

Simulation of Power System Dynamics and Transient Stabilization Using Flywheel Energy Storage Systems

Kevin Bachovchin

kbachovc@andrew.cmu.edu

10th CMU Electricity Conference Pre-conference Workshop March 30, 2015 Joint work with Prof. Marija Ilic milic@ece.cmu.edu

Outline

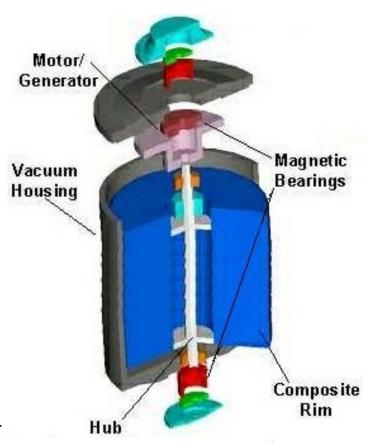
- Introduce and motivate flywheels
- Methods for modeling power system dynamics and designing control using flywheels
 - Model nonlinear power system dynamics using the Lagrangian formulation
 - Variable speed drive controller for flywheels using time-scale separation and nonlinear passivity-based control logic
 - Transient stabilization of interconnected power systems using flywheels
- Smart Grid in a Room Simulator (SGRS)
 - Implementation of simulating power system dynamics in a distributed manner
 - Show demo of flywheel controller

Motivation for Flywheels

- Transactive energy control does not guarantee dynamic stability
 - Instabilities can happen on a fast time-scale
- Interest in implementing more wind power (and other renewable energy sources) into future power grids
- Wind power is difficult to predict and control
- Large sudden deviations in wind power can cause
 - high deviations in frequency and voltage
 - transient instabilities
- One possible solution is to add fast energy storage, such as flywheel energy storage systems

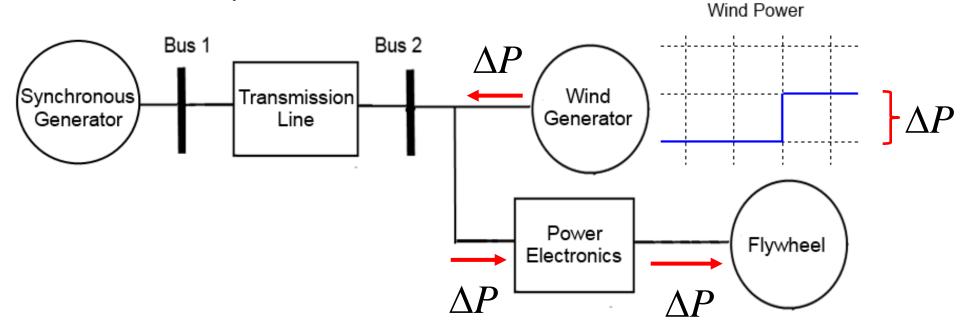
Flywheel Energy Storage System

- Stores mechanical energy by accelerating a rotor to a very high speed
- Not appropriate for large scale applications
 - Low energy capacity
- Many advantages for small-scale transient applications
 - Very efficient
 - Small time constants
 - Not limited to a certain number of chargedischarge cycles



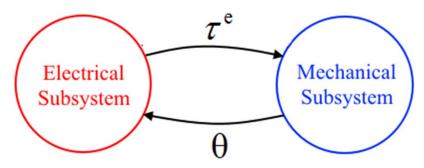
Objective

- Use flywheels for transient stabilization of power grids in response to large sudden wind disturbances
- Design nonlinear power electronic control so that the flywheel absorbs the disturbance and the rest of the system is minimally affected



Modeling of Power System Dynamics

- To design and test control for flywheels, it is necessary to first derive the dynamic model for the interconnected power system
- Large interconnected power systems contain many coupled electrical and mechanical components
- Conventional modeling of dynamics:
 - Electrical systems: Kirchhoff's voltage and current law equations
 - Mechanical systems: Conservation of force
 - Difficulty is determining the effect of subsystems on each other for mixed energy systems



