Large Graph Mining Patterns, Explanations and Cascade Analysis

Christos Faloutsos
CMU

Roadmap

- A case for cross-disciplinarity
 - Introduction Motivation
 - Why study (big) graphs?
 - Part#1: Patterns in graphs
 - Part#2: Cascade analysis
 - Conclusions

Speed up of Data-Driven State Estimation Using Low-Complexity Indexing Method

Data-Driven State Estimation

Historical Similar
 Data Measurements, States Consuming

Observation:

Redundancies & correlations

Problem dfn

CMU, Feb 2014

Problem dfn

→ time

Direct solution: Slow (Kirchoff's eq.)

Problem dfn

Look for near-neighbors And use *their* voltages

Problem dfn

But sequential scan Is slow, too (MxT) Can we do better?

Look for near-neighbors And use *their* voltages

Problem dfn

CMU, Feb 2014

10⁻⁶

50

100

150

Simulation Results

Same accuracy, 100x – 100K x faster

[1] Yang Weng, <u>Christos Faloutsos</u>, Marija D. Ili´c, and Rohit Negi, Speed up of Data-Driven State Estimation Using Low-Complexity Indexing Method, IEEE PES-General Meeting, (accepted), 2014

200

testing case number i∈ [1,400]

250

300

350

400

Step1: Reducing dimensionality M

Measurement 1

Measurement M

But sequential scan Is slow, too (MxT) Can we do better? A: yes!
We can reduce both

time

- T, and
- •M

(c) 2014, C. Faloutsos

SVD

CMU, Feb 2014

10

Step2: Faster than T timeticks

Measurement 1

Measurement M

But sequential scan Is slow, too (MxT) Can we do better? A: yes!
We can reduce both

time

- T, and
- •M

(c) 2014, C. Faloutsos

K-d trees SVD

CMU, Feb 2014

11

Faster than seq. scan: K-d trees

Thanks to SVD: VISUALIZATION!

 Projection of measurements on to singular vectors of measurement matrix

[1] Yang Weng, <u>Christos Faloutsos</u>, Marija D. Ili'c, and Rohit Negi, Speed up of Data-Driven State Estimation Using Low-Complexity Indexing Method, IEEE PES-General Meeting, (accepted), 2014

Thanks to SVD: VISUALIZATION!

4 (or 5) groups of behavior!

 Projection of measurements on to singular vectors of measurement matrix

[1] Yang Weng, <u>Christos Faloutsos</u>, Marija D. Ili'c, and Rohit Negi, Speed up of Data-Driven State Estimation Using Low-Complexity Indexing Method, IEEE PES-General Meeting, (accepted), 2014

Thanks to SVD: VISUALIZATION!

 Projection of measurements on to singular vectors of measurement matrix

[1] Yang Weng, <u>Christos Faloutsos</u>, Marija D. Ili´c, and Rohit Negi, Speed up of Data-Driven State Estimation Using Low-Complexity Indexing Method, IEEE PES-General Meeting, (accepted), 2014

Crossdisciplinarity: Already started paying off

Same accuracy, 100x – 100K x faster

1000 x faster

[1] Yang Weng, Christos Faloutsos, Marija D. Ili'c, and Rohit Negi, Speed up of Data-Driven State Estimation Using Low-Complexity Indexing Method, IEEE PES-General Meeting, (accepted), 2014

Roadmap

• A case for cross-disciplinarity

- Introduction Motivation
 - Why study (big) graphs?
- Part#1: Patterns in graphs
- Part#2: Cascade analysis
- Conclusions

Graphs - why should we care?

- Power-grid!
 - Nodes: (plants/ consumers)
 - Edges: power lines

Graphs - why should we care?

>\$10B revenue

>0.5B users

Food Web [Martinez '91]

Internet Map [lumeta.com]

Graphs - why should we care?

- web-log ('blog') news propagation YAHOO! BLOG
- computer network security: email/IP traffic and anomaly detection
- Recommendation systems

•

Many-to-many db relationship -> graph

Roadmap

- A case for cross-disciplinarity
- Introduction Motivation
 - Why study (big) graphs?
- Part#1: Patterns in graphs
- Part#2: Cascade analysis
- Conclusions

Part 1: Patterns & Laws

CMU, Feb 2014 (c) 2014, C. Faloutsos 22

Laws and patterns

• Q1: Are real graphs random?

CMU, Feb 2014 (c) 2014, C. Faloutsos 23

Laws and patterns

- Q1: Are real graphs random?
- A1: NO!!
 - Diameter
 - in- and out- degree distributions
 - other (surprising) patterns
- Q2: why so many power laws?
- A2: <self-similarity stay tuned>
- So, let's look at the data

• Power law in the degree distribution [SIGCOMM99]

internet domains

CMU, Feb 2014

• Power law in the degree distribution [SIGCOMM99]

internet domains

CMU, Feb 2014

• Q: So what?

internet domains

CMU, Feb 2014

- Q: So what? = friends of friends (F.O.F.)
- A1: # of two-step-away pairs: internet domains

CMU, Feb 2014

Gaussian trap

Solution# S.1

• Q: So what? = friends of friends (F.O.F.)

