Load-side Frequency Control

Changhong ZhaoEnrique MalladaUfuk TopcuLina LiSteven LowElec & Sys EngrLIDSEE, CaltechU PennMIT

Motivation

Dynamic network model

Load-side frequency control

Simulations

Zhao, Topcu, Li, Low, TAC 2014 Mallada, Low, 2013

Synchronous network

- All buses synchronized to same nominal frequency (US: 60 Hz)
- Frequency regulation
 - Generator based
 - Frequency sensitive (motor-type) loads

Controllable loads

- Do not react to frequency deviation
- ... but intelligent
- Need active control how?

Frequency control is traditionally done on generation side

PNNL Grid Friendly Appliance Demo Project (early 2006 – March 2007)

- 150 clothes dryers, 50 water heaters
- Under-frequency threshold: 59.95 Hz (0.08% dev)
- 358 under-freq events during project, lasting secs 10 mins
- All GFA detected events correctly and loads shedded as designed, despite wide geographical distribution
- Survey reported no customer inconvenience

Figure 1.3. GFA Controller Board used in the Grid Friendly Appliance Project

Hammerstrom et al (2007), PNNL

Fig. 7. Load control example for balancing variability from intermittent renewable generators, where the end-use function—in this case, thermostat setpoint—is used as the input signal.

Callaway, Hiskens (2011) Callaway (2009)

Motivation

Dynamic network model

Load-side frequency control

Simulations

Zhao, Topcu, Li, Low, TAC 2014 Mallada, Low, 2013

i : bus/control area/balancing authority

DC approximation

- Lossless network (r=0)
- Fixed voltage magnitudes
- Reactive power ignored
- Do not assume small angle difference

- Newton's 2nd law
- Variables: deviations from nominal values

Swing equation on bus *i*

$$M_i \dot{\omega}_i = P_i^m - P_i^e$$

$$\dot{P}_{ij}^{e} \stackrel{:}{=} \dot{b}_{ij} \begin{pmatrix} d_i + D_i \omega_i \\ \omega_i - \omega_j \end{pmatrix} + \sum_{i \sim j} P_{ij}$$
$$b_{ij} = 3 \frac{\left| V_i \right| \left| V_j \right|}{x_{ij}} \cos \left(\theta_i^0 - \theta_j^0 \right) \quad \text{line}$$

linearization around nominal

Generator bus (may contain load):

$$\dot{\omega}_i = -\frac{1}{M_i} \left(d_i + D_i \omega_i - P_i^m + \sum_{i \to j} P_{ij} - \sum_{j \to i} P_{ji} \right)$$

Load bus (no generator):

$$0 = d_i + D_i \omega_i - P_i^m + \sum_{i \to j} P_{ij} - \sum_{j \to i} P_{ji}$$

Real branch power flow:

$$\dot{P}_{ij} = b_{ij} \left(\omega_i - \omega_j \right) \qquad \qquad \forall \ i \to j \\ swing \ dynamics$$

Motivation

Dynamic network model

Load-side frequency control

Simulations

Zhao, Topcu, Li, Low, TAC 2014 Mallada, Low, 2013

$$\begin{split} \dot{\omega}_i &= -\frac{1}{M_i} \left(d_i + D_i \omega_i - P_i^m + \sum_{i \to j} P_{ij} - \sum_{j \to i} P_{ji} \right) \\ 0 &= d_i + D_i \omega_i - P_i^m + \sum_{i \to j} P_{ij} - \sum_{j \to i} P_{ji} \\ \dot{P}_{ij} &= b_{ij} \left(\omega_i - \omega_j \right) \qquad \forall i \to j \end{split}$$

Suppose the system is in steady state

$$\dot{\omega}_i = 0$$
 $\dot{P}_{ij} = 0$

and suddenly ...