Carnegie Mellon ()

Lagrangian Formulation

- Therefore, for mixed energy systems, often advantageous to derive the dynamics using the Lagrangian formulation from classical mechanics
 - Reformulation of Newtonian mechanics
 - ❖ Newtonian mechanics: model in terms of forces
 - Lagrangian mechanics: model in terms of kinetic energy and potential energy of the system
 - Can be applied to other types of systems, such as electric systems, as well as to mixed energy systems

Motivation for the Lagrangian Formulation

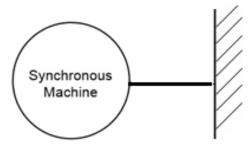
Unified framework for the analyzing systems with multiple types of energy

	Displacement Q _{gen}	Flow F _{gen}	Lagrangian £	Rayleigh dissipation R	Forcing Function
Mechanical (Rotational)	θ	ω	KE'-PE	$\mathcal{R}_{\rm mech} = \sum \frac{1}{2} B \omega^2$	F
Electrical	q	i	$W_m'-W_e$	$\mathcal{R}_{elec} = \sum \frac{1}{2} Ri^2$	V
Electro- mechanical	θ , q	ω, i	$\mathcal{L} = \mathcal{L}_{elec} + \mathcal{L}_{mech}$	$\mathcal{R} = \mathcal{R}_{elec} + \mathcal{R}_{mech}$	F,V

Passivity-based control

- Choose closed-loop energy functions
- Need to derive error dynamics from those closed-loop energy functions in order to derive the control law

Example Using Lagrangian Formulation



Electrical Subsystem:

Mechanical Subsystem:

$$\mathcal{L}_{elec} = \frac{1}{2} L_{R} i_{R}^{2} + \frac{1}{2} L_{S} i_{Sa}^{2} + \frac{1}{2} L_{S} i_{Sb}^{2} + \frac{1}{2} L_{S} i_{Sc}^{2} - L_{SS} i_{Sa} i_{Sc} - L_{SS} i_{Sa} i_{Sc} - L_{SS} i_{Sb} i_{Sc}$$

$$+ M \cos \theta i_{Sa} i_{R} + M \cos (\theta - 2\pi / 3) i_{Sb} i_{R} + M \cos (\theta + 2\pi / 3) i_{Sc} i_{R}$$

$$\mathcal{L}_{mech} = \frac{1}{2} J \omega^{2}$$

$$\mathcal{R}_{elec} = \frac{1}{2} R_R i_R^2 + \frac{1}{2} R_S i_{Sa}^2 + \frac{1}{2} R_S i_{Sb}^2 + \frac{1}{2} R_S i_{Sc}^2$$

$$\mathcal{R}_{mech} = \frac{1}{2} B \omega^2$$

$$\mathcal{F}_{elec} = \begin{bmatrix} v_R & v_{Sa} & v_{Sb} & v_{Sc} \end{bmatrix} \qquad \qquad \mathcal{F}_{mech} = \begin{bmatrix} \tau^m \end{bmatrix}$$

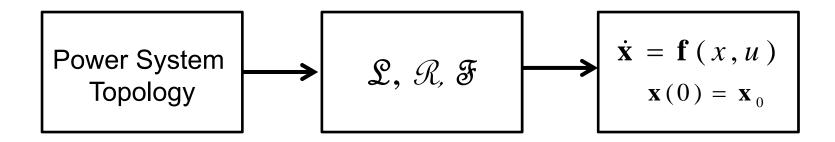
Compute dynamic equations using the Lagrangian equations:

$$\frac{d}{dt} \left[\frac{\partial \mathfrak{L}}{\partial \mathbf{F}_{gen}(k)} \right] - \frac{\partial \mathfrak{L}}{\partial \mathbf{Q}_{gen}(k)} + \frac{\partial \mathcal{R}}{\partial \mathbf{F}_{gen}(k)} - \mathfrak{F}(k) = 0$$

