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Motivation 

 Unit commitment and economic dispatch (UCED) is 
to commit units and decide their generation levels 
to satisfy demand and reserve requirements   

 It is modeled as MIP and is computationally 
intensive especially when: 

 considering combined cycle units 
 

 

 

 

 

 

 

 

 considering uncertainties introduced by renewables 



 How to formulate the problem? 

 
 s.t.:  

 System demand                     and max/min power level 
constraints 

 Reserve requirements and transmission constraints are 
ignored for simplicity   

 In view of separability, the problem can be 
decomposed by Lagrangian relaxation  

 Since Ci can be converted to a linear function, start-
up cost is linear and constraints are linear, the 
problem can also be solved by branch-and-cut 
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Formulation of UCED problem 
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 Lagrangian relaxation 

 

 

 Lagrangian relaxation decomposes L into I 
subproblems, and updates  based on levels of 
constraints violation  

 

 Standard subgradient methods require L to be fully 
optimized with respect to all subproblems 

 L is difficult to fully optimize  

  can suffer from zigzagging  

 Convergence proof requires 

 the optimal dual value q* 
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Solution by Lagrangian Relaxation 
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Overview of the Presentation 

 Motivation: Unit commitment and economic dispatch  

 Surrogate Lagrangian relaxation (SLR) 

 Lagrangian relaxation with surrogate subgradient methods 

 Surrogate Lagrangian relaxation 

 Synergistic combination of SLR and Branch-and-cut   

 A brief introduction of branch-and-cut (B&C) 

 Synergistic combination of SLR and Branch-and-cut 

 Numerical examples 

 A small illustrative example 

 Large-scale generalized assignment problems  

 UCED with combined cycle units 

 Conclusion 
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The Surrogate Subgradient Method (1999)  

 The surrogate subgradient method allows approximate 
optimization of L s.t. the surrogate optimality condition 
guaranteeing an acute angle with the direction toward *: 

 

 For UCED, it is sufficient to solve one subproblem: 

 
 

 Multipliers are updated:  

 

 

 Surrogate directions are  

 smooth because now we  

 change only one pi(t) 

 Critically needs q*    
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Directions are smoother as 

compared to those of the 

subgradient methods 



Surrogate Lagrangian Relaxation (SLR) 

 Main Contribution: Develop a new method, prove 
convergence, and guarantee practical implementability 

 Without fully optimizing the relaxed problem (s.t. the surrogate 
optimality condition)  

 Without requiring q* 

 Main Idea 1: Decrease distances between multipliers 
at consecutive iterations (||k+1–k|| decreases)  

 ||k+1–k|| decreases  fixed-point mapping      k

6 

1

1.5

2

2.5

3

3.5

4

4.5

0 1 2 3 4 5 6 7 8

1 kk 

1k

k

1k

11   kkkk 

1

2

 *



Surrogate Lagrangian Relaxation 

                                                                                     (1) 

 Parameters k should satisfy     (2) 

 If k are small, ck
  0 too fast  premature convergence  

 Main Idea 2:  

 To avoid premature convergence, ck should not decrease too 
fast  

 This can be achieved by keeping k sufficiently close to 1 
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Main Theorem 

 Multipliers converge to the optimum * without requiring 
q* provided k satisfy: 

 1)       (Main idea 1) 

 2)                    (Main idea 2) 

 One possible example of k that satisfies conditions 1) 

and 2):  

 At convergence, the surrogate dual value approaches 
the (optimal) dual value q* ~ valid lower bound on the 
feasible cost 

 Lower bound is guaranteed before convergence by fully 
optimizing the relaxed problem to obtain a dual value  
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Schematic Flow chart of SLR 

Surrogate 

optimization 

Relax system demand by using 

Lagrange multipliers  

Original problem 

Construct a feasible 

solution, and compare 

with the best one 

Yes 

Solve one or a few subproblems, until 

the surrogate optimization condition is 

satisfied 

Meet 

Stopping 

criteria? 

No 

Update multipliers 

Construct a feasible 

solution every few 

iterations 

How to solve 

subproblems?  
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Difficulties of Standard Branch-and-Cut 

 Branch-and-cut (B&C) can suffer from slow 
convergence because  

 Facet-defining cuts and even valid inequalities that 
cut areas outside the convex hull are problem-
dependent and are frequently difficult to obtain  

 When facet-defining cuts are not available, a large 
number of branching operations will be performed 

 No “local” concept  Constraints associated with 
one subproblem are treated as global constraints 
and affect the entire problem 
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Synergistic Combination with Branch-and-cut 

 To overcome difficulties, SLR relaxation and B&C 
are synergistically combined to simultaneously 
exploit problem separability and linearity: 

 Relax coupling constraints (e.g., system demand) 

 Solve each subproblem by using branch-and-cut 
with warm start 

 The complexity of each subproblem is much lower than 
the complexity of the original problem 

 Updating multiplies by using SLR – convergence 
without requiring q*  

 Why is the new method effective? 

