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Testbed 1: Full-sized Ford Escape
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Down to the wires and back again

• 2008 Ford Escape Hybrid 
• Actuated by Torc Robotics 
• CAN Bus reader with 

dedicated CompactRIO for 
control inputs 

• 1.2kW power supply based off 
the Hybrid battery 

• Equipped with  
• pause/stop modes for 

safety 
• emergency-stop: 

normally open held closed 
• dead-man’s switch: 

executes e-stop when no 
message received in time 
frame
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Featuring various hardware additions…
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Velodyne	  64e	  	  
3D	  lidar	  (~$80,000)
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NoVaTel	  GPS/  
IMU	  (~$25,000)
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Testbed interface
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With interfaces, we can model.

In Plant Out



Domain-Specific 
Modeling
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Domain-Specific Modeling

• Create model of the system 
• Perform 

• Analysis 
• Architecture exploration 
• Simulation 

• Generate 
• Configuration 
• Code 
• Executables 

• From the same models!

Example	  Domains	  &	  Environments:	  
	  -‐	  VLSI	  Layout	  (e.g.,	  Altera)	  
	  -‐	  Engg	  Drawing	  (e.g.,	  AutoCAD)	  
	  -‐	  Physical	  Modeling	  (e.g.,	  SolidWorks)	  
	  -‐	  Signal	  Processing	  (e.g.,	  LabVIEW)	  
	  -‐	  Controls	  (e.g.,	  Simulink)
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// Template Code Generation
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Idea: Output code usually correlates to model structs

#includes#

class #class_name# {
     public:
          int messageID;
          #public_vars#

          #public_functions#

     private:
          #private_vars#

          #private_functions#
}

#include <math.h>
using namespace std;

class MixedMessage {
     public:
          int messageID;
          double sentSignal;
          double actualSignal;

          double signal();
          double lieAboutSignal();

     private:
          int signalID;
}
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Idea 2: we probably already have output code
	  ****************************************************************************/	  
//	  File	  Name:	  setDataLinkSelectMessage.c	  
//	  
//	  Written	  By:	  Danny	  Kent	  (jaus	  AT	  dannykent	  DOT	  com),	  Tom	  Galluzzo	  (galluzzo	  AT	  gmail	  DOT	  com)	  
//	  
//	  Version:	  3.3.0b	  
//	  
//	  Date:	  09/08/09	  
//	  
//	  Description:	  This	  file	  defines	  the	  functionality	  of	  a	  SetDataLinkSelectMessage	  

#include	  <stdio.h>	  
#include	  <stdlib.h>	  
#include	  <string.h>	  
#include	  "jaus.h"	  

static	  const	  int	  commandCode	  =	  JAUS_SET_DATA_LINK_SELECT;	  
static	  const	  int	  maxDataSizeBytes	  =	  1;	  

static	  JausBoolean	  headerFromBuffer(SetDataLinkSelectMessage	  message,	  unsigned	  char	  *buffer,	  unsigned	  int	  bufferSizeBytes);	  
static	  JausBoolean	  headerToBuffer(SetDataLinkSelectMessage	  message,	  unsigned	  char	  *buffer,	  unsigned	  int	  bufferSizeBytes);	  
static	  int	  headerToString(SetDataLinkSelectMessage	  message,	  char	  **buf);	  

static	  JausBoolean	  dataFromBuffer(SetDataLinkSelectMessage	  message,	  unsigned	  char	  *buffer,	  unsigned	  int	  bufferSizeBytes);	  
static	  int	  dataToBuffer(SetDataLinkSelectMessage	  message,	  unsigned	  char	  *buffer,	  unsigned	  int	  bufferSizeBytes);	  
static	  void	  dataInitialize(SetDataLinkSelectMessage	  message);	  
static	  void	  dataDestroy(SetDataLinkSelectMessage	  message);	  
static	  unsigned	  int	  dataSize(SetDataLinkSelectMessage	  message);	  

// ... 
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For formulaic code generation...
/*	  
	  *	  	  #MESSAGE_FUNCTION_NAME#.c	  
	  *	  	  OpenJaus	  
	  *	  
	  *	  	  Created	  by	  JausMessageML_Interpreter	  on	  #DATE#.	  
	  *	  
	  */	  