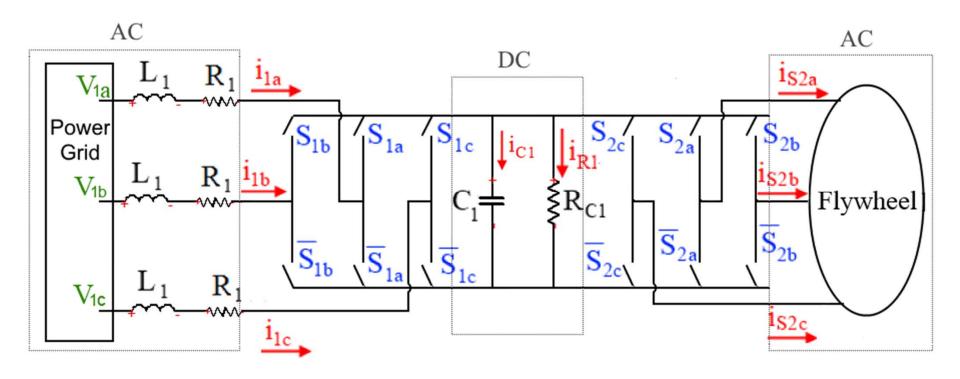
Source: R. Ortega, A. Loria, P. Nicklasson, H. Sira-Ramirez, *Passivity-based Control of Euler-Lagrange Systems: Mechanical, Electrical and Electromechanical Applications*, Springer Verlag, New York 1998

Automated Modeling of Power System Dynamics

- Implemented an automated procedure for symbolically deriving the dynamic equations using the Lagrangian formulation
 - User specifies the power system topology
 - Code symbolically solves for the energies of the system
 - Code computes dynamic equations by evaluating the Lagrangian equations and re-expresses in standard state space form



Variable Speed Drives for Flywheels



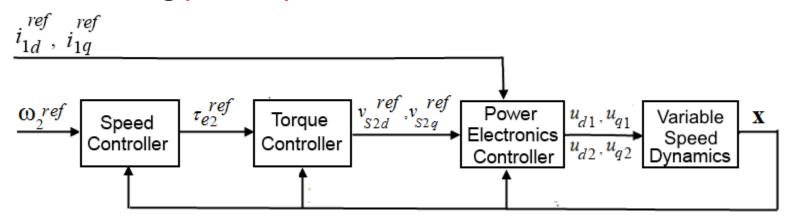
- Use AC/DC/AC converter to regulate the speed of the flywheel (and hence the energy stored) to a different frequency than the grid frequency
- Controllable inputs are the duty ratios of the switch positions in the power electronics

Controller Implementation

Time-scale separation to simplify the control design



Regulate both the flywheel speed and the currents into the power electronics using passivity-based control



Source: K. D. Bachovchin, M. D. Ilic, "Transient Stabilization of Power Grids Using Passivity-Based Control with Flywheel Energy Storage Systems," *IEEE Power & Energy Society General Meeting*, Denver, USA, July 2015..

Nonlinear Passivity-Based Control

- Nonlinear control method
- Exploits the intrinsic energy properties of the system dynamics
- Robust due to the avoidance of exact cancellation of nonlinearities
- Relies on Lyapunov stability argument
 - For a dynamic system $\dot{\mathbf{x}} = \mathbf{f}(x)$, if there exists a Lyapunov function V(x) such that
 - V(x) is positive definite

$$V(0) = 0$$
 and $V(x) > 0 \ \forall x \neq 0$

- $\dot{V}(x)$ is negative definite
 - $\dot{V}(0) = 0 \text{ and } \dot{V}(x) < 0 \ \forall \ x \neq 0$

then $\mathbf{x} = 0$ is an asymptotically stable equilibrium

Automated Passivity-Based Control Law Derivation

 $\dot{\mathbf{x}} = \mathbf{f}(x, u)$ State space model:

Closed-loop $\tilde{W}_{m}'(\tilde{\mathbf{x}}), \tilde{W}_{e}(\tilde{\mathbf{x}})$ energy functions:

where $\tilde{\mathbf{x}} = \mathbf{x} - \mathbf{x}^D$

Closed-loop

 $\tilde{\mathscr{R}}(\tilde{\mathbf{x}})$ <u>dissipation function</u>:

 $\mathbf{f}_r(x^D) = \mathbf{r}^*$ Set point equations:

> can derive control law in an automated manner

Lyapunov function:

$$V\left(\tilde{\mathbf{x}}\right) = \tilde{W_m}'\left(\tilde{\mathbf{x}}\right) + \tilde{W_e}\left(\tilde{\mathbf{x}}\right)$$

$$\frac{dV\left(\tilde{\mathbf{x}}\right)}{dt} = \frac{dV\left(\tilde{\mathbf{x}}\right)}{d\tilde{\mathbf{x}}} \frac{d\tilde{\mathbf{x}}}{dt}$$

 $\begin{cases} V(\tilde{\mathbf{x}}) \text{ is positive definite} \\ \frac{dV(\tilde{\mathbf{x}})}{dt} \text{ is negative definite} \end{cases}$

 $\tilde{\mathbf{x}} \to 0, \ \mathbf{x} \to \mathbf{x}^D$ Then

Passivity-Based

Control Law: $\dot{\mathbf{x}}^{Dn} = \mathbf{g}_2(x, x^{Dn}, r^*) \quad \boldsymbol{\checkmark}$

 $\mathbf{u} = \mathbf{g}_1(x, x^{Dn}, r^*)$

Non-directly controlled desired state variable dynamics must be stable for control to be physically realizable.

Source: K. D. Bachovchin, M. D. Ilić, "Automated Passivity-Based Control Law Derivation for Electrical Euler-Lagrange Systems and Demonstration on Three-Phase AC/DC/AC Converter," EESG Working Paper No. R-WP-5-2014, August 2014.

Power Electronics Passivity-Based Control

Dynamic Model:

(Power electronic time-scale)

$$\dot{\mathbf{x}}_{pe} = \mathbf{f}_{pe} \left(x_{pe}, u_{pe} \right)$$

$$\mathbf{x}_{pe} = \begin{bmatrix} i_{1d} & i_{1q} & q_{C1} \end{bmatrix}^T$$

$$\mathbf{u}_{pe} = \begin{bmatrix} u_{1d} & u_{1q} \end{bmatrix}^T$$

Closed-loop energy functions:

$$\tilde{W}_{m}' = \frac{1}{2} L_{1} \left(\tilde{i}_{1d}^{2} + \tilde{i}_{1q}^{2} \right)$$

$$\tilde{W_e} = \frac{1}{2} \frac{\tilde{q}_{C1}^2}{C}$$

Closed-loop dissipation function:

$$\tilde{\mathcal{R}} = \frac{1}{2} R_1 \left(\tilde{i}_{1d}^2 + \tilde{i}_{1q}^2 \right) + \frac{1}{2} R_{C1} \tilde{i}_{R1}^2$$

Set Point Equations:

$$i_{1d}^{\ \ D} = i_{1d}^{\ \ *}$$

$$i_{1q}^{\quad D}=i_{1q}^{\quad *}$$

Lyapunov function:

$$V = \tilde{W}_{m}' + \tilde{W}_{e} = \frac{1}{2} L_{1} \left(\tilde{i}_{1d}^{2} + \tilde{i}_{1q}^{2} \right) + \frac{1}{2} \frac{\tilde{q}_{C1}^{2}}{C_{1}}$$

$$\dot{V} = \frac{dV}{d\tilde{\mathbf{x}}} \frac{d\tilde{\mathbf{x}}}{dt} = -R_1 \left(\tilde{i}_{1d}^2 + \tilde{i}_{1q}^2 \right) - \frac{\tilde{q}_{C1}^2}{C_1^2 R_{C1}}$$

Positive definite function

Negative definite function

Source: K. D. Bachovchin, M. D. Ilić, "Automated Passivity-Based Control Law Derivation for Electrical Euler-Lagrange Systems and Demonstration on Three-Phase AC/DC/AC Converter," EESG Working Paper No. R-WP-5-2014, August 2014.

