Optimal Secondary frequency control connecting AGC with economic dispatch

Na LiLijun ChenChanLIDS, MITTelecommunicationStCU-Boulder

Changhong Zhao Steven Low CMS Caltech

> CMU 02/04/2014

Physical dynamics: Swing Dynamics

$$\dot{\omega}_{i} = -\frac{1}{M_{i}} (D_{i}\omega_{i} - P_{i}^{M} + P_{i}^{L} + \sum_{j:i \to j} P_{ij} - \sum_{k:k \to i} P_{ki})$$

 P_i^M : Mechanical power P_i^L : Load ω_i : Frequency P_{ij} : Power Flow M_i , D_i : Constant parameters

Bus *i*: control area/ balance authority

Variables: the deviations from reference (steady state) values

Power Flow dynamics

$$\dot{P}_{ij} = T_{ij}(\omega_i - \omega_j)$$

 P_i^M : Mechanical power P_i^L : Load ω_i : Frequency P_{ij} : Power Flow T_{ij} : Constant parameter

Assumptions: Lossless (resistance=0) Fixed voltage magnitudes Small deviation of angles

Turbine-Governor Control

$$\dot{P}_i^M = -\frac{1}{T_j} (P_i^M - P_i^C + \frac{1}{R_i} \omega_i)$$

 P_i^M : Mechanical power P_i^L : Load ω_i : Frequency P_{ij} : Power Flow P_i^C : Power command input T_i , R_i : Constant parameters

(Area Control Error) ACE-based AGC

$$\dot{P}_i^C = -K_i (B_i \omega_i + \sum_{j:i \to j} P_{ij} - \sum_{k:k \to i} P_{ki})$$

 P_i^M : Mechanical power P_i^L : Load ω_i : Frequency P_{ij} : Power Flow P_i^C : Power command input K_i , B_i : Constant parameters

Suppose the system is in steady state (all variables = 0)

Disturbance, e.g. P_i^L

Suppose the system is in steady state (all variables = 0)

Disturbance, e.g. P_i^L

Question: How to modify AGC to be economic AGC?

Results: Economic AGC

$$\begin{array}{l} \dot{\omega}_{i} = -\frac{1}{M_{i}}(D_{i}\omega_{i} - P_{i}^{M} + P_{i}^{L} + \sum_{j:i \rightarrow j} P_{ij} - \sum_{k:k \rightarrow i} P_{ki}) \\ \dot{\omega}_{i} = -\frac{1}{M_{i}}(D_{i}\omega_{i} - D_{i}^{M} + P_{i}^{L} + \sum_{j:i \rightarrow j} P_{ij} - \sum_{k:k \rightarrow i} P_{ki}) \\ \dot{P}_{i}^{L} = T_{ij}(\omega_{i} - \omega_{j}) \qquad \text{Power Flow Dynamics} \\ \dot{P}_{i}^{M} = -\frac{1}{T_{j}}(\frac{1 - R_{i}K_{i}M_{i}}{R_{i}}C_{i}'(P_{i}^{M}) - P_{i}^{C} + \frac{1}{R}\omega_{i}) \\ \dot{P}_{i}^{C} = -K_{i}(B_{i}\omega_{i} + \sum_{j:i \rightarrow j} (P_{ij} - \gamma_{i,j}) - \sum_{k:k \rightarrow i} (P_{ki} - \gamma_{ki})) \\ \dot{\gamma}_{i} = \epsilon_{i} (M_{i}\omega_{i} - P_{i}^{C}/K_{i}); \quad \gamma_{i,j} = \gamma_{i} - \gamma_{j} \\ \end{array}$$
Drive the system to a new steady state

$$\begin{array}{c} (\mathbf{i}) \quad \omega_{i} = 0 \\ (\mathbf{i}) \quad \min_{P_{i}^{M}} \sum_{i} C_{i}(P_{i}^{M}) \\ \text{s.t.} \quad P_{i}^{M} = P_{i}^{L} + \sum_{j:i \rightarrow j} P_{ij} - \sum_{k:k \rightarrow i} P_{ki} \\ \end{array}$$
Economic

$$\begin{array}{c} \mathbf{AGC} \\ \mathbf{AGC} \\ \end{array}$$

<u>**Theorem**</u>(Li, Chen, Zhao, Low 2013):

