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Presentation Outline
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Goals:

- Coordination & Control of Microgrids and current research
needs.

- Multi-Agent System Transient Stability Platform for
Resilient Self-Healing Operation of Multiple Microgrids

Outline
Motivation

Approach for Multi-Agent system Coordination & Control
of Microgrids

Platform for Multi-Agent System Transient Stability
Case study

Conclusion
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Power Grids — Present and Future

\ Outline Motivation Coordination & Control of Microgrids Platform Case Study Conclusion
Present Power Grid [7A] Power Grid of the Future [8A]
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Power Grid of the Future integrates:

» Meshed-two-way flow in the distribution system
= Demand side management
= Renewable energy

~.Future Power Grid requires a total “rethink” to its operation!
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Power Grid Operation with Multiple Stakeholders

\ Outline Motivation Coordination & Control of Microgrids Platform Case Study Conclusion
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= Multiple stakeholders & multilateralism: multiple stakeholders should be able
to make independent, partially & fully coordinated decisions

- Independent power producers - Co-operating utilities
- Active demand side participants - Co-operating nations
- Independent microgrids

» |ncreasing penetration of self-controlled microgrids
» |ncreasing coordination between connected utilities in different countries

~.Multiple stakeholders require robust & distributed reconfigurable
control methods for reliable operation
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Blackouts Induced by Fault Propagation

\ Outline ] Motivation \ Coordination & Control of Microgrids \ Platform \ Case Study \ Conclusion \

= Sept 8, 2011 Southwest Blackout Event: Operator makes an error in a routine
reconfiguration of a capacitor bank. - Disrupts entire western US.

FNET Data Display [9/8/2011 Southwest Blackout]
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. Online reconfiguration can have dramatic effects!
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Broken Power Grid Conventional Wisdoms

\ Outline Motivation Coordination & Control of Microgrids Platform Case Study Conclusion

Wind Power Output Solar Power Output on a Cloudy Day
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Source: ERCOT 2009 Source: NERC 2009
-.Wind Power Output Can Vary Drastically & Suddenly
~.Solar Output on a Cloudy Day Can Vary Drastically

~.Variable Behavior of Renewable Energy Resources Stresses the Power
Grid
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MULTI-AGENT SYSTEMS

\ Outline Motivation Coordination & Control of Microgrids Platform Case Study Conclusion

A multi-agent system is a computerized system composed of multiple
interacting intelligent agents within an environment.

Multi-agent systems can be used to solve problems that are difficult or
impossible for an individual agent or a monolithic system to solve.

Economic
theories

Object-oriented
programming

= Autonomy/Semi-autonomy A

= Reactivity ,/.,m,i.,..m,
= Distributed, Coordinated Decision \. ™"
making
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MAS - Microgrids Control and Coordination

\ Outline ‘ Motivation‘ Coordination & Control of Microgrids Platform ‘ Case Study ‘ Conclusion ‘

* The Distribution network

Operator (DNO) refers to the
Manacement operational functions of the
system and the Market

s s s Operator (MO) to the Market
Mierogrid functions, in the Grid Level.

' « The MicroGrid Central
Controller (MGCC) is the main
responsible for the optimization
of the MicroGrid operation
coordinating the Local
Controllers (LC), in the

Management Level.

* The LC’s control the

Level Distributed Energy Resources
et (DER), production and storage

units, and some of the local

loads, in the Field Level.

Agent

[21]-[25]
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MAS - Microgrids Control and Coordination

\ Outline Motivation Coordination & Control of Microgrids Platform Case Study Conclusion

Current Drawbacks:

Los = Agents have only
“ @ partial
@\ /@.\T’Qg@/ S representation of
/ // I the environments.
- o = No account for the
dynamic grid
behavior.

= No account for
Primary, secondary
and tertiary control
[36] Miemgsid interaction.
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Multi-Layer Design Principles

| Outline | Motivation  Coordination & Control of Microgrids

| Plattorm CaseStudy Conclusion

Tertiary control

I Optimal operation in both operating modes l

| Power flow control in grid-tied mode |

p—

Secondary control

Compensating the voltage deviation
caused by primary control

Compensating the frequency
deviation caused by primary control

1

Primary control

| Voltage stability provision |

| Frequency stability preserving |

Feedback signals

| Plug and play capability of DERs |

|Circu]ating current avoidance among DERs |

! !

