Graph-theoretic Algorithm for Nonlinear Power Optimization Problems

Javad Lavaei

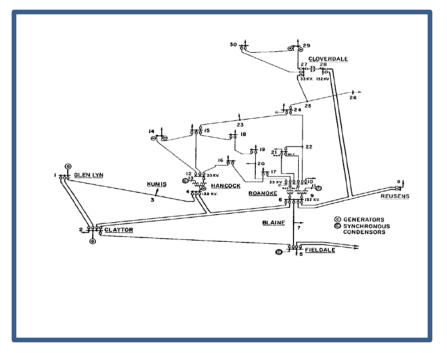
Department of Electrical Engineering Columbia University

Joint work with Ramtin Madani, Somayeh Sojoudi, Ghazal Fazelnia

Optimization for Power Networks

Optimizations:

- Optimal power flow (OPF)
- Security-constrained OPF
- State estimation
- Network reconfiguration
- Unit commitment
- Dynamic energy management



□ Issue of non-convexity:

- Discrete parameters
- Nonlinearity in continuous variables

□ Transition from traditional grid to smart grid:

- More variables (10X)
- Time constraints (100X)

Broad Interest in Power Optimization

• OPF-based problems solved on different time scales:

- Electricity market
- Real-time operation
- Security assessment
- Transmission planning

D Existing methods based on linearization or local search

Question: How to find the best solution using a scalable robust algorithm?

□ Huge literature since 1962 by power, OR and Econ people

Rank-Constrained Optimization

Consider a polynomial optimization

$$\min_{\substack{x \in \mathbb{R}^{n-1}}} f_0(x)$$

s.t. $f_k(x) \le 0$ for $k = 1, \dots, p$

 \Box With no loss of generality, assume that f_k 's are quadratic.

Consider the transformation:

$$\mathbf{X} \triangleq \begin{bmatrix} 1 & x^T \end{bmatrix}^T \begin{bmatrix} 1 & x^T \end{bmatrix}$$

\square Rank-constrained reformulation: $\min_{\mathbf{X}\in\mathbb{S}^n}$ $\operatorname{trace}\{\mathbf{F}_0\mathbf{X}\}$ s.t. $\operatorname{trace}\{\mathbf{F}_k\mathbf{X}\} \le 0$ $x_{11} = 1$ $\mathbf{X} \succeq 0$ $\mathbf{P} = 1.$

□ Review of four previous projects on SDP relaxation

□ New results:

- Notion of complexity for power networks (treewidth)
- Connection between rank and treewidth
- Case studies:
 - **1. IEEE 300 bus:** Rank for security constrained OPF ≤ 7
 - **2.** Polish 3120 bus: Rank for security constrained OPF ≤ 27

Project 1: How to solve a given OPF in polynomial time? (joint work with Steven Low)

- □ SDP relaxation works for various systems (IEEE systems, etc.).
- □ This is due to passivity.

Project 2: Find network topologies over which optimization is easy? (joint work with Somayeh Sojoudi, David Tse and Baosen Zhang)

Distribution (acyclic) networks are fine (under certain assumptions).

Transmission networks may need phase shifters.

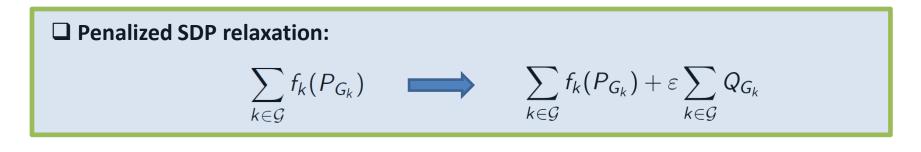
Project 3: How to design a distributed algorithm for solving OPF? (joint work with Stephen Boyd, Eric Chu and Matt Kranning)

A practical (infinitely) parallelizable algorithm using ADMM.

□ It solves 10,000-bus OPF in 0.85 seconds on a single core machine.

Project 4

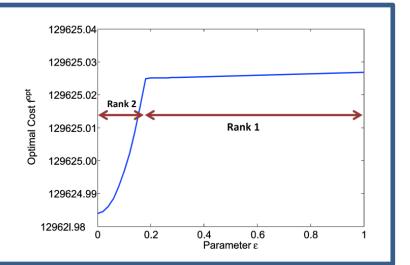
Project 4: How to do optimization for mesh networks? (joint work with Ramtin Madani and Somayeh Sojoudi)



Example borrowed from Bukhsh et al.:

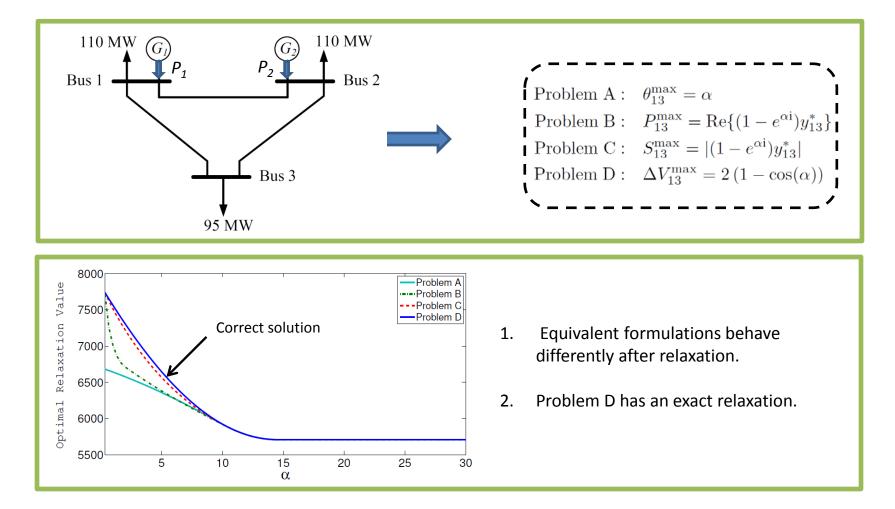
□ Modify IEEE 118-bus system has 3 local solutions with the optimal costs 129625.03, 177984.32 and 195695.54.

Our method finds the best one.



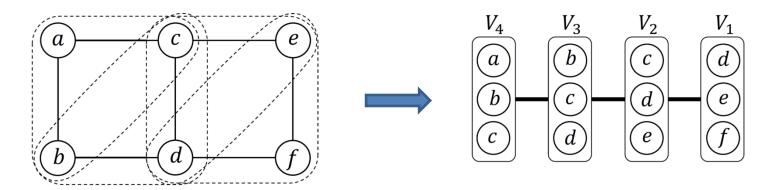
Response of SDP to Equivalent Formulations

Capacity constraint: active power, apparent power, angle difference, voltage difference, current?



Treewidth

Tree decomposition:



□ We map a given graph *G* into a tree *T* such that:

- Each node of T is a collection of vertices of G
- Each edge of G appears in one node of T
- ✤ If a vertex shows up in multiple nodes of *T*, those nodes should form a subtree

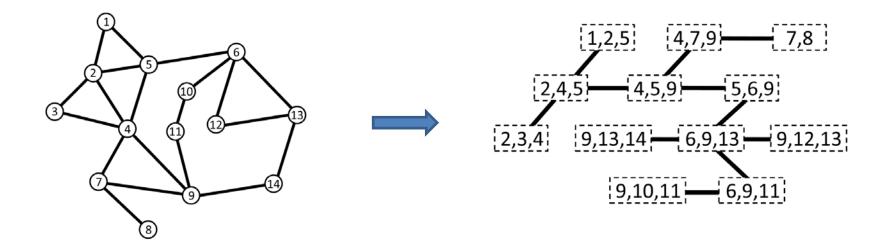
□ Width of a tree decomposition: The cardinality of largest node minus one

Treewidth of graph: The smallest width of all tree decompositions

Power Networks

□ Treewidth of a tree: 1

□ How about the treewidth of IEEE 14-bus system with multiple cycles? 2

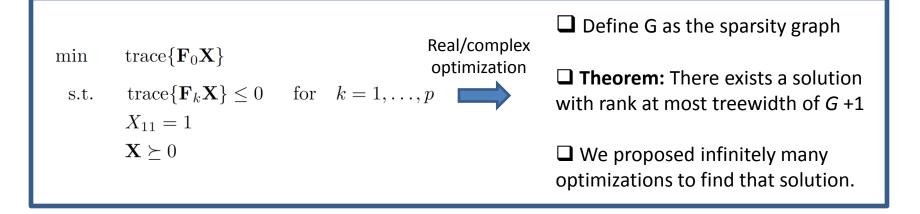


□ How to compute the treewidth of a large graph?

- ✤ NP-hard problem
- We used graph reduction techniques for sparse power networks

Upper bound on the treewidth of sample power networks:

System \mathcal{G}	$\operatorname{tw}{\mathcal{G}}$	System \mathcal{G}	Bound on $tw{G}$
IEEE 14-bus	2	Polish 2383-bus	26
IEEE 30-bus	3	Polish 2736-bus	38
New England 39-bus	3	Polish 2746-bus	40
IEEE 57-bus	5	Polish 3012-bus	28
IEEE 118-bus	4	Polish 3120-bus	26
IEEE 300-bus	6	Polish 3375-bus	28



Examples

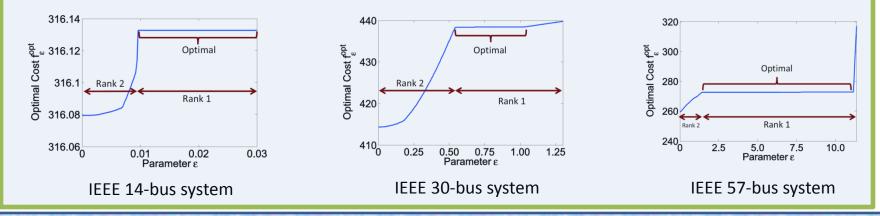
Example: Consider the security-constrained unit-commitment OPF problem.

Use SDP relaxation for this mixed-integer nonlinear program.