Given: disturbance in gens/loads

Current: adapt remaining generators P_i^m

- to re-balance power
- (and restore nominal freq, zero ACE)

Our goal: adapt controllable loads d_i

- to re-balance power
- while minimizing disutility of load control

this talk: ignores generator-side control

$$\begin{split} \dot{\omega}_{i} &= -\frac{1}{M_{i}} \left(d_{i} + D_{i} \omega_{i} - P_{i}^{m} + \sum_{i \to j} P_{ij} - \sum_{j \to i} P_{ji} \right) \\ 0 &= d_{i} + D_{i} \omega_{i} - P_{i}^{m} + \sum_{i \to j} P_{ij} - \sum_{j \to i} P_{ji} \\ \dot{P}_{ij} &= b_{ij} \left(\omega_{i} - \omega_{j} \right) \qquad \forall i \to j \end{split}$$

How to design feedback control law

$$d_i = F_i(\omega(t), P(t))$$

$$\begin{split} \dot{\omega}_i &= -\frac{1}{M_i} \left(d_i + D_i \omega_i - P_i^m + \sum_{i \to j} P_{ij} - \sum_{j \to i} P_{ji} \right) \\ 0 &= d_i + D_i \omega_i - P_i^m + \sum_{i \to j} P_{ij} - \sum_{j \to i} P_{ji} \\ \dot{P}_{ij} &= b_{ij} \left(\omega_i - \omega_j \right) \qquad \forall i \to j \end{split}$$

Control goals

Zhao, Topcu, Li, Low TAC 2014

Mallada, Low 2013

- Rebalance power
- Resynchronize/stabilize frequency

Restore nominal frequency

Restore scheduled inter-area flows

$$\begin{split} \dot{\omega}_i &= -\frac{1}{M_i} \left(d_i + D_i \omega_i - P_i^m + \sum_{i \to j} P_{ij} - \sum_{j \to i} P_{ji} \right) \\ 0 &= d_i + D_i \omega_i - P_i^m + \sum_{i \to j} P_{ij} - \sum_{j \to i} P_{ji} \\ \dot{P}_{ij} &= b_{ij} \left(\omega_i - \omega_j \right) \qquad \forall i \to j \end{split}$$

Desirable properties of $d_i = F_i(\omega(t), P(t))$

- simple, scalable
- decentralized/distributed

$$\begin{split} \dot{\omega}_i &= -\frac{1}{M_i} \left(d_i + D_i \omega_i - P_i^m + \sum_{i \to j} P_{ij} - \sum_{j \to i} P_{ji} \right) \\ 0 &= d_i + D_i \omega_i - P_i^m + \sum_{i \to j} P_{ij} - \sum_{j \to i} P_{ji} \\ \dot{P}_{ij} &= b_{ij} \left(\omega_i - \omega_j \right) \qquad \forall i \to j \end{split}$$

Proposed approach: forward engineering

- formalize control goals into OLC objective
- derive local control as distributed solution

Motivation

Dynamic network model

Load-side frequency control

Primary control

- Zhao, Topcu, Li, Low, TAC 2014
- Secondary control

Simulations

over

s.t.

s.t

demand = supply across network

<u>Theorem</u>

- swing dynamics
- + frequency-based load control
- = primal-dual algorithm that solves OLC
 - Completely decentralized
 - Not need explicit communication
 - Not need detailed network data
 - Exploit free global control signal

... reverse engineering swing dynamics

demand = supply <u>across</u> network

swing dynamics (recap)

load control

$$d_i(t) := \left[c_i^{-1} \left(\omega_i(t) \right) \right]_{\underline{d}_i}^{\overline{d}_i} \quad \text{active control}$$

Theorem

system trajectory
$$(d(t), \hat{d}(t), \omega(t), P(t))$$

converges to $(d^*, \hat{d}^*, \omega^*, P^*)$ as $t \to \infty$

Zhao, Topcu, Li, Low, TAC 2014

<u>Theorem</u>

system trajectory
$$(d(t), \hat{d}(t), \omega(t), P(t))$$

converges to $(d^*, \hat{d}^*, \omega^*, P^*)$ as $t \to \infty$

\$\left(d^*, \hat{d}^*\right)\$ is unique optimal load control
 \$\overline{w}^*\$ is unique optimal for DOLC
 \$P^*\$ is optimal for dual of DOLC

Load-side primary frequency control works !