Any trajectory $(P^{M}(t), \omega(t), P(t))$ converges to (P^{M^*}, ω^*, P^*)

- P^{M^*} is optimal to economic dispatch
- $\omega^* = 0$
- P^* is a feasible power flow

- Additional local variable
- Frequency, Power flow, Power Command: local measurable signals
- A decentralized algorithm; Local information and communications
- Not just local...

Only use information/signals that are easy to measure or calculate

Extension to load freq control P_{ii} P_i^m $\dot{\omega}_i = -\frac{1}{M_i} (D_i \omega_i - P_i^M + P_i^L + \sum_{j:i \to j} P_{ij} - \sum_{k:k \to i} P_{ki})$ P_i^L Swing dynamics $\dot{P}_{ij} = T_{ij}(\omega_i - \omega_j) \leftarrow$ Power Flow Dynamics $\dot{P}_{i}^{M} = -\frac{1}{T_{i}} \left(\frac{1 - R_{i}K_{i}M_{i}}{R_{i}} C_{i}'(P_{i}^{M}) - P_{i}^{C} + \frac{1}{R}\omega_{i} \right) \leftarrow \begin{array}{l} \text{Similar mechanisms} \\ \text{apply to } \textit{load control} \end{array}$ $\dot{P}_i^C = -K_i(B_i\omega_i + \sum (P_{ij} - \gamma_{i,j}) - \sum (P_{ki} - \gamma_{ki}))$ $i: i \rightarrow i$ $\dot{\gamma}_i = \epsilon_i \left(M_i \omega_i - P_i^C / K_i \right); \quad \gamma_{i,j} = \gamma_i - \gamma_j$ Drive the system to a new steady state (i) $\omega_i = 0$ **Optimal** (ii) $\min_{P_i^M} \sum_i C_i(P_i^M) + \sum_i D_i(P_i^L)$ Load disutility gens/loads control s.t. $P_i^M = P_i^L + \sum P_{ij} - \sum P_{ki}$ $k: k \rightarrow i$

Tool: reverse/forward engineering

Tool: reverse/forward engineering

Forward

Tool: reverse/forward engineering

System Dynamics & Modified Control Economic Generation Control

$$\dot{\omega}_{i} = -\frac{1}{M_{i}}(D_{i}\omega_{i} - P_{i}^{M} + P_{i}^{L} + \sum_{j:i \to j} P_{ij} - \sum_{k:k \to i} P_{ki})$$

$$\dot{P}_{ij} = T_{ij}(\omega_{i} - \omega_{j})$$

$$\dot{P}_{i}^{M} = -\frac{1}{T_{j}}(\frac{1 - R_{i}K_{i}M_{i}}{R_{i}}C_{i}'(P_{i}^{M}) - P_{i}^{C} + \frac{1}{R}\omega_{i})$$
solve
$$\dot{Solve}$$

$$\dot{Solve}$$
(i) $\omega_{i} = 0$
(ii) $\min_{P_{i}^{M}} \sum_{i} C_{i}(P_{i}^{M})$
solve
$$s.t. P_{i}^{M} = P_{i}^{L} + \sum_{j:i \to j} P_{ij} - \sum_{k:k \to i} P_{ki}$$

$$\dot{\gamma}_{i} = \epsilon_{i} (M_{i}\omega_{i} - P_{i}^{C}/K_{i}); \quad \gamma_{i,j} = \gamma_{i} - \gamma_{j}$$
Modified
Optimization Problem

