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Variability of Wind!

◆  Goal: Use renewable energy – wind!
◆  Problem: Highly variable – “stochastic”!
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Demand Response!

◆  Adjust demand to match supply!

◆  Inertial thermal loads – building air conditioners!
–  Air conditioner can be switched off for a short while 

without loss of comfort!
–  Traditionally under thermostatic control!

Tmax!

Tmin!
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Limited capability of demand response!

◆  Renewable energy may not be enough to satisfy 
load requirements!

Need to turn on  
air-conditioner!

Tmax!

Tmin!

◆  So there are limitations to demand response!
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Variability of power demand not met 
by renewables!

◆  Residual power demand not met by renewables!

◆  Prefer less variability so that operating reserve 
requirements are less!

Time!
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Several Questions – 1!

◆  To what extent can demand of inertial loads be 
met by renewable sources?!

◆  How does flexibility of load requirements, such as 
comfort level settings, influence how much 
renewable power can be used?!

◆  How much flexibility can be extracted from 
thermal inertial loads for maximum utilization of 
variable generation such as wind?!
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Several Questions – 2!

◆  To what extent can operating reserve required be 
minimized?!

◆  How beneficial is “demand pooling”?!
◆  Can we come up with quantitative answers?!
◆  How can demand “pooling” be done?!
◆  What are the communication requirements?!
◆  How much information exchange is needed 

between suppliers and consumers?!
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Several Questions – 3!
◆  What are the privacy implications? !
◆  Does it require intrusive sensing?!
◆  How distributed can the solution be?!
◆  How tractable (computational complexity) is the 

solution?!
◆  How robust is the solution?!
◆  How implementable is it?!

Role of model features, cost functions, stochasticity 
assumptions, convexity, asymptotics, etc!
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Load Aggregator!

Load service entity 

a.k.a. Load aggregator 

•  Acts as coordinator 

•  Possibly monitors 
temperature of A/Cs 

•  Possibly controls power 
to cool A/Cs 

•  Appears as aggregated 
load 
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Features of problem!
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Wind model!

◆  Model wind as a finite state Markov process!

◆  Even simpler model for illustration!
–  On-Off process!

Wind power!

Time!

ON! OFF!

Wind power! Time!

W
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Temperature dynamics !

!

!

◆  Inertial thermal load (A/C) dynamics!

» Rate of change in temperature =  Ambient heating – Power for 
cooling.!
!

Power given to load i
Time

ẋi(t) = hi(t)� Pi(t)

xi(t)

Temperature of load i



13/40!

©  July 13, 2010 , P.  R. Kumar !

User specified comfort range !
◆  Range of comfortable temperature !
◆  Either: Enforce hard constraint!

!
!
◆  Or: Penalize the violations !
!

[⇥
min

,⇥
max

]

t

⇥min

⇥
max

t

⇥min

⇥
max

Allow but penalize the violation !

14/40!

©  July 13, 2010 , P.  R. Kumar !

Stochastic control problem: 
Comfort violation probability!

◆  Minimize the probability of leaving a user 
specified comfort range !

!
◆  Wind process!

◆  Temperature dynamics !
!
◆  Cost function!
!
 !

[⇥
min

,⇥
max

]

X
Pw
i (t) ⇠ Markov process

lim
T!1

1

T

Z
T

0

X

i

I(x
i

(t) > ⇥
max

)dt

ẋi(t) = hi � P

w
i (t)
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Optimal policy in comfort violation 
probability model!
!
!
!
!
!
!
!
!

Theorem: Provide power to the coolest load that is above the 
temperature range. !
!
◆  Issue:  Unfair, temperatures of some loads will remain higher 

than others!

◆  Possible solution: Minimize the variance of comfort violation  !
!
!

Wind power!
Time!

Temperature!
⇥min

⇥
max

Load 2!

Load 1!
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Stochastic control problem: 
Variance minimization!

! Stochastic control problem:!
– Cost function!

! Theorem: Optimal policy “synchronizes” loads!
Loads will remain synchronized !
after this time instant !

Wind power!
Time!

Temperature!
⇥min

⇥
max

Load 2!

Load 1!

lim
T!1

1

T

Z
T

0

X

i

[(x
i

(t)�⇥
max

)+]2dt
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◆  Temperatures can go very high occasionally!

