Distributed Optimization: How to Bridge the Gap between Theory and Application?

Gabriela Hug, ghug@ece.cmu.edu

partially in collaboration with Soummya Kar and partially with Ozan Tonguz
Purpose of Talk

- Part I – “Soul Searching”
 - Initiate discussion on how gap between theoretic development of distributed algorithms and practical application in the “real world” can be closed
 - Discuss measures of performance for distributed algorithm beyond number of iterations

- Part II - Research
 - Introduce distributed DC Optimal Power Flow method
Introduction

- Motivation for Distributed Approaches
 - *Distributed Infrastructure*: Transition to distributed power plants and intelligent demand
 - *Computational Efficiency*: Stochastic / predictive optimization leads to computationally intensive calculations
 - *Communication*: Ubiquitous communication capabilities expected to be available
 - *Coordination*: Information sharing is crucial for enabling optimal coordination and monitoring across system
Introduction

- Definition of “Distributed”
 - No need for centralized coordinator
 - Limited communication among distributed entities
 - Has to converge to same solution achieved by centralized optimization

\[
\begin{align*}
\text{min } (C_A(x_A) + C_B(x_B)) \\
\text{s.t. } g_A(x_A, x_B) &= 0 \\
\quad g_B(x_A, x_B) &= 0
\end{align*}
\]

\[
\begin{align*}
\text{not equal to}
\end{align*}
\]

\[
\begin{align*}
\text{min } C_A(x_A) \\
\text{s.t. } g_A(x_A) &= 0
\end{align*}
\]

\[
\begin{align*}
\text{min } C_B(x_B) \\
\text{s.t. } g_B(x_B) &= 0
\end{align*}
\]
Introduction

- Advantages
 - improved computational efficiency to because of the possibility for parallel computations,
 - increased resilience against outages of computational entities,
 - opportunity to achieve system wide optimal performance with limited data exchange among controlling entities

- Disadvantages
 - Communication needs
 - Vulnerable to communication failures
Distributedness

centralized

“hybrid”

fully distributed

Increase in information exchange

Increase in iterations until convergence

Increase in individual problem size

What is the optimal level of distributedness?
Implementation

Centralized Implementation
Goal: Computational Efficiency

Hybrid Implementation
Goal: Area Coordination plus Computational Efficiency

Fully Distributed Implementation
Goal: Resiliency plus Computational Efficiency
Implementation

- Synchronous vs. Asynchronous

Synchronous:
Less overall iterations
but communication after
every single iteration

Asynchronous:
More overall iterations but less
communication between “areas”
How to Benchmark Algorithms?

- **Measures of Performance**
 - Number of iterations => only useful if methods follow similar principles
 - Required data to be exchanged (amount and type)
 - Computation time
 - Robustness with respect to communication failures and with respect to computational entities
 - Computational complexity at each iteration
 - Accuracy of solution

How to weigh different objectives?
Should that be dependent on system state?
Barriers for Implementation

- Missing communication infrastructure?
- Trust in computational methods?
- Missing willingness to coordinate?
- History of centralized control/optimization?
- Vendor dominance in energy management systems?
Optimal Power Flow Problem

- Economic dispatch with line constraints

Minimize generation cost

\[\min \sum_{i=1}^{N_G} \left(a_i P_{G_i}^2 + b_i P_{G_i} + c_i \right) \]

s.t. power balance equations

\[P_{G_i} - P_{L_i} = \sum_{j \in \Omega_i} \frac{\theta_i - \theta_j}{X_{ij}} \quad i = 1, \ldots, N_G \]

line flow constraints

\[-\overline{P}_{ij} \leq \frac{\theta_i - \theta_j}{X_{ij}} \leq \overline{P}_{ij} \quad ij \in \Omega_L \]

generation constraints

\[0 \leq P_{G_i} \leq \overline{P}_{G_i} \quad i = 1, \ldots, N_G \]

derive first order optimality conditions resulting in system of equality and inequality constraints

\[
\begin{align*}
g(P, \theta, \lambda, \mu) &= 0 \\
h(P, \theta, \lambda, \mu) &\leq 0
\end{align*}
\]
Distributed Optimal Power Flow

- **Iterative procedure**
 - update local variables
 \[x_i(k + 1) = x_i(k) + \Phi^T \cdot g_i(x(k)) \]
 - project variables into feasible space
 - exchange updated values with neighbors
 - Locational Marginal Prices

\[
\lambda_i(k + 1) = \lambda_i(k) - \beta \cdot \left(\lambda_i(k) \sum_{j \in \Omega_i} \frac{1}{X_{ij}} - \sum_{j \in \Omega_i} \lambda_j(k) \frac{1}{X_{ij}} + \sum_{j \in \Omega_i} (\mu_{ij}(k) - \mu_{ji}(k)) \frac{1}{X_{ij}} \right)
\]

\[
dL/d\theta_j = \mu_{ij} - \mu_{ji}
\]

\[
dL/d\lambda_j : \text{power balance equation}
\]
Distributed Optimal Power Flow

- Power generation output

\[P_G^n(k + 1) = \frac{\lambda^i(k + 1) - b_n}{2a_n} \]

- Bus angle update

\[\theta_i(k + 1) = \theta_i(k) - \gamma \left(-\sum_{n\in\Omega_G^i} P_G^i(k) + P_{li} + \sum_{j\in\Omega_i} \frac{\theta^i(k) - \theta^j(k)}{X_{ij}} \right) \]

- Line flow Lagrange Multipliers

\[\mu_{ij}(k + 1) = \mu_{ij}(k) - \delta \left(\bar{P}_{ij} - \frac{\theta^i(k) - \theta^j(k)}{X_{ij}} \right) \]

\[\mu_{ji}(k + 1) = \mu_{ji}(k) - \delta \left(\bar{P}_{ij} + \frac{\theta^i(k) - \theta^j(k)}{X_{ij}} \right) \]

project into feasible space
Simulation Results

- Synchronous Update, uncongested IEEE RTS
Simulation Results

- Synchronous Update, uncongested IEEE RTS
Simulation Results

- Synchronous Update, congested IEEE RTS

![Graphs showing simulation results](image-url)
Simulation Results

- Synchronous Update, congested IEEE RTS
Conclusions

- **Soul searching:**
 - Still unclear how to close the gap between theory and implementation
 - Performance measures are necessary to benchmark algorithms => use these adaptively?
 - Trade-offs between performance measures

- **Algorithm:**
 - Innovation based method for distributed Optimal Power Flow
 - Very low complexity but comparably large number of iterations required