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MOTIVATION

* Distributed generation (PV, Wind, Gas):
— Increased reliability
— Unconventional operating states

* Distributed control of active and reactive power:
— New generation of OPF-type algorithms

— Mostly static analysis, implicit assumption of static and
transient stability

Konstantin Turitsyn & Hung Nguyen, 02/03/14

I I W I Massachusetts Institute of Technology Pa ge 2



OUTLINE

Distributed generators’ effects on distributed
networks

System equations and dynamic load modeling
Dynamic stability criterion based on static solutions
Dynamic simulations

— Trapped at the lower branch
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Power reversal creates new regimes
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Power reversal and load dynamics affect the

stability properties

 Unstable equilibrium may appear
on the upper branch of the nose
curve; whereas, new stable ones

Stable

may exist at the lower branch.

 The diversity of load dynamics
with the presence of DGs may

jeopardize the voltage security of
the system. i
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DAE of the system

& = f(z,y,p) e i variab]
T y: algebraic variables
T p: parameters

* Slow dynamics vs. fast dynamics

* Algebraic equations

— Load flow equation vs. Kirchhoff laws: typically,
the algebraic equations are considered as power

flow equations.
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Dynamic load modeling
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g = fol9, P,U) ni = AV 5
b= fp(b,Q,U)
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* Various electric loads and regulators are == (V|9 Q0

designed to consume a fixed level of powers in
order to achieve the desired performance. - \1 L
| y=g+jb :
— Voltage regulators T !
|
I : !
— Tap changing transformers I Ol
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— Thermostats ... ; ) S :
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* Load dynamics are the driving force for voltage

instability [1]. Dynamic loads
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Dynamic stability criterion based
on static solutions

* The system stability depends on:
— Individual component stability, e.g. individual load
— Connective stability

* Under normal fixed voltage condition, the loads are
stable. Therefore, the connective stability determines the
system stability.
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Dynamic stability criterion based
on static solutions

o Steady state

U, =Uy(y)

» Equilibria of individual load

— Zconstant: y, = 1/Z

y =y,(U)

— Tconstant: y,= I/ =I/V

— P constant: y, = P/U

* Load dynamics

where U = 7

H U=const

Load

y = F(y, U(y))
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Dynamic stability criterion based
on static solutions

* Load dynamics
y=F,Us(y))

- Equilibrium: vy,
- Linearize about the equilibrium

® 6y = VyFtSy + V(,rF.VyUS(Sy
= V,F(1+(V,F)'VyF.V,U,)by
I

VU'ys :
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Dynamic stability criterion based
on static solutions

8y = V,F(1 — Vyy,.V,U,)y

Load flow solutions:

y =ys(Us(y))
h(y) =y —ys(Us(y)) =0
Jacobian matrix:
Js = Vyh=1— Vyys.V,Us

—> 0y = VyF.Js.0y
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Dynamic stability criterion based
on static solutions

0y =V F.Js.0y

Each load is stable: V,F = ZA where A > 0.

Let: A=RTR. then dy=RTX

Lyapunov stability condition: the system is stable iff
there exists K = K7 > 0 s.t.

KRJRT + RITRTK >0
= R(R'KRJ+ JTRTKR™Y)RT >0
R'KRJI+J'RTKR T >0
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Dynamic stability criterion based
on static solutions

R 'KRJ+JTRTKR T >0
S —

~

K
> RJI+JTRT>0 (*)

Statement: if 'Js+Jg >0 then (*) is true with K = 1,

Stability criterion relies only on load flow solutions.

I I I TH Konstantin Turitsyn & Hung Nguyen, 02/03/14

I I Massachusetts Institute of Technology Page 13



Dynamic stability criterion based
on static solutions

» Simulation results
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Trapped at the lower branch

« Under typical scenarios such as when subjected to
disturbances or shedding loads, the system may be
trapped at a equilibrium on the lower branch without
violating any voltage constraints.

* New policies for DGs should be introduced to prevent the
system gets stuck at the lower branch.

I I I i l- Konstantin Turitsyn & Hung Nguyen, 02/03/14
Massachusetts Institute of Technology Page 1 5



Trapped at the lower branch
A 3-bus network case

 Consider a 3-bus network having two dynamic loads based on the IEEE
Standard 4-Node Test Feeder [2].

V=10
Vismtiy  Vembiy o _ [2.04 —1.02] BL= [—7.17 3.59]
L i ~1.02  1.02 3.59 —3.59
P Q: BQ
i = -1.095 Voltage Bus #2 Bus #3
P;=-0.984 15t solution (high 1.080 1.200
1 Q,=-1.328 voltage)
Q;=-1 2nd golution (low 0.821 1.013
tau,=tau,= 100s voltage)
L £,(IVR)=E,(IVP)=1
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Trapped at the lower branch

* Dynamic simulations: The nose curves at load bus #2 & #3
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Trapped at the Iower branch

+PQbusIDynamicsRederivedEventtimitgh_NoLoadshedding1.V_pu vs PQbusIDynamicsRederivedEventtmitgh_NoLoadshedding1.P_pu
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Trapped at the lower branch
A 2-bus network case with a transformer

* Consider a 2-bus network a transformer to control the voltage at bus #2.

V=1 v, v,

R=0.072
|X=0.258
P,=-2327
|Q,=0.033

The transformer equation:
Vs=KV;
y=const mK=-(Vs3-1) 717 =10s
Voltage Bus #2
1%t solution (high voltage) 0.940
214 golution (low voltage) 0.667
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Trapped at the lower branch
A 2-bus network case with a transformer

» Dynamic simulations: The nose curves at the load bus

P3‘V2
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Trapped at the lower branch
A 2-bus network case with a transformer

* Dynamic simulations: The nose curves at load bus

transformer]. Yp_pu
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Conclusions

* The nose curve characteristics and the system stability can change
considerably due to power reversal and load dynamics.

* The new stability criterion can be helpful in planning and
assessment of the system stability when the load dynamics are
unknown in advance.

 Since low voltage solution may be stable, the system may be
trapped at the lower branch of the nose curve. In order to prevent
such situations, new policies such as to standardize power factors
or to regulate reactive power compensation should be introduced.
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* Graduate University built by
MIT outside of Moscow.

* Energy Systems CREI:
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MIT, Caltech, LANL,

PNNL and others
— Led by Janusz Bialek

— Multiple faculty and
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