◆  Hard constraints require reliable non-renewable 
source !

Need to turn on air-conditioner, 
but no wind available!

⇥min

⇥
max

Use non-renewable power to!
 maintain constraint  !

Temperature! ⇥min

⇥
max

Load 2!

Load 1!

Requirement for reserves (of non-
renewable power) !
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Cost function for reducing operating 
reserves!
◆  Desire low operating reserve requirements!

◆  Impose a quadratic cost on non-renewable power usage  !

Prefer this!

t!

More variability!

t!

Less variability!

Z
(
X

Pn
i (t))

2dt



19/40!

©  July 13, 2010 , P.  R. Kumar !

Stochastic control problem: Reduction of 
variability with temperature constraint!

Stochastic control Problem:!

◆  Wind process!
!
◆  Temperature dynamics !

◆   Non-renewable power!

◆  Temperature constraint!
!
!
!
◆  Quadratic cost to reduce variability! lim

T!1

1

T

Z T

0
[
X

i

Pn
i (t)]

2dt

Pn
i (t) � 0

X
Pw
i (t) ⇠ Markov process

�Pn
i (t)

xi(t) 2 [⇥
min

,⇥
max

], 8i

ẋi(t) = hi � P

w
i (t)
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◆  Theorem:  Optimal policy still synchronizes loads!!

!
!
!

◆  Counter-intuitive??!

◆  Question: Is there some modification in the model or cost 
function which  leads to de-synchronization ?!

 !
!
!
!

!
!

Optimal solution: Reduction of 
variability with temperature constraint!

Loads will remain synchronized !
after this time instant !

Temperature!
⇥min

⇥
max Load 2!

Load 1!
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How to induce desynchronization: 
Markov model for changes in Θmax !

◆  Suppose users occasionally change          
setting at the same time !
–  E.g. Super Bowl Sundays @ game time.!

◆  E.g.           is a two state Markov process!

!

!

!

⇥
max

⇥
max

1/⌧l

1/⌧h

⇥2
max

⇥1
max

t

Comfort range!

⇥2
max

⇥1
max

⇥min
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Stochastic control problem: Stochastic 
variation of temperature constraints!

◆  Wind process:!

◆  Temperature dynamics:!

◆  Non-renewable power !
!
◆  Stochastic comfort level!

◆  Temperature  constraint:!
!
◆  Maximum cooling rate:!

◆  Quadratic cost:!

X
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i (t) ⇠ Markov process
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◆  It is optimal to break symmetry at high 
temperatures !
–  Hedges against the future eventuality that the 

thermostats are switched low!

Optimal de-synchronization and re-
synchronization!

Time

Te
mp

er
atu

re

Omax
1

O2max

⇥min
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Vector field of optimal solution!

◆  Nature of optimal solution!
–  De-synchronization at high temperatures!
–  Re-synchronization at low temperatures!

!

Te
m
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 lo
ad

 2

 

 

Temperature load 1

Vector field of temperature changes!
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Keep the temperatures apart!Locally concave!

Bring the temperatures!
 together!

Local concavity/convexity of optimal 
cost-to-go resulting from HJB equation!

!  But optimal policy is difficult to compute! 26/40!
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◆  Approximate optimal policy !
–  De-synchronization above temperature!

»  Provide power to load with minimum temperature amongst all loads with 
temperature higher than !

»  Bring the temperatures together for loads in !
–  Power is assumed affine in                  and  !
–  Policy is a function of a few parameters, optimize iteratively!

◆  But requires intrusive sensing!

✓2
[⇥min, ✓2]

Temperature

No
n−
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e 
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we
r

 

 

⇥min ⇥2
max

✓2

[⇥min, ✓2] [✓2,⇥max

]

Two loads optimal solution along!
x1 = x2

A heuristic!
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A possibly implementable  
architecture of a solution!
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Thermostatic control with set points!

Load service 
entity 

- “Senses” wind              
ddpower 
- “Sets” set 
ddpoints Zi 

Z1

Z2

ZN
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Control policy!

Wind not blowing!
Zi!

t!0!

Cooling 
using 
“wind”!

Ambient 
temperature 
rise!

Cooling using 
“non-renewable”!
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Information flow in architecture!