Passivity-Based Control for Power Electronics Controller

Automated Control Law:

$$u_{1d} = \frac{2\left(C_{1}V_{1d} - C_{1}R_{1}i_{1d}^{ref} + C_{1}L_{1}i_{1q}^{ref}\omega_{1}\right)}{q_{C1}^{D}}$$

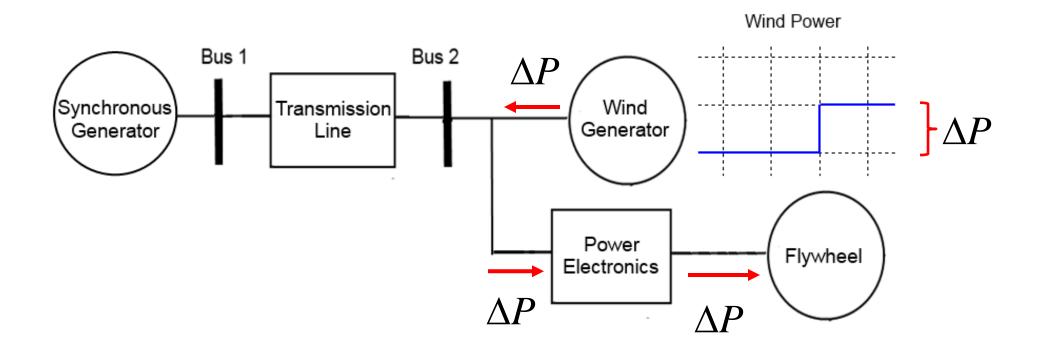
$$u_{1q} = \frac{2\left(C_{1}V_{1q} - C_{1}R_{1}i_{1q}^{ref} - C_{1}L_{1}i_{1d}^{ref}\omega_{1}\right)}{q_{C1}^{D}}$$

$$\frac{dq_{C1}^{D}}{dt} = \frac{C_1 \left(V_{1d} i_{1d}^{ref} + V_{1q} i_{1q}^{ref} - R_1 \left(i_{1d}^{ref} \right)^2 - R_1 \left(i_{1q}^{ref} \right)^2 - v_{S2d}^{ref} i_{2d} - v_{S2q}^{ref} i_{2q} \right)}{q_C^{D}} - \frac{q_C^{D}}{CR_C}$$

 \diamond A stable equilibrium for q_{C1}^{D} only exists when

$$\underbrace{V_{1d}i_{1d}^{ref} + V_{1q}i_{1q}^{ref} - R_1\left(i_{1d}^{ref}\right)^2 - R_1\left(i_{1q}^{ref}\right)^2}_{\text{power input to power electronics}} \ge \underbrace{v_{S2d}^{ref}i_{2d} + v_{S2q}^{ref}i_{2q}}_{\text{power output of power electronics}}$$