 Cuts for subproblems are more effective as 
compared to cuts for the original problem 

 Feasible solutions can be effectively obtained 

 The overall algorithm is efficient  
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Synergistic Combination with Branch-and-cut 

 Why cuts for subproblems are more effective? 
 An example of important cuts is Gomory cuts 

 Constraints are linearly combined into one constraint 

 Cuts are then generated by retaining fractional parts of 

the coefficients (Gomory’s fractional cut) 

 Cuts for subproblems aggregate much fewer 

constraints  cut larger regions as compared to 

regions obtained by original Gormry cuts  

 Other cuts using aggregation follow similar logic 

 Cuts that require no aggregation (e.g., clique and 

cover cuts) are as efficient for solving subproblems  

 Can feasible solutions be efficiently obtained? 
 Linearity of coupling constraints can be exploited to 

obtain feasible solutions  



Example Illustrating the Combination of SLR 
and Branch-and-cut 

 Consider a toy problem: 

 min(79x1+70x2+108x3+41x4) 

 s.t. 35x1+51x264 (1), 3x3+65x464 (2) 

 x1+x3 = 1, x2+x4 = 1 

 xj{0,1}, j = 1, 2, 3, 4 

 Gomory cut: 7x1+10x2+13x4  26 

 Consider subproblems: 

 min(79x1+70x2)-1x1-2x2,  

 s.t. 35x1+51x264, xi{0,1}, i = 1, 2 

 min(108x3+41x4)-1x3-2x4 

 s.t. 3x3+65x464, xi{0,1}, i = 3, 4 

 Gomory cuts:  

 7x1+10x2  12 

 13x4  12 
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Flow-Chart of the Synergistic Approach   

Relax coupling constraints to exploit 

separability (e.g., separate into subproblems) 

Update multipliers by using (1) and 

smooth surrogate subgradients 

Use branch-and-cut + warm start to solve 

each subproblem 

Guarantee convergence 

without requiring q* by 

updating stepsizes using                                                     

Main Theorem: 

Search for feasible 

solutions  

Are stopping 

criteria 

satisfied? 

Stop 

No 

Yes 

Convergence 

without 

requiring q* 

enables the 

synergistic 

combination 
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convex hull  

Zigzagging is 

alleviated 
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convergence 



Example Illustrating the Combination of SLR 
and Branch-and-cut 

 Consider the Generalized Assignment Problem: 

       (Cost of assigning I jobs to J machines) 

     (1) (Time required by the jobs 

does not exceed the machine’s time available) 

    (2) (Each job is to be performed 

on one and one machine only) 

 Constraints (2) can be viewed as constraints coupling 

“machine subproblems” 
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Results on Generalized Assignment Problems 

Problem 

Size 

Synergistic Combination of SLR and 

B&C 
Branch-and-cut 

LB 
Feasible 

Cost 
GAP (%) 

CPU 

Time 

(sec) 

LB 
Feasible 

Cost 
GAP (%) 

CPU 

Time 

(sec) 

15 

machines, 

900 jobs 

55403 55411 0.014438 1380 55401.5 55429 0.049613 1380 

40 

machines, 

400 jobs 

24348 24394 0.188571 2100 24348.5 24465 0.47619 2100 

20 

machines, 

1600 jobs 

97823 97834 0.011244 1860 97822.1 97895 0.074468 1860 
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 Combined cycle (CC) units are efficient because  

 Heat from gas turbines (GT) is not wasted but is used to for 
steam turbines (ST) 

 However, UCED problem with CC units is difficult 

 ST cannot be turned on if there is not enough heat from GT 
 Complicated state transitions causing major challenges  

Multi-Stage Combined Cycle Units 
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 Difficulty:  

 Constraints modeling transitions between configurations 
of generators are logical and complex  

 Complex transitions in one such unit affect the 
entire problem 

 Corresponding convex hull is difficult to obtain 

 By using our new method:  

 Transitions of a combined cycle unit are handled locally 
and no longer affect the entire problem 

 Certain cuts generated for subproblems cut off 
large areas outside the sub-convex hull 

 Branch-and-cut efficiently optimizes subproblems 

 SLR efficiently coordinate subproblem solutions 

 

Multi-Stage Combined Cycle Units 
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 To demonstrate the efficiency of surrogate 
Lagrangian relaxation, a problem with 10 CC plants 
and 300 conventional units is considered 

Multi-Stage Combined Cycle Units 

Method Feasible Cost Lower Bound Gap (%) 
CPU Time 

(min) 

Branch-and-cut 50,260,500 45,305,200 9.859 30 

Our new method 49,894,806 49,879,027 0.032 5 

                    Branch-and-cut                                Surrogate Lagrangian relaxation  
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Conclusion 

 Major theoretical result: Within the surrogate Lagrangian 
relaxation framework, multipliers converge to the 
optimum without requiring q* 

 SLR has been synergistically combined with B&C to 
solve mixed-integer programming problems efficiently  

 Subproblem constraints no longer affect the entire problem 

 Gomory cuts generated for subproblems cut off large areas 
outside the sub-convex hull  

 Numerical results demonstrate that the innovative 
approach is powerful and efficient for solving mixed-
integer programming problems 

 Broad Impact: The novel methodology opens new 
directions to efficiently solve mixed-integer programming 
problems such as Stochastic Unit Commitment and 
beyond 
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