Emerging Needs for Evolving Hybrid Energy Cyber-Physical System (e-CPS)

Sudip. K. Mazumder

Professor, Department of Electrical and Computer Engineering Director, Laboratory for Energy and Switching-Electronics Sys. University of Illinois, Chicago

President NextWatt LLC

Funding Agency: National Science Foundation Department of Energy Advanced Research Project Agency – Energy Ninth Annual Carnegie Mellon Conference on the Electricity Industry Pittsburgh, USA

February 4, 2014

Challenges of e-CPS

e-CPS: Great, but how do we tackle the giant?

e-CPS modeling challenges

- Unified dynamical modeling that captures hybrid, functional, eventdriven, and stochastic dynamics with cross-disciplinary interdependencies
- Representation of multi-scale, multi-dimensional, and nonlinear spatio-temporal dynamics at varying levels of abstraction, granularity and aggregation
- Generalized approach(es) to contingency, stability, robustness, and reliability analyses that is (are) scalable, seamless, computationally efficient, and can provide offline and real-time measure and predictions

e-CPS control challenges

- Optimal networked-control to sustain distributed operation under communication-network's capacity and power-network's stability bounds in the presence of nodal and network uncertainty, stochasticity, and destabilization
- Jointly optimize control of the power network over the communication network and control of the information-flow network itself
- Unification of event-driven control, protection using rapid solidstate switching, and distributed coordination
- Robustness of control in the presence of uncertainty in the truthfulness and accurate representation of the measured/ estimated data

Few Illustrations

Control distribution

8

Module power control for distributed implementation

S.K. Mazumder and K. Acharya, "Multiple Lyapunov function based reaching criteria for orbital existence of switching power converters", *IEEE Transactions on Power Electronics*, vol. 23, no. 3, pp. 1449-1471, 2008.

Communication network throughput optimization

Non-cooperative control-communication scenario

Variations of the stability and performance margins in terms of delay margin

Achievable optimal network throughput as a function of the network time delay

Tradeoff, with regard to network time delay, between control performance and stability and resource utilization of the communication network

Joint optimization

Results (centralized vs. distributed control)

Illustration 2

World's first all-optical 15-kV/10-kHz/2-kA SiC ETO

ARPA-E project – Collaboration between UIC, Silicon Power, Cree

Control of system at device level

Dynamic control of device dynamics for rapid fault mitigation, power quality, and multi-scale power management

Illustration 3

Boolean microgrid*

Discretized power and data delivery

* Patent pending

A simple realization for discretized power flow

17

Elementary to composite particles