• A1: # of two-step-away pairs: O(d_max ^2) ~ 10M^2 internet domains

~0.8PB -> a data center(!)

Gaussian trap

Solution# S.1

CMU, Feb 2014

Solution# S.2: Eigen Exponent E

• A2: power law in the eigenvalues of the adjacency matrix

CMU, Feb 2014

Roadmap

- Introduction Motivation
- Problem#1: Patterns in graphs
 - Static graphs
 - degree, diameter, eigen,

- Triangles
- Time evolving graphs
- Problem#2: Tools

Solution# S.3: Triangle 'Laws'

• Real social networks have a lot of triangles

CMU, Feb 2014 (c) 2014, C. Faloutsos 33

Solution# S.3: Triangle 'Laws'

- Real social networks have a lot of triangles
 - Friends of friends are friends
- Any patterns?
 - 2x the friends, 2x the triangles?

CMU, Feb 2014

Triangle Law: #S.3 [Tsourakakis ICDM 2008]

Triangle Law: Computations [Tsourakakis ICDM 2008]

But: triangles are expensive to compute

Q: Can we do that quickly?

A:

details

Triangle Law: Computations

[Tsourakakis ICDM 2008]

(3-way join; several approx. algos) – $O(d_{max}^2)$

Q: Can we do that quickly?

A: Yes!

#triangles = 1/6 Sum (λ_i^3)

(and, because of skewness (S2),

we only need the top few eigenvalues! - O(E)

 $\mathbf{A} \mathbf{x} = \lambda \mathbf{x}$

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]

CMU, Feb 2014

(c) 2014, C. Faloutsos

38

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]

CMU, Feb 2014

Yahoo! Supercomputing Cluster

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]

CMU, Feb 2014

(c) 2014, C. Faloutsos

40

Yahoo!® Supercomputing Cluster

Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

CMU, Feb 2014

(c) 2014, C. Faloutsos

41

Roadmap

- A case for cross-disciplinarity
- Introduction Motivation
- Part#1: Patterns in graphs
 - Static graphs
- Time evolving graphs
- Part#2: Cascade analysis
- Conclusions

Problem: Time evolution

 with Jure Leskovec (CMU -> Stanford)

and Jon Kleinberg (Cornell – sabb. @ CMU)

Jure Leskovec, Jon Kleinberg and Christos Faloutsos: *Graphs* over Time: Densification Laws, Shrinking Diameters and Possible Explanations, KDD 2005

T.1 Evolution of the Diameter

- Prior work on Power Law graphs hints at slowly growing diameter:
 - [diameter \sim O(N^{1/3})]

- diameter \sim O(log N)

What is happening in real data?

T.1 Evolution of the Diameter

- Prior work on Power Law graphs hints at slowly growing diameter:
 - [diameter $\sim O(N^{1/3})$]
 - diameter ~ (leg N
 - diameter ~ O(log log N)

- What is happening in real data?
- Diameter shrinks over time

T.1 Diameter – "Patents"

- Patent citation network
- 25 years of data
- @1999
 - 2.9 M nodes
 - 16.5 M edges

CMU, Feb 2014

(c) 2014, C. Faloutsos

46

T.2 Temporal Evolution of the Graphs

- N(t) ... nodes at time t
- E(t) ... edges at time t
- Suppose that

$$N(t+1) = 2 * N(t)$$

Say, *k* friends on average

• Q: what is your guess for

$$E(t+1) = ?2 * E(t)$$

T.2 Temporal Evolution of the Graphs

- N(t) ... nodes at time t
- **Gaussian trap**

- E(t) ... edges at time t
- Suppose that

$$N(t+1) = 2 * N(t)$$

Say, k friends or

- Q: what is your guess for $E(t+1) = (2)^* E(t)$
- A: over-doubled! $\sim 3x$
 - But obeying the ``Densification Power Law''

CMU, Feb 2014

T.2 Temporal Evolution of the Graphs

- N(t) ... nodes at time t
- **Gaussian trap**

- E(t) ... edges at time t
- Suppose that

$$N(t+1) = 2 * N(t)$$

Say, k friends or a.