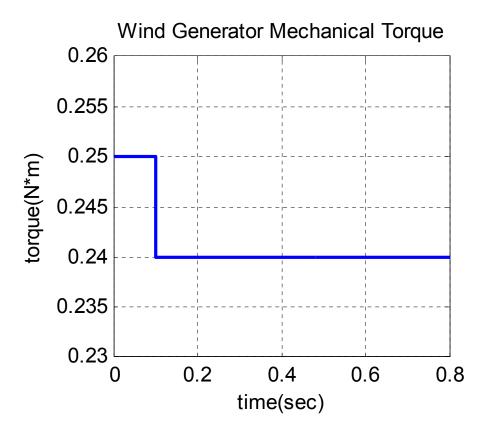
Transient Stabilization Using Flywheels

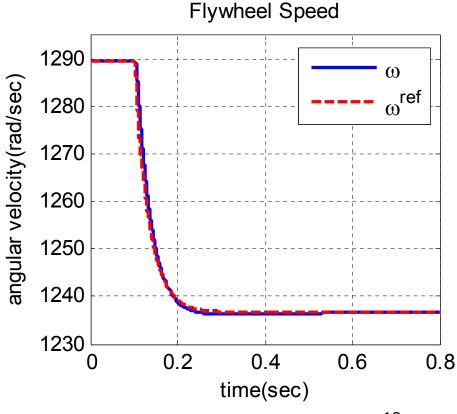


Want to choose set points so that the wind disturbance power goes to the flywheel and rest of the system is minimally affected

Simulation Results: Flywheel

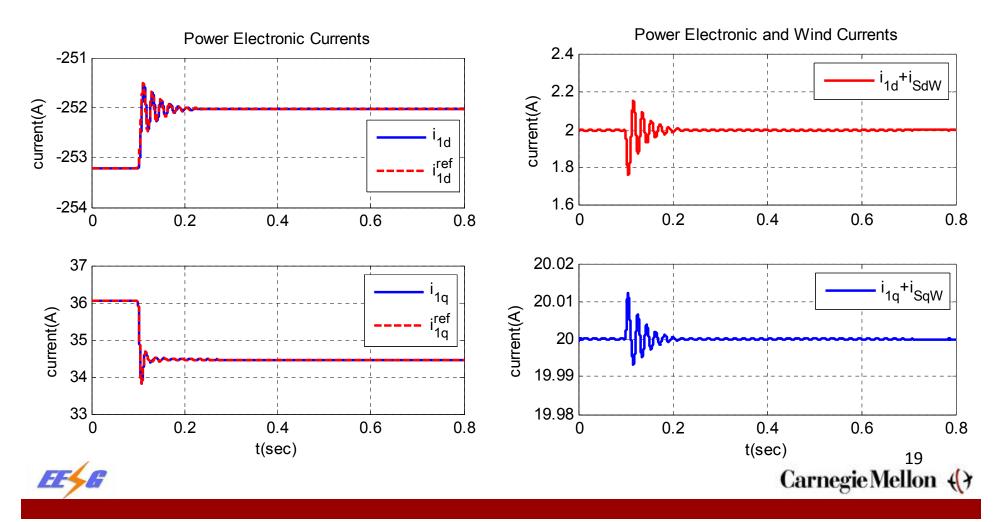
Since the power output of the wind generator decreases during the disturbance, the flywheel set point decreases





