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The Emerging Grid
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Core Trends and Paradigms

m Trend or Paradigm Change Future System \

Objectives * Reliability and Economy + Sustainability Sustainable
Sources = From fossil fuel to renewable Renewable

« From bulk centralized to distributed Distributed

» Highly Variable Stochastic
Information  « Can control entire system through SW Cyber-Controlled

* Increased digital control -> Cyber-Physical

* Privacy and cyber-security issues Private
Actors » Consumers can also produce and store Prosumers

» Consumers seek their own objectives Smart

« Massive number of actors and devices Scalable
Carriers  Interdependencies with other systems Integrated

» Prosumer-Based Decentralized Cyber-Physical Control and
Management Architecture for Green Electricity Internetworks
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Georgia Tech ARPA-E GENI Project

Investigators:
Santiago Grijalva, Magnus Egerstedt, Marilyn Wolf, Shabbir Ahmed.

Objectives: Develop and demonstrate at large-scale:

1. A control and management architecture that will allow the
electricity industry to operate with characteristics similar to
the internet: Distributed, Flat, Layered, Scalable

2. A distributed services cyber-infrastructure that supports
prosumer interaction. This cyber-infrastructure can be
understood as an “Electricity Operating System”.

3. Areal-time decentralized prosumer frequency controller
4. A decentralized prosumer energy scheduler
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Architecture: Prosumer Abstraction
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* A generic model that captures basic functions (produce, consume,
store) can be applied to power systems at any scale.

« The fundamental task is power balancing:
Py =B =By =B = Bsror + Bro-
- Energy services can be virtualized.
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Architecture: Flat Electricity Industry
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* Interactions occur among entities of the same type (prosumers)
« Can achieve “flatness”

S. Grijalva, "Multi-Scale, Multi-Dimensional Computational Algorithms for Next
Generation Electric Power Grid", DOE Workshop on Computational Needs for Next
© 2014 Georgia Institute of Technology Generation Electric Power Grid, Cornell University, Ithaca, NY, April 18-20, 2011. 6



Architecture: Prosumer Interactions
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S. Grijalva, M. Costley, "Prosumer-Based Smart Grid Architecture Enables a Flat, Sustainable

Electricity Industry", IEEE PES Conference on Innovative Smart Grid Technologies (ISGT),
Anaheim, California, January 17-19, 2011.
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Architecture: Cyber-Physical Layered Model

Market Layer

System Control Layer

Cyber Layer:

Information, Communication, Computation

Local Control Layer

Device Layer
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Prosumer Power Agreement

7 B ,
Prosumer States Given desired power levels, how to agree on
D, : Desired Power poweroutputs? miniw 15— p |
D, : Agreed Upon Power P I NP = By
T Actual Power | An agreement dynamics, incorporating

constraints, weights, and trust, is used to agree
on the power levels across the network in a
decentralized fashion.
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Ramachandran, Costello, Kingston, Grijalva, Egerstedt. “Distributed Power
Allocation in Prosumer Networks”, NecSys, 2012.
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Malicious/Malfunctioning Prosumer

. Linearize dynamics:  MiAd + D;Ad + D Ti(As — AS)) =+ APy,

j E A\‘? ,‘

29
0 I 0 B
* On state-space form: 1 = v
i 7 A Vo 1D] T [M‘ld] Ungtanss
* Project the (asymptotically 0 0O =ML
. L; O _|® t
stable) dynamics and evaluate 2z = o 1!% Jll D 20
z “after a while” and solve for d-
[—0.1000]
« Can evaluate x in a distributed _0(')(.)3?81
way. o 0.0500
d'— [Lf D] s | | 0.0300
recovered —
0.0000
L 0.0800
d; = Z T;;(6 ;) T Didx ~0.0000
jEN; 0.0000
‘ | 0.0000 |
10

© 2014 Georgia Institute of Technology



Decentralized Control

Hardware Demonstrations
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VAST Integrated Control and
Automation System

N. Ainsworth, M. Costley, J. Thomas, M. Jezierny, S. Grijalva: "Versatile
Autonomous Smartgrid Testbed (VAST): A Flexible, Reconfigurable Testbed for
Research on Autonomous Control for Critical Electricity Grids", in Proceedings of
the North American Power Symposium, Champaign, IL, September 9-11, 2012.

© 2014 Georgia Institute of Technology 1 1



Decentralized Frequency Regulation

 Model Predictive Control solvable in a distributed manner.

« Each prosumer solves its sub-problem and shares its
optimal control strategy with its neighbors.
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Decentralized Energy Scheduling

1,500+ Generator case
 Full UC realistic data.

Optimality gap (%)
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Optimality gap for UC problem
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Further Elements for De-centralized

Control
Synchronization/ Decentralized controller for nonlinear coupled
stabilization oscillators
Effect of losses Bi-directed graphs and non-odd functions
Voltage Stability Locally enforceable necessary condition
Transient Stability Locally enforceable sufficient condition
Flow Constraints Distributed enforcement of coupling constraints
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Decentralized Computing Infrastructure

Computing Node
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M.U. Tariq, S. Grijalva, M. Wolf, "Towards a Distributed, Service-Oriented Control
Infrastructure for Smart Grid", ACM/IEEE Second International Conference on Cyber-Physical

Systems, Chicago, IL, April 11-14, 2011.
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Demonstration System
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Decentralized Control: Large-Scale

» 20 Self-Optimizing Regions in a Large-Scale RTO System.

* Non-fictitious Tie-Line Bus LMP Difference Convergence
obtained using Distributed Optimization.

LMP Difference (S/MWh)
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M. Costley, S. Grijalva, “Efficient Distributed OPF for De-centralized Power System Operations and Electricity
Markets”, IEEE PES Conference on Innovative Smart Grid Technologies, Washington D.C., January 17-19, 2012.
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Decentralized Control: Large-Scale
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Multi-Scale Prosumer Behavior

* Prosumer exposes

standardized services
— Energy balancing

— Frequency regulation

— Reserve

— Sensing and Information
— Forecasting

— Security
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Decentralized Building Control

4 T T 1 Iteration
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a) Building prosumer interaction at
transformer connection point for a
constrained grid.
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b) Voltage contouring for PV variability
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Summary

* Future electricity systems will consist of billions of smart
devices and millions of interconnected decision makers.

* Only a decentralized control and management architecture
will be able to support the objectives and requirements of the

future electricity industry.

THANKS!
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