#include	  <stdio.h>	  
#include	  <stdlib.h>	  
#include	  <string.h>	  
#include	  <math.h>	  
#include	  "jaus.h"	  
#include	  "#MESSAGE_FUNCTION_NAME#.h"	  

static	  const	  int	  commandCode	  =	  #MESSAGE_COMMAND_CODE#;	  
static	  const	  int	  maxDataSizeBytes	  =	  0;	  

static	  JausBoolean	  headerFromBuffer(#MESSAGE_OBJECT_NAME#	  message,	  unsigned	  char	  *buffer,	  unsigned	  int	  bufferSizeBytes);	  
static	  JausBoolean	  headerToBuffer(#MESSAGE_OBJECT_NAME#	  message,	  unsigned	  char	  *buffer,	  unsigned	  int	  bufferSizeBytes);	  
static	  int	  headerToString(#MESSAGE_OBJECT_NAME#	  message,	  char	  **buf);	  

static	  JausBoolean	  dataFromBuffer(#MESSAGE_OBJECT_NAME#	  message,	  unsigned	  char	  *buffer,	  unsigned	  int	  bufferSizeBytes);	  
static	  int	  dataToBuffer(#MESSAGE_OBJECT_NAME#	  message,	  unsigned	  char	  *buffer,	  unsigned	  int	  bufferSizeBytes);	  
static	  void	  dataInitialize(#MESSAGE_OBJECT_NAME#	  message);	  
static	  void	  dataDestroy(#MESSAGE_OBJECT_NAME#	  message);	  
static	  unsigned	  int	  dataSize(#MESSAGE_OBJECT_NAME#	  message);	  

// ... 
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A new message with a set structure is now 
straightforward
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interpretStuff()

Interpreter1

interpretStuff()

Interpreter2

interpretStuff()

Template

What about more complex output s/w architectures?

• Build the parts 
• Insert the parts 
• Output an artifact  
• Repeat
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E.g., MATLAB Component
%	  MATLAB	  Level	  2	  S-‐Function	  #S_FUNCTION_NAME#_matlab	  
function	  	  #S_FUNCTION_NAME#_matlab(	  block	  )	  
	  	  	  	  setup(block);	  
end	  
	  	  
function	  setup(block)	  
	  	  
%	  Register	  number	  of	  input	  and	  output	  ports	  
#S_FUNCTION_INPUT_PORTS#	  
#S_FUNCTION_OUTPUT_PORTS#	  
	  	  %block.SetPreCompInpPortInfoToDynamic;	  
	  	  %block.SetPreCompOutPortInfoToDynamic;	  
	  	  	  	  
	  	  %	  Set	  block	  sample	  time	  to	  variable	  sample	  time	  
	  	  block.SampleTimes	  =	  [0	  0];	  
	  	  	  
	  	  %	  Set	  the	  block	  simStateCompliance	  to	  default	  (i.e.,	  same	  as	  a	  built-‐in	  block)	  
	  	  block.SimStateCompliance	  =	  'DefaultSimState';	  
	  	  
	  	  %	  Register	  methods	  
	  	  block.RegBlockMethod('PostPropagationSetup',	  	  	  	  @DoPostPropSetup);	  
	  	  block.RegBlockMethod('InitializeConditions',	  	  	  	  @InitConditions);	  	  
	  	  block.RegBlockMethod('Outputs',	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  @Output);	  	  	  
	  	  block.RegBlockMethod('Update',	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  @Update);	  	  
	  	  
end	  
	  	  
function	  DoPostPropSetup(block)	  
#S_FUNCTION_DWORK_VECTORS_SETUP#	  
end	  
	  	  
function	  InitConditions(block)	  
#S_FUNCTION_INIT_DATA#	  
end	  
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E.g., JAUS Component
//#define	  DEBUG_QUERY_ONLY_NO_SERVICE_CONNECTION	  1	  

OjCmpt	  #COMPONENT_NAME#::create(std::string	  prettyName)	  {	  
	   OjCmpt	  result;	  
	   #COMPONENT_NAME#Data	  *data	  =	  NULL;	  
	   JausAddress	  vcAddr;	  
	   //	  it	  is	  unbelieveable	  that	  I	  have	  to	  do	  this...what	  a	  HACK	  
	   char	  szName[256];	  
	   strcpy(szName,	  prettyName.c_str());	  
	   //	  now,	  we	  create	  it	  using	  the	  global	  (groan)	  methods	  
	   result	  =	  ojCmptCreate(szName,	  #COMPONENT_ID#,	  THREAD_DESIRED_RATE_HZ);	  
	   	  
	   if(result	  ==	  NULL)	  {	  
	   	   //	  something	  bad	  happened...	  
	   	   std::cout	  <<	  "Error	  starting	  #COMPONENT_NAME#...aborting."	  <<	  std::endl;	  
	   	   return	  result;	  
	   }	  else	  {	  
	   	   //	  ...	  omitted	  for	  brevity	  
	   	   data	  =	  (#COMPONENT_NAME#Data*)malloc(sizeof(#COMPONENT_NAME#Data));	  