◆  Wind blowing or not = “Price signal”!
–  Information from LSE to consumer!
–  Minimal information needed to be responsive?!

◆  LSE need not “set” thermostat set-points!
–  Only needs to set empirical distribution of set-points!
–  Not detailed actuation!

◆  No flow of state information from home to LSE!
◆  Information and communication requirements!

–  Price signal to consumers!
–  Infrequent distribution signaling to consumers!

◆  (LSE also monitors total power usage by consumers)!
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Overall optimization problem!

◆  Stochastic Wind process:!

◆  Temperature dynamics:!

◆  Cost:!

!
User discomfort cost!

NX

1

Pw
i ⇠ Wt

Grid power variation cost!

Min

2

4 lim
T!1

1

T

Z T

0

 
NX

1

P

g
i (t)

!2

+ �

NX

1

[(xi(t)�⇥M
i (t))+]2dt

3

5
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Overall optimization problem!

◆  Stochastic Wind process:!

◆  Temperature dynamics:!

◆  Comfort setting dynamics:!

◆  Cost:!

!
Grid power variation cost! User discomfort cost!

NX

1

Pw
i ⇠ Wt

Min

2

4 lim
T!1

1

T

Z T

0

 
NX

1

P

g
i (t)

!2

+ �

NX

1

[(xi(t)�⇥M
i (t))+]2dt

3

5
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Overall optimization problem!
◆  How to choose                            so as to minimize: !
 !
!
◆  Difficult:!

–  Complex as N is large, high dimensional. !
–  Need to solve different problem for different N!

◆  Solution:!
–  Study asymptotic limit as !
–  Solution becomes explicit!!
–  And asymptotic solution is also nearly optimal even for 

small N!

Min

2

4 lim
T!1

1

T

Z T

0

 
NX

1

P

g
i (t)

!2

+ �

NX

1

[(xi(t)�⇥M
i (t))+]2dt

3

5

{Z1, Z2, . . . , ZN}

N ! 1.
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Continuum limit of Z-policy!
◆  Continuum of loads in [0,1]!
◆   u(x)= fraction of loads with set-points less than x, 

! = empirical distribution of set-points!
◆  Cost function!

–  Masses at set points!

C [0,1](u) =�

Z ⇥2

0
�(z)u0(z)dz + (h)2(�⇥2 +

Z ⇥2

0
u2(z)P({Xz = z} \ {Xz+dz < z + dz}))

C [0,1](u) =�

Z ⇥2

0
�(z)u0(z)dz + (h)2(�⇥2 +

Z ⇥2

0
u2(z)P({Xz = z} \ {Xz+dz < z + dz}))
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Continuum limit optimization problem!
◆  Resulting  

variational  
problem:!

◆  Solution to variational problem (Euler-Lagrange):!

◆  Not so fast, singularity:!

!
◆  Solution is given by: !

@F

@u

� d

dx

@F

@u

0 = 0 ) 2(h)2u(x)D(x)� d

dx

��(x) = 0 ) u(x) =
��0(x)

2(h)2D(x)

@2F

@u02 = 0

u⇤(z) =

(
min

⇣
1, ��0(z)

2(h)2D(z)

⌘
If z < ⇥2

1 If z = ⇥2. 36/40!
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Optimal solution of continuum limit!

Z !
⇥1 ⇥2

u0⇤(z)

Optimal desynchronization  
of demand response!
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Z-policy: Finite population approximation 
from continuum limit asymptotic!

◆  Generate             to approximate continuum 
limit!

{Zi}N1
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Some simulation results!
◆  This appears to work very well even when N 

is small !
◆  Even N = 5!

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 104

0

0.2

0.4

0.6

0.8

Time A

No
nre

ne
wa

ble
 co

st A

 

 
Optimal grid cost
Grid cost for generated  Z

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 104

0

0.02

0.04

0.06

0.08

0.1

Time A

Va
ria

tion
 co

st A

 

 
Optimal temperature variation cost
Variation cost for generated  Z
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Concluding remarks!

◆  Attempt to develop an architecture and 
tractable solution for demand response!

◆  Many extensions needed and feasible!
–  Response to comfort variations!
–  Availability of wind power!
–  Generalize wind model, temperature dynamics, 

etc.!
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Thank you!


