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Outline

*¢* Motivation for fast control

** Transient stabilization using flywheel energy storage systems
= Competitive control; cancel effect of wind disturbance
= Demo on the Smart Grid in a Room Simulator (SGRS)
= |nteraction of flywheel control with transactive energy market

*»* Transient stabilization using FACTS devices
= Cooperative control logic based on ectropy
= |mplications for SGRS numerical integration
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Motivation for Fast Control

¢ Transactive energy control is a steady-state scheduling
concept
= Does not guarantee dynamic stability

** Interest in implementing more renewable energy sources
into future power grids

*** Renewables introduce more uncertainty, intermittency and
unpredictability => a challenge for control design
¢ Large sudden deviations in wind power can cause
= high deviations in frequency and voltage
= transient instabilities
¢ Possible solution: fast energy storage

= flywheel energy storage systems
= FACTS devices
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Objective

** Use flywheels for transient stabilization of power grids in
response to large sudden wind disturbances

*»* Design nonlinear power electronic control so that the
flywheel absorbs the disturbance and the rest of the system
is minimally affected
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Variable Speed Drives for Flywheels
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¢ Use AC/DC/AC converter to regulate the speed of the flywheel (and hence the
energy stored) to a different frequency than the grid frequency

** Controllable inputs are the switch positions in the power electronics

Source: K. D. Bachovchin, M. D. llic, "Transient Stabilization of Power Grids Using
Passivity-Based Control with Flywheel Energy Storage Systems," IEEE Power & Energy 5
e Society General Meeting, Denver, USA, July 2015.. Carnegie Mellon f@




Controller Implementation

s Time-scale separation to simplify the control design
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** Regulate both the flywheel speed and the currents into the power
electronics using nonlinear passivity-based control
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Source: K. D. Bachovchin, M. D. llic, "Transient Stabilization of Power Grids Using

Passivity-Based Control with Flywheel Energy Storage Systems," IEEE Power & Energy S 6
[[F Society General Meeting, Denver, USA, July 2015.. Carncgle Mellon (9




Transient Stabilization Using Flywheels

Wind Power
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*** Want to choose set points so that the wind disturbance power goes
to the flywheel and rest of the system is minimally affected
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Simulation Results: Flywheel

+* Since the power output of the wind generator decreases during the
disturbance, the flywheel set point decreases
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Simulation Results: Power Electronics

*** The set points for the power electronic currents are chosen so that
the total current out of Bus 2 remains constant during the

disturbance
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Simulation Results: Rest of System

** With the control, the effect on the rest of the system is very
minimal and lasts only a short time
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Linking Multi Time-Scale Simulations

*¢* Communication for multi time-scale simulation with ALM and
fast dynamics for generators

Generator Model :
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Source: M. R. Wagner, K. D. Bachovchin, M. D. lli¢, "Computer Architecture and Multi
Time-Scale Implementations for Smart Grid in a Room Simulator,” EESG Working 11
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Importance of Reactive Power

*» Typically the market only specifies the active power set point

*** However the reactive power is critically important to the
equilibria and stability of the system

Power Factor PF = 0.99 (Without Shunt Capacitor) Power Factor PF=0.2 (Without Shunt Capacitor)
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= Manifold of Active Power Balancing Eqn at Bus 2 {—Manifold of Active Power Balancing Eqn at Bus 2 {
—Manifold of Reactive Power Balancing Eqn at Bus 2
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Source: X. Miao, K. D. Bachovchin, M. D. lli¢, "Effect of Load Type and Unmodeled
Dynamics in Load on the Equilibria and Stability of Electric Power System," EESG : - 12
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Flores Island — Market

*»* Based on prices, market computes active power set points P*
from each component
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Flores Island — Dynamics

+* Since currently the market does not specify reactive power set
points Q*, data for Q* is randomly created

** Place a voltage source inverter and the variable speed drive on
the hydro and diesel generator buses

¢ Control the sum of the power out of the hydro and diesel
generators to match the active and reactive power set points
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Simulation Results — Combining Dynamics and ALM

Unstable Case:

Reactive Power Load Consumption
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Transient Stabilization of Interactions Using FACTS

Large scale

Implications for SGRS interconnected Transient stability problem
distributed integration J power system *  Nonlinear dynamics
- |
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. . . *  Multiple time scales
of differential equation . Large regions

" Frequency response
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Interactions are captured using

an energy-based model

*  Accumulated energy as a measure of
stability

Cooperative power

frequency [pu]

electronics (FACTS) control

*  Fast thyristor switching

1 5

*  Managing energy to ensure stability *  Flow control et
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Common Modeling Approach for FACTS Control

¢ Create a simplified power system model
= Control logic is case dependent
" Loaded as test case for transients simulator
¢ Create a structure preserving system model by combining dynamic
models of individual components
" Coupling achieved through states on ports of components y;, p;

=  Competitive control design Module description
Information x; = fi(x;, yi,u4,d;)
exchange
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Proposed Modeling Approach

*** Represent components of power systems using a two-level model which
separates their internal dynamics from the dynamics of their interactions

= Internal dynamics are described using internal dynamic states x
= Interaction dynamics are described using interaction variables z

Two-level module description
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M. Cvetkovic, M. llic, “A Two-level Approach to Tuning FACTS for Transient Stabilization”, Interaction variable z is the

IEEE PES General Meeting, July 2014,

CarnegieMellon ) accumulated energy inside a module.




Proposed Cooperative Controller

Accumulated (stored) energy

! *» Redistribute energy of disturbance
in an uncontrolled system
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M. Cvetkovic, M. llic, “Ectropy-based Nonlinear Control of FACTS for Transient Stabilization”,
IEEE Transactions on Power Systems, Vol. 29, No. 6, November 2014, pp. 3012-3020.
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SGRS Hierarchical Distributed Simulation of Dynamics

+» Aggregation od dynamics using interaction variables separates the rate
of exchange of information and the rate of internal state computations

Interactions coming from other modules at time n

Interaction variable update at a slower rate n Zoom-out level
I

Interaction at n+1 States at k+
Y Zoom-in level
Internal states update at a faster rate k

Interactions going toward>other modules at time n+1

Carncgicz\"lcllon {O’ M. Cvetkovic, M. llic, “Dynamic Simulation of Power System Transients in Energy State Space”, in preparation.




Response of Uncontrolled System
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M. Cvetkovic, M. llic, “Cooperative Line-flow Power Electronics Control for Transient Stabilization”, IEEE Conference on Decision and Control, December 2014.



104

1031

1021

energy[pu]

power[pu]

1011

=
[}
T

o
W0
.

©o
=)
T

o
—

-6

Controlled System Response

Interaction variable of generator
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