2/40

Demand Response

- Adjust demand to match supply
- Inertial thermal loads building air conditioners
 - Air conditioner can be switched off for a short while without loss of comfort
 - Traditionally under thermostatic control

0030

Variability of power demand not met by renewables

Residual power demand not met by renewables

Prefer less variability so that operating reserve requirements are less

Limited capability of demand response

 Renewable energy may not be enough to satisfy load requirements

So there are limitations to demand response

0000

4/40

Several Questions - 1

- To what extent can demand of inertial loads be met by renewable sources?
- How does flexibility of load requirements, such as comfort level settings, influence how much renewable power can be used?
- How much flexibility can be extracted from thermal inertial loads for maximum utilization of variable generation such as wind?

7/40

Several Questions - 2

- To what extent can operating reserve required be minimized?
- How beneficial is "demand pooling"?
- Can we come up with quantitative answers?
- How can demand "pooling" be done?
- What are the communication requirements?
- How much information exchange is needed between suppliers and consumers?

Several Questions – 3

- What are the privacy implications?
- Does it require intrusive sensing?
- How distributed can the solution be?
- How tractable (computational complexity) is the solution?
- How robust is the solution?
- How implementable is it?

Role of model features, cost functions, stochasticity assumptions, convexity, asymptotics, etc

8/40

- Range of comfortable temperature $[\Theta_{\min}, \Theta_{\max}]$
- Either: Enforce hard constraint

0.050

13/40

Optimal policy in comfort violation probability model

Theorem: Provide power to the coolest load that is above the temperature range.

- Issue: Unfair, temperatures of some loads will remain higher than others
- Possible solution: Minimize the variance of comfort violation 15/40

0030

Requirement for reserves (of non-renewable power)

• Temperatures can go very high occasionally

Temperature

- mperature Θ_{\min}
- Hard constraints require reliable non-renewable source
 Use non-renewable powe

Stochastic control problem: Comfort violation probability

- Minimize the probability of leaving a user specified comfort range $[\Theta_{\min}, \Theta_{\max}]$
- Wind process $\sum P_i^w(t) \sim \text{Markov process}$
- Temperature dynamics $\dot{x}_i(t) = h_i P_i^w(t)$
- Cost function $\boxed{\lim_{T \to \infty} \frac{1}{T} \int_0^T \sum_i \mathbb{I}(x_i(t) > \Theta_{max}) dt}$

@030

14/40

Stochastic control problem: Variance minimization

- Stochastic control problem: - Cost function $\lim_{T \to \infty} \frac{1}{T} \int_0^T \sum_i [(x_i(t) - \Theta_{max})^+]^2 dt$
- Theorem: Optimal policy "synchronizes" loads

0030

Cost function for reducing operating reserves

Desire low operating reserve requirements

- Impose a quadratic cost on non-renewable power usage
 - $\int (\sum P_i^n(t))^2 dt$

00

Stochastic control problem: Reduction of variability with temperature constraint

Stochastic control Problem:

- Wind process $\sum P_i^w(t) \sim \text{Markov process}$
- Temperature dynamics $\dot{x}_i(t) = h_i P_i^w(t) P_i^n(t)$
- Non-renewable power $P_i^n(t) \ge 0$
- Temperature constraint $x_i(t) \in [\Theta_{\min}, \Theta_{\max}], \forall i$
- Quadratic cost to reduce variability

0000

How to induce desynchronization: Markov model for changes in Θ_{max}

• Suppose users occasionally change Θ_{max} setting at the same time

- E.g. Super Bowl Sundays @ game time.

• E.g. Θ_{max} is a two state Markov process

0030

Optimal de-synchronization and resynchronization

- It is optimal to break symmetry at high temperatures
 - Hedges against the future eventuality that the thermostats are switched low

Optimal solution: Reduction of variability with temperature constraint

Theorem: Optimal policy still synchronizes loads!
 Loads will remain synchronized

- Counter-intuitive??
- Question: Is there some modification in the model or cost function which leads to de-synchronization ?

0030

20/40

Stochastic control problem: Stochastic variation of temperature constraints

- Wind process: $\sum P_i^w(t) \sim \text{Markov process}$
- Temperature dynamics: $\dot{x}_i(t) = h_i P_i^w(t) P_i^n(t)$
- Non-renewable power $P_i^n(t) \ge 0$
- Stochastic comfort level $\Theta_{max}(t) \sim Markov process$, $\Theta_{max}(t) \in \{\Theta_{max}^1, \Theta_{max}^2\}$
- Temperature constraint: $x_i(t) \in [\Theta_{min}, \Theta_{max}^2], \forall i$
- Maximum cooling rate: $P_i^n(t) = M$ If $x_i(t) > \Theta_{max}(t)$
- Quadratic cost: $\lim_{T \to \infty} \frac{1}{T} \int_0^T [\sum_i P_i^n(t)]^2 dt$

