus velocity: the desired point (v
d

, �

d

),
the actual point (v

a

, �

a

), and the current point (v
n

, �

d

).
Figure 3 shows these three points and describes them and
the y-intercepts (�

amax

and �

dmax

) for the tangent lines for
the actual and desired points. From this we can define the
equations for the velocities as shown in (2) and (3). Where
M

a

and M

d

are the respective slopes of the tangent lines at
the actual and desired points respectively.

v

n

=
�

a

� �

amax

M

a

(2)

v

d

=
�

d

� �

dmax

M

d

(3)

Additionally, (4) and (5) may be defined to represent the
expected values for the change in the steering angle (d�

d

)
and the acceleration (a). These changes reflect the differences
between the desired values and the actual values, with gains
(the K variables) that determine how important each value is.

0 2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

120

140

(vn, δa)
(va, δa)

(vd, δd)

(0, δamax)

(0, δdmax)

st
ee

rin
g

an
gl

e
(%

)

velocity (m/s)

Fig. 3: This figure shows the three points from which the
controller values are derived using the normal comfort line.
These points are: the actual point that the vehicle is currently
at (v

a

, �

a

), the desired point that the vehicle should be at in
the future (v

d

, �

d

), and the translated point that the vehicle
should be at currently (v

n

, �

d

). Note that the actual point is
shown to the right of the comfort line where it should never
be while using the passenger comfort controller.

Tweaking these gains changes how quickly the vehicle reacts
to changes in steering angle as determined by the Hoffman
Controller.

d�

d

= �K

�a

�

a

� K

�d

�

d

(4)

a = K

d

(v
d

� v

a

) + K

a

(v
n

� v

a

) (5)

From (4) and (5) the output and state model of any given
operating point can be defined as shown in (6) and (7) .

y =
h

Kva
Ma

� (K
va

+ K

vd

)
i

�

a

v

a

�
+

K

vd

M

d

�
�

d

(6)

dx =

�K

�a

0
Kva
Ma

� (K
va

+ K

vd

)

�
�

a

v

a

�
+

�K

�d

Kvd
Md

�
�

d

(7)

IV. IMPLEMENTATION

After determining the state space equations for the general
case of any given operating region, those regions must be
determined. For simplicity’s sake, this paper will split the
comfort line into operating regions for �

a

, �

d

, and v

a

that
are all one unit long (1 m/s for velocity and 1% for steering
angles).

To simplify the problem further: (8) and (9) show that
this paper is reducing the effective number of gain values
for this controller down to two. K

d

is the gain value used

0 1 2 3 4 5 6 7 8 9
0

50

100

150
Best Fit Lines

St
ee

rin
g

An
gl

e
(%

)

Velocity (m/s)

normal
conservative
parking lot

0 1 2 3 4 5 6 7 8 9
−25

−20

−15

−10

−5

0

5
Derivatives

St
ee

rin
g

R
at

e
(%

/s
)

Velocity (m/s)

Fig. 2: The operating range for the vehicle controller in this
research is the range in which the vehicle velocity (v) versus
the steering angle (�) for the vehicle is nearly linear as shown
in the top graph for all three data sets.

vehicle should not change at all. Data analysis shows that
this velocity occurs once the comfort line has fallen to about
4% of the maximum turning rate for all data sets. As such,
the valid operating regions should fall between about 2 m/s

and the point at which the comfort line reaches 4% of it’s
maximum value.

B. System Definition

A canonical state feedback formalism was used to define
the system for this research, with x = [�

a

v

a

]T , where the
current steering angle is �

a

and the current velocity is v

a

.
The input to the state-space system for this will be assumed
to be the new desired steering angle as defined by the output
of the Hoffman Controller or �

d

.
To do the linearization consider three points in the field

of steering angle versus velocity: the desired point (v
d

, �

d

),
the actual point (v

a

, �

a

), and the current point (v
n

, �

d

).
Figure 3 shows these three points and describes them and
the y-intercepts (�

amax

and �

dmax

) for the tangent lines for
the actual and desired points. From this we can define the
equations for the velocities as shown in (2) and (3). Where
M

a

and M

d

are the respective slopes of the tangent lines at
the actual and desired points respectively.

v

n

=
�

a

� �

amax

M

a

(2)

v

d

=
�

d

� �

dmax

M

d

(3)

Additionally, (4) and (5) may be defined to represent the
expected values for the change in the steering angle (d�

d

)
and the acceleration (a). These changes reflect the differences
between the desired values and the actual values, with gains
(the K variables) that determine how important each value is.