Zhao, Topcu, Li, Low, TAC 2014

- Freq deviations contains right info on global power imbalance for local decision
- Decentralized load participation in primary freq control is stable
- ω^* : Lagrange multiplier of OLC info on power imbalance
- P*: Lagrange multiplier of DOLC info on freq asynchronism

- Yes Rebalance power
- Yes Resynchronize/stabilize frequency
 - No Restore nominal frequency $(\omega^* \neq 0)$
 - No Restore scheduled inter-areà flows

Proposed approach: forward engineering
formalize control goals into OLC objective
derive local control as distributed solution

Motivation

Dynamic network model

Load-side frequency control

- Primary control
- Secondary control Mallada, Low, 2013

Simulations

min
$$\sum_{i} \left(c_i(d_i) + \frac{1}{2D_i} \hat{d}_i^2 \right)$$

s.t.
$$\sum_{i} \left(d_i + \hat{d}_i \right) = \sum_{i} P_i^m$$

$$\begin{array}{ll} \min & \sum_{i} \left(c_{i}\left(d_{i}\right) + \frac{1}{2D_{i}}\hat{d}_{i}^{2} \right) \\ \text{s. t.} & d_{i} + \hat{d}_{i} = P_{i}^{m} - \sum_{e \in E} C_{ie}P_{e} & \begin{array}{c} \text{demand = supply} \\ \text{per bus} \end{array} \\ d_{i} & = P_{i}^{m} - \sum_{e \in E} C_{ie}R_{e} & \begin{array}{c} \text{to restore nominal} \\ \text{frequency} \end{array} \end{array}$$

swing dynamics:

load control:
$$d_i(t) := \left[c_i^{-1}(\omega_i(t))\right]_{\underline{d}_i}^{\overline{d}_i} \leftarrow \qquad \text{active control}$$

swing dynamics:

$$\begin{split} \dot{\omega}_{i} &= -\frac{1}{M_{i}} \Biggl(d_{i}(t) + D_{i}\omega_{i}(t) - P_{i}^{m} + \sum_{e \in E} C_{ie}P_{e}(t) \Biggr) \\ \dot{P}_{ij} &= b_{ij} \Biggl(\omega_{i}(t) - \omega_{j}(t) \Biggr) & \longleftarrow \quad \text{implicit} \end{split}$$

oad control:
$$d_i(t) := \left[c_i^{-1} \left(\omega_i(t) + \lambda(t)_i\right)\right]_{\underline{d}_i}^{\overline{d}_i}$$

computation & communication:

$$\dot{\lambda}_i = -\gamma_i \left(d_i(t) - P_i^m + \sum_{e \in E} C_{ie} R_e(t) \right), \quad \dot{R}_{ij} = a_{ij} \left(\lambda_i(t) - \lambda_j(t) \right)$$

<u>Theorem</u>

system trajectory
$$(d(t), \hat{d}(t), \omega(t), P(t))$$

converges to $(d^*, \hat{d}^*, \omega^*, P^*)$ as $t \to \infty$

• $\left(d^*, \hat{d}^*\right)$ is unique optimal load control • $\omega^* = 0$

Load-side secondary frequency control works !

Mallada, Low 2014

Yes Rebalance power

Yes Resynchronize/stabilize frequency

Yes $\mathcal{M} = \text{Restore nominal frequency } (\omega^* \neq 0)$ No \mathbf{R} Restore scheduled inter-area flows

Secondary control restores nominal frequency but requires communication with neighbors

Motivation

Dynamic network model

Load-side frequency control

Simulations

Zhao, Topcu, Li, Low, TAC 2014 Mallada, Low, 2013

Dynamic simulation of IEEE 68-bus system

- Power System Toolbox (RPI)
- Detailed generation model
- Exciter model, power system stabilizer model
- Nonzero resistance lines