( Microgrid j [29A]

Tie

[ Main power grid

)

= Power grids traditionally

employ primary, secondary
& tertiary control — we study
these together rather than

independently

We propose an agent layer
for complex rule-based
decision-making that mimic
people and organizations
Many open questions as to

what functionality is
required in each layer

-.Enterprise control requires new & thoughtful design principles on
how to best allocate different types of control functionality
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Developed Multi-Agent System Transient Stability Platform

Outline Motivation Coordination & Control of Microgrids

Platform

Case Study

Conclusion

Multi-agent layer
Developed in JAVA-JADE

Each physical component has
its virtual representation in
multi-agent layer

JAVA-MATLAB interface
enables communication in both
ways

Multi-agent

Power system layer
Developed in MATLAB

Power System

H B Massachusetts
I I Institute of @
Technology MECHATRON

ICS RESEARCH LABORATORY

—=
Masdar Gl

INSTITUTE




Developed Multi-Agent System Transient Stability Platform

Outline Motivation Coordination & Control of Microgrids Platform Case Study Conclusion

Multi-agent layer
= MAS allows semi-autonomous
decision-making
= JAVA-JADE describes parallel

decision-making of each agent as
multi-thread language

Multi-agent

Power system layer

= Time domain simulation of power
system transient stability

= MATLAB solves Differential Equations
fast and accurately

Power System

M7 2 {FMRL  vascar Gl

ARCH LABORATORY INSTITUTE



Developed Multi-Agent System Transient Stability Platform

\ Outline Motivation Coordination & Control of Microgrids Platform Case Study Conclusion

Class diagram for multi-agent layer
= Tertiary control in JAVA-JADE

! Facilitator_Agent (FA) ! MicroGrid_Agent (MGA) ! RunGAMS
| [
' |
' Matlablnvocation ' Energy_Elements (EE) ' T°P°|°9(YT_EE)|ementS
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Developed Multi-Agent System Transient Stability Platform

\ Outline

Motivation

Coordination & Control of Microgrids

Platform

Case Study

Conclusion

Class diagram for power system layer
= Microgrid structure & dynamic models in MATLAB

' Load ' Bus ' Branch
[ |

DynamicModelData

T

. AutomaticVoltageRegulatorData ' DynamicModelData
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' TurbineGovernorData
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Developed Multi-Agent System Transient Stability Platform

Outline

Motivation

Coordination & Control of Microgrids

Platform

Case Study

Conclusion

» Dynamics of power system layer
= Primary & secondary control for transient stability

- Each generator is described by swing equations

- Buses are coupled by power flow equations

0; = wi— W
Wi = ZZZ [sz' — Pei(0) — Di5i]
P. = RE*YE]
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Test cases

\ Outline \ Motivation \ Coordination & Control of Microgrids \ Platform \ Case Study \ Conclusion

To initiate studies into resilient self-healing Microgrid

operation, the MAS transient stability platform was tested
with 3 case studies:

= Case 1: Dynamic Reconfiguration Capability.
= Case 2: Decentralized Dispatch of Multiple Microgrids.

= Case 3: Uncoordinated and Coordinated Microgrids under
Net Load Changes.

-.Multi-Agent System Decision Making is Coupled to Real-Time Power
System Dynamics.
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Case 1: Dynamic Reconfiguration Capability.

Outline \ Motivation \ Coordination & Control of Microgrids \ Platform

Case Study

Conclusion

» Consider the Saadat’s Microgrid as a test case.
» 3 Dynamic Generators
» 3 Static Loads
» 6 Buses
» [ Branches
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Case 1: Dynamic Reconfiguration Capability.

\ Outline \ Motivation \ Coordination & Control of Microgrids \ Platform \ Case Study \ Conclusion

OFEE;t

= Agents are used to model decentralized power system protection.
» A three-phase fault in Bus 6 occurs @ T=0.1 s.
» Line 5-6 is removed @ T=0.5 s.
» Bus 6 brought back on to clear the fault @ T=0.5 s.