0 2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

120

140

(vn, δa)
(va, δa)

(vd, δd)

(0, δamax)

(0, δdmax)

st
ee

rin
g

an
gl

e
(%

)

velocity (m/s)

Fig. 3: This figure shows the three points from which the
controller values are derived using the normal comfort line.
These points are: the actual point that the vehicle is currently
at (v

a

, �

a

), the desired point that the vehicle should be at in
the future (v

d

, �

d

), and the translated point that the vehicle
should be at currently (v

n

, �

d

). Note that the actual point is
shown to the right of the comfort line where it should never
be while using the passenger comfort controller.

Tweaking these gains changes how quickly the vehicle reacts
to changes in steering angle as determined by the Hoffman
Controller.

d�

d

= �K

�a

�

a

� K

�d

�

d

(4)

a = K

d

(v
d

� v

a

) + K

a

(v
n

� v

a

) (5)

From (4) and (5) the output and state model of any given
operating point can be defined as shown in (6) and (7) .

y =
h

Kva
Ma

� (K
va

+ K

vd

)
i

�

a

v

a

�
+

K

vd

M

d

�
�

d

(6)

dx =

�K

�a

0
Kva
Ma

� (K
va

+ K

vd

)

�
�

a

v

a

�
+

�K

�d

Kvd
Md

�
�

d

(7)

IV. IMPLEMENTATION

After determining the state space equations for the general
case of any given operating region, those regions must be
determined. For simplicity’s sake, this paper will split the
comfort line into operating regions for �

a

, �

d

, and v

a

that
are all one unit long (1 m/s for velocity and 1% for steering
angles).

To simplify the problem further: (8) and (9) show that
this paper is reducing the effective number of gain values
for this controller down to two. K

d

is the gain value used

37

Take the fit data and utilize linearization techniques

38

Scatter plot with comfort controller

0 2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

120
Velocity vs. Steering Angle with a Comfort Controller

v (m/s)

δ
(%

)

normal
conservative
parking lot
normal comfort line
conservative comfort line
parking lot comfort line

39

Simulation

40

Problems: MPC return time

• A complex model may
introduce predictive accuracy,

• however, this increases the
computational burden.

• Especially under high speed,
the system cannot tolerate a
slow return rate.

The car is executing the previous control sequence
while waiting for the new control sequence

obstacle

41

Problems: control accuracy

• The return time problem can
be addressed via model
reduction,

• potential drawback is
higher model mismatch.

• Model mismatch can also
introduce problems.

• Wrong prediction
• Infeasible trajectories

Based on the predictive model, the car
should be able to avoid the obstacle.
But the car actually steps into the obstacle
due to the model mismatch.

obstacle

42

Problem Modeling

•

uk,k⇤

uk,k+1⇤
uk,k+2⇤

k⇠

uk,k⇤ k+1⇠

 k,k+1⇤⇠

 k,k+2⇤⇠

k⇠ '

t�State Measured at time k
MPC returns solution at k+ t�

T�
Control input holds for secondsT�

43

Problem Statement

• Our target is to ensure
bounded MPC return time while
maintaining the control
accuracy via the design of
hybrid MPC. The problem is to
find such hybrid logic.

• Uncontrollable Divergence Def:

CarSim plant

KMPC

DMPC

s

supervisor
logic

q=0

q=1

44

Hybrid MPC Design

• Two models are selected as the
predictive model: (i) kinematic
model, and (ii) dynamic model.
Thus, two MPCs are generated:
KMPC and DMPC. They are
used in the hybrid MPC.