//	  begin	  generated	  code	  
#DATA_INIT#	  
//	  end	  generated	  code	  

//	  begin	  generated	  code	  
#SUPPORTED_CONNECTIONS#	  
//	  end	  generated	  code	  	  

//	  begin	  generated	  code	  
#MESSAGE_CALLBACKS#	  
//	  end	  generated	  code	  

//	  begin	  generated	  code	  
#ESTABLISH_SC#	  
//	  end	  generated	  code	  
	   	   	  
	   	   jausAddressDestroy(vcAddr);	  
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Interpreter looks like...

	   void	  MessagingModelInterpreter::interpretCPP(std::string	  projectDirectory,	  JausMessageML_BON::Component	  component)	  {	  
	   	   //	  create	  the	  skeleton	  files	  for	  each	  necessary	  component	  file	  
	   	   Console::Out::WriteLine("InterpretComponent	  CPP	  Begin");	  
	   	   Skeleton	  hfile	  =	  Skeleton::Skeleton();	  
	   	   Skeleton	  cppfile	  =	  Skeleton::Skeleton();	  
	   	   Skeleton	  mainfile	  =	  Skeleton::Skeleton();	  
	   	   hfile.load(DEFAULT_COMPONENT_H);	  
	   	   cppfile.load(DEFAULT_COMPONENT_CPP);	  
	   	   mainfile.load(DEFAULT_COMPONENT_MAIN);	  

           // .... 
      

	   	   Console::Out::WriteLine("Supported	  Service	  Connections");	  
	   	   string	  supportedSC	  =	  generateAddSupportedSCs(models);	  
	   	   cppfile.replace(SUPPORTED_CONNECTIONS,	  supportedSC);	  

	   	   Console::Out::WriteLine("Message	  Callbacks");	  
	   	   string	  callbacks	  =	  generateMessageCallbacks(models);	  
	   	   cppfile.replace(MESSAGE_CALLBACKS,	  callbacks);	  

	   	   Console::Out::WriteLine("Component	  Message	  Includes");	  
	   	   //	  generate	  the	  message	  includes	  code	  
	   	   string	  messageIncludes	  =	  generateMessageIncludes(models);	  
	   	   hfile.replace(MESSAGE_INCLUDES,	  messageIncludes);	  

	   	   Console::Out::WriteLine("Command	  Functions");	  
	   	   set<Command>	  commands	  =	  component-‐>getCommand();	  
	   	   string	  commandFunctions	  =	  generateCommandFunctions(commands,	  component);	  
	   	   cppfile.replace(COMMAND_FUNCTIONS,	  commandFunctions);	  

	   	   Console::Out::WriteLine("Command	  Prototypes");	  
	   	   string	  commandPrototypes	  =	  generateCommandPrototypes(commands);	  
	   	   hfile.replace(COMMAND_PROTOTYPES,	  commandPrototypes);	  

           // .... 



30

Example: Generating Message Includes
	   std::string	  MessagingModelInterpreter::generateMessageIncludes(std::set<Model>	  models)	  {	  
	   	   Console::Out::WriteLine("GenerateMessageIncludes	  Begin.");	  
	   	   std::string	  code	  =	  std::string();	  

	   	   //	  generate	  code	  for	  each	  model	  
	   	   for	  (std::set<Model>::iterator	  ii	  =	  models.begin();	  ii	  !=	  models.end();	  ii++)	  {	  
	   	   	   Model	  model	  =	  (Model)*ii;	  
	   	   	   std::string	  out	  =	  string("GenerateMessageIncludes:	  ");	  
	   	   	   out	  +=	  model-‐>getName();	  
	   	   	   Console::Out::WriteLine(out.c_str());	  
	   	   	   if	  (hasRole(model,	  "Port"))	  {	  
	   	   	   	   Port	  port	  =	  (Port)model;	  
	   	   	   	   std::set<JausMessage>	  messages	  =	  port-‐>getJausMessage();	  
	   	   	   	   for	  (std::set<JausMessage>::iterator	  jj	  =	  messages.begin();	  jj	  !=	  messages.end();	  jj++)	  {	  
	   	   	   	   	   JausMessage	  message	  =	  (JausMessage)*jj;	  
	   	   	   	   	   Attribute	  attr	  =	  message-‐>getAttribute(MESSAGE_TEMPLATE_FOLDER_NAME);	  
	   	   	   	   	   code	  +=	  "#include	  \"../";	  
	   	   	   	   	   code	  +=	  attr-‐>getStringValue(true);	  
	   	   	   	   	   code	  +=	  "/";	  
	   	   	   	   	   code	  +=	  MessageInterpreter::generateFunctionName(message-‐>getName());	  
	   	   	   	   	   code	  +=	  ".h\"\n";	  
	   	   	   	   }	  
	   	   	   }	  
	   	   }	  