Forward

Case Study

4 control areas: a 39-bus New England Transmission Network

Source: Ilic, et.al. IEEE TPS, vol. 8, no. 1, 1993

- At time t = 10s, load increase 0.2 pu at area 4
- (Nonlinear) power flow model; Nonzero resistance
- Sample rate =15s (e.g., ACE is reset for every 15s)
- Each area has a same cost function (optimal value should be that each area increase generation by 0.05 pu)

Mechanical Power Generation

Total generation cost

Frequency

Conclusion

Back Up

System dynamics **Economic Energy Control** $\dot{\omega}_i = -\frac{1}{M_i} (D_i \omega_i - P_i^m + P_i^L + \sum_{j:i \to j} P_{ij} - \sum_{k:k \to i} P_{ki})$ min $\sum_{i} \left(c_i(P_i^m) \right)$ over P_i^m , ω $\dot{P}_{ij} = T_{ij}(\omega_i - \omega_j)$ $\dot{P}_i^M = -\frac{1}{T_i} \left(P_i^M - P_i^C + \frac{1}{R} \omega_i \right)$ s. t. $P_i^m = P_i^L + \sum P_{ij} - \sum P_{ki}$ $\dot{P}_i^C = -K_i(B_i\omega_i + \sum P_{ij} - \sum P_{ki})$ $\omega_i = 0$ $j:i \rightarrow j$ $k:k \rightarrow i$ Partial primal-dual gradient algorithm min $\sum_{i=1}^{\infty} \left(\frac{1}{2}(P_i^m)^2 + \frac{D_i}{2}\omega_i^2\right)$ Reverse **Engineering** over P_i^M, ω s. t. $P_i^M = P_i^L + D_i \omega_i + \sum P_{ij} - \sum P_{ki}$

 $P_i^M = P_i^L$

Economic AGC

$$\dot{\omega}_{i} = -\frac{1}{M_{i}}(D_{i}\omega_{i} - P_{i}^{m} + P_{i}^{L} + \sum_{j:i \rightarrow j} P_{ij} - \sum_{k:k \rightarrow i} P_{ki})$$

$$\dot{P}_{ij} = T_{ij}(\omega_{i} - \omega_{j})$$

$$\dot{P}_{i}^{M} = -\frac{1}{T_{j}}(\frac{1 - R_{i}K_{i}M_{i}}{R_{i}}C_{i}'(P_{i}^{M}) - P_{i}^{C} + \frac{1}{R}\omega_{i})$$

$$\dot{P}_{i}^{C} = -K_{i}(B_{i}\omega_{i} + \sum_{j:i \rightarrow j} (P_{ij} - \gamma_{i,j}) - \sum_{k:k \rightarrow i} (P_{ki} - \gamma_{ki}))$$

$$\dot{\gamma}_{ij} = \epsilon_{ij}\left((M_{i}\omega_{i} - P_{i}^{C}/K_{i})\epsilon_{i} - (M_{j}\omega_{j} - P_{j}^{C}/K_{j})\epsilon_{j}\right)$$
Partial primal-dual gradient algorithm
$$\sum_{i} \left(\frac{1}{2}(P_{i}^{m})^{2} + \frac{D_{i}}{2}\omega_{i}^{2}\right)$$

$$\sum_{i} \left(c_{i}(P_{i}^{m}) + \frac{D_{i}}{2}\omega_{i}^{2}\right)$$

$$over P_{i}^{M}, \omega$$
s. t. $P_{i}^{M} = P_{i}^{L} + D_{i}\omega_{i} + \sum_{j:i \rightarrow j} P_{ij} - \sum_{k:k \rightarrow i} P_{ki}$

$$\frac{P_{i}^{M}}{P_{i}^{M}} = P_{i}^{L} + D_{i}\omega_{i} + \sum_{j:i \rightarrow j} P_{ij} - \sum_{k:k \rightarrow i} Y_{ki}$$