22
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Case 1: Dynamic Reconfiguration Capability.

Outline \ Motivation \ Coordination & Control of Microgrids \ Platform \ Case Study Conclusion

Phase Angle Difference of Synchronous Generators Over Time
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-.Here the two dynamic reconfigurations of “Fault Bus 6” and
“Remove Line 5-6” were sent as scripted-commands initiated by the
microgrid agent.

-.Multi-Agent System can be used to design Real-Time Control of
Power System Protection. -» Critical for Islanding
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Case 2: Decentralized Dispatch of Multiple Microgrids.

\ Outline \ Motivation \ Coordination & Control of Microgrids \ Platform \ Case Study Conclusion \
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Case 2: Decentralized Dispatch of Multiple Microgrids.

\ Outline \ Motivation \ Coordination & Control of Microgrids \ Platform \ Case Study Conclusion \
= Microgrid Agents are P Iyl oss
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Case 2: Decentralized Dispatch of Multiple Microgrids.

\ Outline \ Motivation \ Coordination & Control of Microgrids \ Platform \ Case Study \ Conclusion

Phase Angle Difference of Synchronous Generators Over Time

60 T
L ——G1.1 angle
- 40 ——G1.2 angle
[) L —— G1.3 angle
8 20 ——G2.1 angle
S === ——G22angle
[0) ——— G2.3 angle
kS _ook —— G3.1 angle
@ ——G3.2 angle
8’ _40 ——G3.3 angle
<
-60—
-80 | | | | | | | | |
0 2 4 6 .10 12 14 16 18 20
Time (sec)
Speed of Synchronous Generators Over Time
61 i I | | T T
—— G1.1 speed
—— G1.2 speed
L —— G1.3 speed
< 60.5 —— G2.1 speed
T —— G2.2 speed
~ ——— (2.3 speed
8 60 —— G3.1 speed
() —— G3.2 speed
(%' —— G3.3 speed
59.5—
| | | | | | | | |
59
0 2 4 6 14 16 18 20

.10
Time (sec)

-.Multi-Agent System Decision Making is Coupled to Real-Time Power
System Dynamics.

~.Multi-Agent System Decisions Lead to oscillations in neighboring
control areas.
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Case 3: Uncoordinated Microgrids under Net Load Changes.

Case Study Conclusion

Platform

Motivation \ Coordination & Control of Microgrids
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Case 3: Uncoordinated Microgrids under Net Load Changes.

Outline Motivation Coordination & Control of Microgrids Platform Case Stud Conclusion
g y
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-.Here, some generator speeds do not always return to the nominal
60Hz and instead settle at lower speeds. As a result, the associated
phase angle of these generators continually fall behind in angle

relative to the reference buses.
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Case 3: Coordinated Microgrids under Net Load Changes.

\ Outline \ Motivation \ Coordination & Control of Microgrids \ Platform \ Case Study \ Conclusion \
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Case 3: Coordinated Microgrids under Net Load Changes.

Outline \ Motivation \ Coordination & Control of Microgrids \ Platform ‘ Case Study

Conclusion

Phase Angle Difference of Synchronous Generators Over Time
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-.The markings C and NC reflect when the MAS has mutually connected
(C) or disconnected (NC) the microgrids.
. Intuitively, the energy of the net load variability is “spread-out” amongst
the inertias of all of the generators and not just of the local microgrid.
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Developed Multi-Agent System Transient Stability Platform: Conclusion

\ Outline Motivation Coordination & Control of Microgrids Platform Case Study Conclusion

» Research need: design of robust & distributed reconfigurable control
methods for reliable operation of microgrids.

= Need for Multi-Agent System: Multiple Stakeholders & Multilateralism
and other effects from renewables.

* Proposed a Multi-Agent Platform
- Simulates the physical power system dynamics of the grid.

- Simulates the decision-making of the individual actors and how they
cooperate.

- Simulates the distributed decisions of each actor affects the grid
conditions of neighbors.

- Allows actors to reconfigure their interacts with others.
- Can be applied at the desired level of geographical scope.
= Case Studies

= This work presents many opportunities for future developments in the
domain of resilient self-healing power grids.
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