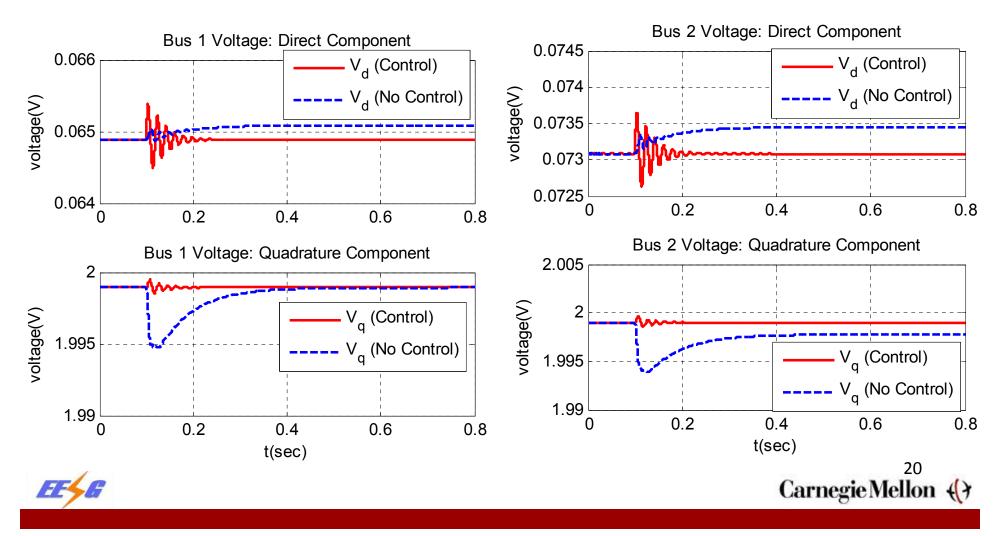
Simulation Results: Power Electronics

The set points for the power electronic currents are chosen so that the total current out of Bus 2 remains constant during the disturbance



Simulation Results: Rest of System

With the control, the effect on the rest of the system is very minimal and lasts only a short time



SGRS: Modular Modeling of Open-Loop Dynamics

- For the Smart Grid in a Room Simulator, a modular objectoriented approach is used for modeling power system dynamics
 - lends itself to distributed computing
 - scalable for large systems
- Open-loop dynamics of each object depend on
 - State variables \mathbf{x}_k
 - Controllable inputs \mathbf{u}_k
 - Exogenous inputs \mathbf{m}_k
 - Port inputs \mathbf{p}_k

$$\dot{\mathbf{x}}_{k} = \mathbf{f}_{k} \left(x_{k}, p_{k}, u_{k}, m_{k} \right)$$

One port module

$$\mathbf{x}_k$$
, \mathbf{u}_k , \mathbf{m}_k

Two port module

$$\mathbf{p}_{k1} \mathbf{x}_k$$
, \mathbf{u}_k , $\mathbf{m}_k \mathbf{p}_{k2}$

Source: K. D. Bachovchin, M. D. Ilić, "Automated and Distributed Modular Modeling of Large-Scale Power System Dynamics," EESG Working Paper No. R-WP-8-2014, October 2014

SGRS: Modular Modeling of Closed-Loop Dynamics

- Controllable inputs depend on
 - State variables \mathbf{x}_k
 - Outputs of connecting modules \mathbf{y}_{ck1}
 - Internal set points \mathbf{y}_k^{ref}

$$\mathbf{u}_{k} = \mathbf{g}_{k} \left(x_{k}, y_{ck1}, y_{k}^{ref} \right)$$

- Internal set points depend on
 - Outputs of connecting modules \mathbf{y}_{ck2}
 - Set points from market r^{ref}

$$\mathbf{y}_{k}^{ref} = \mathbf{h}_{k} \left(y_{ck2}, r^{ref} \right)$$

$$\mathbf{u}_{k} = \mathbf{G}_{k} \left(x_{k}, y_{ck}, r^{ref} \right)$$

$$\mathbf{y}_{ck} = \left[\mathbf{y}_{ck1} \ \mathbf{y}_{ck2} \right]^{T}$$

Variable Speed Drive Controller:

$$\mathbf{u}_{k} = \begin{bmatrix} u_{1d} & u_{1q} & u_{2d} & u_{2q} \end{bmatrix}^{T}$$

$$\mathbf{x}_{k} = \begin{bmatrix} i_{1d} & i_{1q} & q_{C1} & i_{S2d} & i_{S2q} & i_{R2} & \omega & \theta \end{bmatrix}^{T}$$

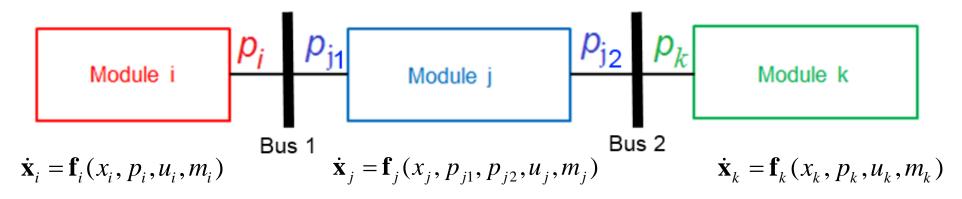
$$\mathbf{y}_{ck1} = \begin{bmatrix} v_{d} & v_{q} \end{bmatrix}^{T}$$