	   	   Console::Out::WriteLine("GenerateMessageIncludes	  End.");	  
	   	   return	  code;	  
	   }
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With models, we extend the user base
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So far, 18 undergraduate REU participants have been able 
to use the testbed as part of a 10-week NSF Program

Visit	  http://catvehicle.arizona.edu/	  to	  learn	  more.



34

Testbed for Research!
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Example model of component interconnection
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Gather data about driving behaviors when turning
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Fig. 2: The operating range for the vehicle controller in this
research is the range in which the vehicle velocity (v) versus
the steering angle (�) for the vehicle is nearly linear as shown
in the top graph for all three data sets.

vehicle should not change at all. Data analysis shows that
this velocity occurs once the comfort line has fallen to about
4% of the maximum turning rate for all data sets. As such,
the valid operating regions should fall between about 2 m/s

and the point at which the comfort line reaches 4% of it’s
maximum value.

B. System Definition
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Tweaking these gains changes how quickly the vehicle reacts
to changes in steering angle as determined by the Hoffman
Controller.
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IV. IMPLEMENTATION
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To simplify the problem further: (8) and (9) show that
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for this controller down to two. K
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.
To do the linearization consider three points in the field
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n

, �

d

).
Figure 3 shows these three points and describes them and
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) for the tangent lines for
the actual and desired points. From this we can define the
equations for the velocities as shown in (2) and (3). Where
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Tweaking these gains changes how quickly the vehicle reacts
to changes in steering angle as determined by the Hoffman
Controller.
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determined. For simplicity’s sake, this paper will split the
comfort line into operating regions for �
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that
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To simplify the problem further: (8) and (9) show that
this paper is reducing the effective number of gain values
for this controller down to two. K
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is the gain value used
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maximum value.
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vehicle should not change at all. Data analysis shows that
this velocity occurs once the comfort line has fallen to about
4% of the maximum turning rate for all data sets. As such,
the valid operating regions should fall between about 2 m/s

and the point at which the comfort line reaches 4% of it’s
maximum value.
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current steering angle is �
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and the current velocity is v
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The input to the state-space system for this will be assumed
to be the new desired steering angle as defined by the output
of the Hoffman Controller or �
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.
To do the linearization consider three points in the field

of steering angle versus velocity: the desired point (v
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, �

d

),
the actual point (v
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), and the current point (v
n
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Figure 3 shows these three points and describes them and
the y-intercepts (�

amax

and �

dmax

) for the tangent lines for
the actual and desired points. From this we can define the
equations for the velocities as shown in (2) and (3). Where
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the actual and desired points respectively.
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Tweaking these gains changes how quickly the vehicle reacts
to changes in steering angle as determined by the Hoffman
Controller.
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case of any given operating region, those regions must be
determined. For simplicity’s sake, this paper will split the
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that
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vehicle should not change at all. Data analysis shows that
this velocity occurs once the comfort line has fallen to about
4% of the maximum turning rate for all data sets. As such,
the valid operating regions should fall between about 2 m/s

and the point at which the comfort line reaches 4% of it’s
maximum value.

B. System Definition

A canonical state feedback formalism was used to define
the system for this research, with x = [�
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]T , where the
current steering angle is �
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and the current velocity is v

a

.
The input to the state-space system for this will be assumed
to be the new desired steering angle as defined by the output
of the Hoffman Controller or �

d

.
To do the linearization consider three points in the field

of steering angle versus velocity: the desired point (v
d
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),
the actual point (v

a
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), and the current point (v
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).
Figure 3 shows these three points and describes them and
the y-intercepts (�
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and �

dmax

) for the tangent lines for
the actual and desired points. From this we can define the
equations for the velocities as shown in (2) and (3). Where
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Tweaking these gains changes how quickly the vehicle reacts
to changes in steering angle as determined by the Hoffman
Controller.
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determined. For simplicity’s sake, this paper will split the
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research is the range in which the vehicle velocity (v) versus
the steering angle (�) for the vehicle is nearly linear as shown
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vehicle should not change at all. Data analysis shows that
this velocity occurs once the comfort line has fallen to about
4% of the maximum turning rate for all data sets. As such,
the valid operating regions should fall between about 2 m/s

and the point at which the comfort line reaches 4% of it’s
maximum value.