U What is the rank of *X^{opt}*?

- **1. IEEE 300-bus system:** rank ≤ 7
- **2. Polish 3120-bus system:** Rank ≤ 27

□ How to go from low-rank to rank-1? Penalization (tested on 7000 examples)



Javad Lavaei, Columbia University

polynomial optimization \iff dense QCQP \iff sparse QCQP

Sparsification Technique: distributed computation

$$x_i \iff (x_{i1}, x_{i2})$$
 s.t. $x_{i1} = x_{i2}$

□ This gives rise to a sparse QCQP with a sparse graph.

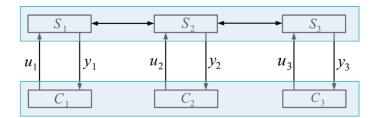
The treewidth can be reduced to 2.

Theorem: Every polynomial optimization has a QCQP formulation whose SDP relaxation has a solution with rank 1, 2 or 3.

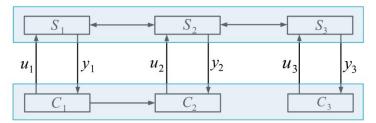
Distributed Control

□ Computational challenges arising in the control of real-world systems:

- Communication networks
- Electrical power systems
- Aerospace systems
- Large-space flexible structures
- Traffic systems
- Wireless sensor networks
- Various multi-agent systems



Decentralized control



Distributed control

Optimal Decentralized Control Problem

Optimal centralized control: Easy (LQR, LQG, etc.)

Optimal distributed control (ODC): NP-hard (Witsenhausen's example)

□ Consider the time-varying system:

 \mathbf{n}

$$\begin{cases} x[\tau+1] = A[\tau]x[\tau] + B[\tau]u[\tau] \\ y[\tau] = C[\tau]x[\tau] \end{cases}, \quad \forall \tau \in \mathbb{Z}_+ \end{cases}$$

 $\hfill \Box$ The goal is to design a structured controller $u[\tau]=Ky[\tau]$ to minimize

$$\sum_{\tau=0}^{p} \left(x[\tau]^{T} Q[\tau] x[\tau] + u[\tau]^{T} R[\tau] u[\tau] \right) + \mu \operatorname{trace} \{ K K^{T} \}$$

Two Quadratic Formulations in Static Case

G Formulation in time domain:

- Stack the free parameters of *K* in a vector *h*.
- Define v as:

$$\mathbf{v} = \begin{bmatrix} 1 & h^* & x[0]^* & x[1]^* & \cdots & x[p]^* & y[0]^* & \cdots & y[p]^* & u[0]^* & \cdots & u[p]^* \end{bmatrix}^*$$

□ Formulation in Lypunov domain:

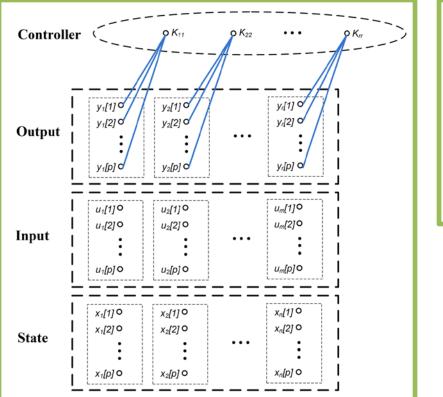
Consider the BMI constraint:

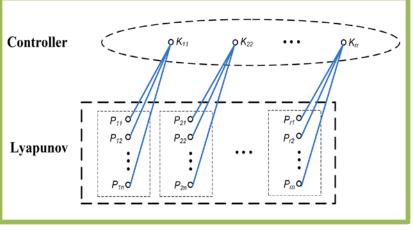
Define v as:

$$\begin{bmatrix} P & P(A+BKC)^* \\ (A+BKC)P & P \end{bmatrix} \succ 0$$

$$v = \begin{bmatrix} 1 & h^* & P_{11} & P_{12} & \cdots & P_{1n} & \cdots & P_{n1} & P_{n2} & \cdots & P_{nn} \end{bmatrix}^*$$

Graph of ODC for Time-Domain Formulation





Theorem: The SDP relaxation of ODC has a solution with rank 1-3 in the static/dynamic case for the time-domain or Lyapunov-domain formulation.

Conclusions

Optimization over power networks:

Complexity is related to treewidth.

Optimal decentralized control:

□ NP-hard problem with a small treewidth.

General theory for polynomial optimization:

Every polynomial optimization has an SDP relaxation with a rank 1-3 solution.

References:

- 1. R. Madani, G. Fazelnia, S. Sojoudi, J. Lavaei, "Finding Low-rank Solutions of Sparse Linear Matrix Inequalities using Convex Optimization," Preprint, 2014.
- 2. R. Madani, S. Sojoudi, J. Lavaei, "Convex Relaxation for Optimal Power Flow Problem: Mesh Networks," Asilomar, 2013.
- 3. G. Fazelnia, R. Madani, J. Lavaei, "Optimal Decentralized Control Problem as A Rank-Constrained Optimization," Preprint, 2014.