$$\mathbf{y}_{k}^{ref} = \begin{bmatrix} \omega_{2}^{ref} & i_{1d}^{ref} & i_{1q}^{ref} \end{bmatrix}^{T}$$

$$\mathbf{y}_{ck2} = \begin{bmatrix} i_{Wd} & i_{Wq} \end{bmatrix}^T$$
 $\mathbf{r}^{ref} = \begin{bmatrix} i_{Totd}^{ref} & i_{Totq}^{ref} \end{bmatrix}^T$
Explicit
$$\begin{bmatrix} i_{1d}^{ref} = i_{Totd}^{ref} - \sum i_{Wd} \\ i_{1q}^{ref} = i_{Totq}^{ref} - \sum i_{Wq} \end{bmatrix}$$

SGRS: Modeling of Interconnected Power System

Dynamics of the interconnected power system can be symbolically solved for in a distributed manner



Bus 1 solves for

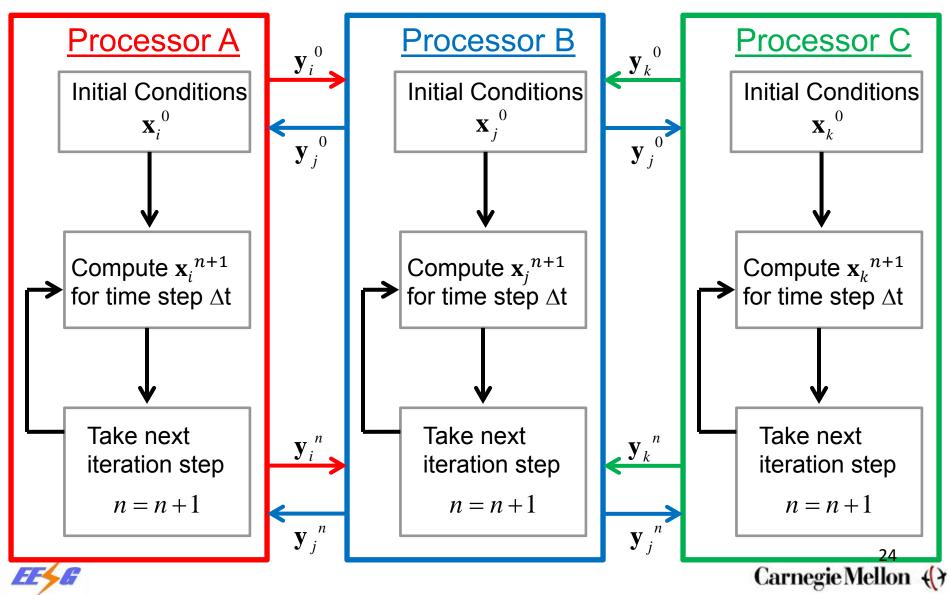
Bus 2 solves for

$$p_i = g_1(y_j), \ p_{j1} = g_2(y_i)$$
 $p_k = h_1(y_j), \ p_{j2} = h_2(y_k)$

Dynamics of each module depend only on its own state variables and the outputs of connecting modules

$$\dot{\mathbf{x}}_{k} = \mathbf{F}_{k}(x_{k}, y_{ck}, u_{k}, m_{k})$$

SGRS: Communication Structure for Distributed Simulation of Dynamics and Control



Conclusions

- Designed a novel variable speed drive for flywheels using three time-scale separations and passivity-based control logic
- Demonstrated the effectiveness of this controller in the SGRS for transiently stabilizing an interconnected power system against a wind generator disturbance

Future Work

- Larger power systems with multiple wind generator disturbances and multiple flywheels
- More general flywheel control logic for systems where the source of the disturbance is not known