22/40

0000

Vector field of optimal solution

- Nature of optimal solution
 - De-synchronization at high temperatures
 - Re-synchronization at low temperatures

Vector field of temperature changes

0030

26/40

28/40

0000

architecture of a solution

27/40

0000

Information flow in architecture

Wind blowing or not = "Price signal"

"Senses" wind power . 'Sets" set points Z_i

- Information from LSE to consumer
- Minimal information needed to be responsive?
- LSE need not "set" thermostat set-points
 - Only needs to set empirical distribution of set-points - Not detailed actuation
- No flow of state information from home to LSE
- Information and communication requirements - Price signal to consumers
 - Infrequent distribution signaling to consumers
- (LSE also monitors total power usage by consumers)₄₀

Overall optimization problem

- Stochastic Wind process: $\sum_{i=1}^{N} P_i^w \sim W_t$
- Temperature dynamics: $\dot{x}_i(t) = f(P_i^w(t) + P_i^g(t), x_i(t))$

• Cost: Min
$$\left[\lim_{T \to \infty} \frac{1}{T} \int_0^T \left(\sum_{1}^N P_i^g(t)\right)^2 dt\right]$$
Grid power variation cost

31/40

0000

Overall optimization problem

- How to choose $\{Z_1, Z_2, \dots, Z_N\}$ so as to minimize: $\operatorname{Min} \left[\lim_{T \to \infty} \frac{1}{T} \int_0^T \left(\sum_{1}^N P_i^g(t) \right)^2 + \gamma \sum_{1}^N [(x_i(t) - \Theta_i^M(t))^+]^2 dt \right]$
- Difficult:
 - Complex as N is large, high dimensional.
 - Need to solve different problem for different N
- Solution:
 - Study asymptotic limit as $N \to \infty$.
 - Solution becomes explicit!
 - And asymptotic solution is also nearly optimal even for small ${\it N}$

33/40

0000

Overall optimization problem

- Stochastic Wind process: $\sum_{1}^{N} P_{i}^{w} \sim W_{t}$
- Temperature dynamics: $\dot{x}_i(t) = f(P_i^w(t) + P_i^g(t), x_i(t))$
- Comfort setting dynamics: $\Theta_i^M(t) \sim$ Stochastic process

• Cost: Min
$$\left[\lim_{T \to \infty} \frac{1}{T} \int_0^T \left(\sum_{1}^N P_i^g(t)\right)^2 + \gamma \sum_{1}^N [(x_i(t) - \Theta_i^M(t))^+]^2 dt\right]$$

Grid power variation cost User disconfort cost

0030

Continuum limit of Z-policy

- Continuum of loads in [0,1]
- u(x)= fraction of loads with set-points less than x,
 = empirical distribution of set-points
- Cost function

$$C^{[0,1]}(u) = \gamma \int_0^{\Theta_2} \Phi(z) u'(z) dz + (h)^2 (\delta_{\Theta_2} + \int_0^{\Theta_2} u^2(z) \mathbb{P}(\{X_z = z\} \cap \{X_{z+dz} < z+dz\}))$$

- Masses at set points

34/40

0030

Continuum limit optimization problem

 Resulting variational problem: $\begin{array}{ll} \text{Minimize} & J[u] = \int_{0}^{\Theta_2} F(z,u,u') dz \\ \text{s.t.} & u \in \mathcal{U} \\ & u(0) = 0, u(\Theta_2) = 1. \end{array}$

Solution to variational problem (Euler-Lagrange):

$$\frac{\partial F}{\partial u} - \frac{d}{dx}\frac{\partial F}{\partial u'} = 0 \Rightarrow 2(h)^2 u(x)D(x) - \frac{d}{dx}\gamma\Phi(x) = 0 \Rightarrow u(x) = \frac{\gamma\Phi'(x)}{2(h)^2 D(x)}$$

• Not so fast, singularity: $\frac{\partial^2 F}{\partial u'^2} = 0$

• Solution is given by:
$$u^*(z) = \begin{cases} \min\left(1, \frac{\gamma \Phi'(z)}{2(h)^2 D(z)}\right) & \text{If } z < \Theta_2 \\ 1 & \text{If } z = \Theta_2. \end{cases}$$

Optimal solution of continuum limit

of demand response

Z-policy: Finite population approximation from continuum limit asymptotic

 \bullet Generate $\{Z_i\}_1^N$ to approximate continuum limit

Concluding remarks

- Attempt to develop an architecture and tractable solution for demand response
- Many extensions needed and feasible
 - Response to comfort variations
 - Availability of wind power
 - Generalize wind model, temperature dynamics, etc.

Some simulation results

- This appears to work very well even when N is small
- Even *N* = 5

0030

38/40

Thank you