B. System Definition

A canonical state feedback formalism was used to define
the system for this research, with x = [�
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]T , where the
current steering angle is �
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and the current velocity is v
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.
The input to the state-space system for this will be assumed
to be the new desired steering angle as defined by the output
of the Hoffman Controller or �
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.
To do the linearization consider three points in the field

of steering angle versus velocity: the desired point (v
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),
the actual point (v
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), and the current point (v
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).
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) for the tangent lines for
the actual and desired points. From this we can define the
equations for the velocities as shown in (2) and (3). Where
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After determining the state space equations for the general
case of any given operating region, those regions must be
determined. For simplicity’s sake, this paper will split the
comfort line into operating regions for �
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, and v
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that
are all one unit long (1 m/s for velocity and 1% for steering
angles).

To simplify the problem further: (8) and (9) show that
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for this controller down to two. K
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Take the fit data and utilize linearization techniques
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Scatter plot with comfort controller
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Simulation
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Problems: MPC return time

• A complex model may 
introduce predictive accuracy,  

• however, this increases the 
computational burden. 

• Especially under high speed, 
the system cannot tolerate a 
slow return rate.

The car is executing the previous control sequence 
while waiting for the new control sequence

obstacle
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Problems: control accuracy

• The return time problem can 
be addressed via model 
reduction,  

• potential drawback is 
higher model mismatch.  

• Model mismatch can also 
introduce problems.   

• Wrong prediction 
• Infeasible trajectories

Based on the predictive model, the car 
should be able to avoid the obstacle.
But the car actually steps into the obstacle
due to the model mismatch.

obstacle
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Problem Modeling

•  

uk,k⇤

uk,k+1⇤
uk,k+2⇤

k⇠

uk,k⇤ k+1⇠

 k,k+1⇤⇠

 k,k+2⇤⇠

k⇠ '

t�State Measured at time k
MPC returns solution at k+ t�

T�
Control input holds for       secondsT�
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Problem Statement

• Our target is to ensure 
bounded MPC return time while 
maintaining the control 
accuracy via the design of 
hybrid MPC. The problem is to 
find such hybrid logic. 

• Uncontrollable Divergence Def:

CarSim plant

KMPC

DMPC

s

supervisor 
logic

q=0

q=1
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Hybrid MPC Design

• Two models are selected as the 
predictive model: (i) kinematic 
model, and (ii) dynamic model. 
Thus, two MPCs are generated: 
KMPC and DMPC. They are 
used in the hybrid MPC. 

• Take car as the specific 
example, we have the hybrid 
logic. Implementation of such 
logic needs estimation of 
model mismatch and return 
time of both MPCs. 

•   
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Model Mismatch & Return Time

•  

X

Y

Predictive 
Model

YModel

XModel

Plant

YVehicle

XVehicle

Model 
Mismatch
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Hybrid MPC Design

• By plotting out UDs of both 
MPCs, we know the explicit 
switching boundary.
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Simulation Result

•  
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Simulation Result

•  
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Simulation Result

•  
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Back to safety…of interface code



Timescales for  
Humans-In-The-Loop
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Time delay human control 

System Human
x(t� ⌧)

�
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Conventional control system
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Model Predictive Control (MPC)
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Market forces vs. behavior change

55

Timescale	  of	  feedback/coupling

Energy	  Bills

Gas	  Prices

Shipping

Surgery

Water	  
Temperature

Electricity	  prices

Lifestyle	  change

Agriculture/
watering

Commute

River	  flow
Traffic	  
flow

Giving	  Birth

OTC	  Pain	  
relievers

Car	  Navigation

Router

Computer	  
Clock

Chip	  
Thermal	  
Mgmt

HVAC	  set	  
point	  
Mgmt

Java	  GC

Stability	  controller

malloc
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Idea: Correlate Cost and Comfort in HITL Timescale
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Close the cost/comfort loop by  
dynamically changing set points
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It is possible, but all starts with the need for data
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Example results

Cooling in July, 2012

7 day horizon 
Cost constraint: $50 ($78 before) 
Total change constraint: 28 (4 times per day) 
Average temperature sacrifice: 1.3  ̊F 



Surprise, I am exceeding my 
time horizon
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• The opportunity for testbeds is in 
their ability to grow the user base 
from adjacent disciplines or new 
users 

• The data must be realistic; else 
runs the risk of perpetuating 
invalid assumptions 

• The timescale of interaction may 
require supervisory controllers or 
data gatherers to capture/enforce 
dynamics for safety and security

Conclusions
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