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Variables: the deviations from 
reference (steady state) values 

      : Mechanical power 
     : Load 
ωi : Frequency 
Pij : Power Flow 
Mi, Di: Constant parameters 
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Power Flow dynamics 

ωi 

ωj 

      : Mechanical power 
     : Load 
ωi : Frequency 
Pij : Power Flow 
Tij: Constant parameter 
 
 Assumptions: 

Lossless (resistance=0) 
Fixed voltage magnitudes  
Small deviation of angles 
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Turbine-Governor Control 
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      : Mechanical power 
     : Load 
ωi : Frequency 
Pij : Power Flow 
     : Power command input 
Ti, Ri: Constant parameters 
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(Area Control Error) ACE-based AGC 
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      : Mechanical power 
     : Load 
ωi : Frequency 
Pij : Power Flow 
     : Power command input 
Ki, Bi: Constant parameters 
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Question: How to modify AGC to be economic AGC?  
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Results: Economic AGC 

Theorem(Li, Chen, Zhao, Low 2013):  

 Any trajectory                            converges to 

•         is optimal to economic dispatch 

•       

•       is a feasible power flow 

 ( ), ( ), ( )MP t t P t

* 0 
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 * * *, ,MP P
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Results: Economic AGC 

— Additional local variable  

— Frequency, Power flow, Power Command: local measurable signals 

— A decentralized algorithm; Local information and communications 

— Not just local… 

 

Local communication Local computation 
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Not Just Local… 

Only use information/signals that are easy to measure or calculate 
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Extension to load freq control 
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Similar mechanisms 
apply to load control  
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Case Study 

• At time t = 10s, load increase 0.2 pu at area 4 

• (Nonlinear) power flow model; Nonzero resistance  

• Sample rate =15s (e.g., ACE is reset for every 15s) 

• Each area has a same cost function (optimal value should be 

that each area increase generation by 0.05 pu ) 

4 control areas: a 39-bus New 
England Transmission Network 

1 

4  

2  

3  

Source: Ilic, et.al. IEEE TPS, vol. 
8, no. 1, 1993 
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Conclusion 
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Maintain the nominal frequency 
and  the inter-area power flows 
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freq control 

1. Optimally schedule 
gens/loads within a area  

2. Optimally (re)schedule gens/loads 
among areas (if it is permitted) 

Minor Modification 
(additional local computation and communication 

based on local measurable signals) 
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Partial primal-dual gradient algorithm  

 2 21
2 2

: :

min       ( )

over     ,

s. t.      =  

           = 

            

iDm

i i

i

M

i

M L

i i i i ij ki

j i j k k i

M L

i i

P

P

P P D P P

P P






 



  



 

 

: :

min       ( )

over     ,   

s. t.      = 

            0

m

i i

i

m

i

m L

i i ij ki

j i j k k i

i

c P

P

P P P P





 

 





 

Reverse 

Engineering 



Economic Energy Control 

 2 21
2 2

: :

min       ( )

over     ,

s. t.      =  

           = 

            

iDm

i i

i

M

i

M L

i i i i ij ki

j i j k k i

M L

i i

P

P

P P D P P

P P






 



  



 

 

: :

min       ( )

over     ,   

s. t.      = 

            0

m

i i

i

m

i

m L

i i ij ki

j i j k k i

i

c P

P

P P P P





 

 





 

 2

2
( ) iDm

i i i

i

c P 

: :

M L

i i ij ki

j i j k k i

P P  
 

   

Forward 

Engineering Partial primal-dual gradient algorithm  

Economic AGC 