• Take car as the specific
example, we have the hybrid
logic. Implementation of such
logic needs estimation of
model mismatch and return
time of both MPCs.

•

45

Model Mismatch & Return Time

•

X

Y

Predictive
Model

YModel

XModel

Plant

YVehicle

XVehicle

Model
Mismatch

46

Hybrid MPC Design

• By plotting out UDs of both
MPCs, we know the explicit
switching boundary.

47

Simulation Result

•

48

Simulation Result

•

49

Simulation Result

•

50

Back to safety…of interface code

Timescales for  
Humans-In-The-Loop

52

Time delay human control

System Human
x(t� ⌧)

�

53

Conventional control system

54

Model Predictive Control (MPC)

55

Market forces vs. behavior change

55

Timescale	 of	 feedback/coupling

Energy	 Bills

Gas	 Prices

Shipping

Surgery

Water	
Temperature

Electricity	 prices

Lifestyle	 change

Agriculture/
watering

Commute

River	 flow
Traffic	
flow

Giving	 Birth

OTC	 Pain	
relievers

Car	 Navigation

Router

Computer	
Clock

Chip	
Thermal	
Mgmt

HVAC	 set	
point	
Mgmt

Java	 GC

Stability	 controller

malloc

56

Idea: Correlate Cost and Comfort in HITL Timescale

57

Close the cost/comfort loop by  
dynamically changing set points

30 40 50 60 70 80 90
0

1

2

3
A

ve
ra

g
e

d
 S

e
tp

o
in

t
D

iff
e

re
n

ce
 (

F
)

Cost Constrain

30 40 50 60 70 80 90
−1

−0.5

0

0.5

U
sa

g
e

 R
e

d
u

ce
d

 (
%

)

Setpoint Difference
Usage Reduction

58

It is possible, but all starts with the need for data

59

Example results

Cooling in July, 2012

7 day horizon
Cost constraint: $50 ($78 before)
Total change constraint: 28 (4 times per day)
Average temperature sacrifice: 1.3 ̊F

Surprise, I am exceeding my
time horizon

61

• The opportunity for testbeds is in
their ability to grow the user base
from adjacent disciplines or new
users

• The data must be realistic; else
runs the risk of perpetuating
invalid assumptions

• The timescale of interaction may
require supervisory controllers or
data gatherers to capture/enforce
dynamics for safety and security

Conclusions

Sean Whitsitt
PhD 2014

Kun Zhang
PhD 2015

Matt Bunting
PhD 2016

Xiao Qin
PhD 2014

CAT Vehicle 2013

CAT Vehicle 2014

68

Thanks for the Support
“Self-‐Reconfigurable	 Sensors	 in	 River	 Environments”	 NSF	 CNS-‐0930919,	
with	 Sonia	 Martinez	 (UC	 San	 Diego)	 and	 Alex	 Bayen	 (UC	 Berkeley);	 I-‐
Corps:	 “A	 Cost-‐Limited	 Home	 Thermostat	 (CLD/HT)”	 NSF	 IIP-‐1249175.

“CAREER:	 Domain-‐Specific	 Modeling	 Techniques	 for	 Cyber-‐Physical	 Systems”	
NSF	 CNS-‐1253334

Additional	 support	 for	 awards	 CNS-‐1253334	 and	 IIS-‐1262960	 provided	 by	 the	
Air	 Force	 Office	 of	 Scientific	 Research

Any	 opinions,	 findings,	 and	 conclusions	 or	 recommendations	 expressed	 in	 this	 material	 are	 those	 of	
the	 author(s)	 and	 do	 not	 necessarily	 reflect	 the	 views	 of	 the	 National	 Science	 Foundation	 or	 AFOSR.

“REU	 Site:	 CatVehicle:	 Cognitive	 and	 Autonomous	 Test	 Vehicle”	 NSF	 IIS-‐1262960

“Control	 of	 Vehicular	 Traffic	 Flow	 via	 Low	 Density	 Autonomous	 Vehicles”	 NSF	
CNS-‐1446435