- Q: what is your guess for E(t+1) = (2) * E(t)
- A: over-doubled! $\sim 3x$

But obeying the ``Densification Power Law''

CMU, Feb 2014

(c) 2014, C. Faloutsos

49

T.2 Densification – Patent Citations

- Citations among patents granted
- (a) 1999
 - -2.9 M nodes
 - 16.5 M edges
- Each year is a datapoint

CMU, Feb 2014

(c) 2014, C. Faloutsos

50

Carnegie Mellon

MORE Graph Patterns

	Unweighted	Weighted
Static	L01. Power-law degree distribution [Faloutsos et al. `99, Kleinberg et al. `99, Chakrabarti et al. `04, Newman `04] L02. Triangle Power Law (TPL) [Tsourakakis `08] L03. Eigenvalue Power Law (EPL) [Siganos et al. `03] L04. Community structure [Flake et al. `02, Girvan and Newman `02]	L10. Snapshot Power Law (SPL) [McGlohon et al. `08]
Dynamic	 L05. Densification Power Law (DPL) [Leskovec et al. `05] L06. Small and shrinking diameter [Albert and Barabási `99, Leskovec et al. `05] L07. Constant size 2nd and 3rd connected components [McGlohon et al. `08] L08. Principal Eigenvalue Power Law (λ₁PL) [Akoglu et al. `08] L09. Bursty/self-similar edge/weight additions [Gomez and Santonja `98, Gribble et al. `98, Crovella and 	L11. Weight Power Law (WPL) [McGlohon et al. `08]

RTG: A Recursive Realistic Graph Generator using Random Typing Leman Akoglu and Christos Faloutsos. PKDD'09.

MORE Graph Patterns

	Unweighted	Weighted
Static	 Power-law degree distribution [Faloutsos et al. '99, Kleinberg et al. '99, Chakrabarti et al. '04, Newman '04] Triangle Power Law (TPL) [Tsourakakis '08] Eigenvalue Power Law (EPL) [Siganos et al. '03] Community structure [Flake et al. '02, Girvan and Newman '02] 	L10. Snapshot Power Law (SPL) [McGlohon et al. `08]
Dynamic	3. Densification Power Law (DPL) [Leskovec et al. `05] 192. Small and shrinking diameter [Albert and Barabási 99, Leskovec et al. `05] 107. Constant size 2 nd and 3 rd connected components [McGlohon et al. `08] 108. Principal Eigenvalue Power Law (λ ₁ PL) [Akoglu et al. `08] 109. Bursty/self-similar edge/weight additions [Gomez and Santonja `98, Gribble et al. `98, Crovella and	L11. Weight Power Law (WPL) [McGlohon et al. `08]

RTG: A Recursive Realistic Graph Generator using Random Typing Leman Akoglu and Christos Faloutsos. PKDD'09.

MORE Graph Patterns

	Unweighted	Weighted
Static	L01. Power-law degree distribution [Faloutsos et al. '99, Kleinberg et al. '99, Chakrabarti et al. '04, Newman '04] L02. Triangle Power Law (TPL) [Tsourakakis '08] L03. Eigenvalue Power Law (EPL) [Siganos et al. '03] L04. Community structure [Flake et al. '02, Girvan and Newman '02]	L10. Snapshot Power Law (SPL) [McGlohon et al. `08]
Dynamic	$ \begin{array}{ll} \textbf{L05}. \ Densification \ Power \ Law \ (DPL) \ [Leskovec \ et \ al. \ '05] \\ \textbf{L06}. \ Small \ and \ shrinking \ diameter \ [Albert \ and \ Barabási \ '99, Leskovec \ et \ al. \ '05] \\ \textbf{L07}. \ Constant \ size \ 2^{nd} \ and \ 3^{rd} \ connected \ components \ [McGlohon \ et \ al. \ '08] \\ \textbf{L08}. \ Principal \ Eigenvalue \ Power \ Law \ (\lambda_1 PL) \ [Akoglu \ et \ al. \ '08] \\ \textbf{L09}. \ Bursty/self-similar \ edge/weight \ additions \ [Gomez \ and \ Santonja \ '98, \ Grobble \ et \ al. \ '08] \\ \textbf{Bestavros \ '99}, \ McGlohon \ et \ al. \ '08] \\ \end{array}$	L11. Weight Power Law (WPL) [McGlohon et al. `08]

- Mary McGlohon, Leman Akoglu, Christos
 Faloutsos. Statistical Properties of Social
 Networks. in "Social Network Data Analytics" (Ed.: Charu Aggarwal)
- Deepayan Chakrabarti and Christos Faloutsos,
 <u>Graph Mining: Laws, Tools, and Case Studies</u> Oct.
 2012, Morgan Claypool.

Roadmap

- A case for cross-disciplinarity
- Introduction Motivation

— ...

- Why so many power-laws?
- Part#2: Cascade analysis
- Conclusions

Why so many P.L.?

• Possible answer: self-similarity / fractals

CMU, Feb 2014 (c) 2014, C. Faloutsos 55

- Remove the middle triangle; repeat
- -> Sierpinski triangle
- (Bonus question dimensionality?
 - ->1 (inf. perimeter $-(4/3)^{\infty}$)
 - $< 2 (zero area (3/4)^{\infty})$

Self-similarity -> no char. scale

-> power laws, eg:

2x the radius,

3x the #neighbors nn(r)

 $nn(r) = C r \frac{log3/log2}{r}$

CMU, Feb 2014

Self-similarity -> no char. scale

-> power laws, eg:

2x the radius,

3x the #neighbors nn(r)

 $nn(r) = C r \frac{log3/log2}{r}$

CMU, Feb 2014

Self-similarity -> no char. scale

-> power laws, eg:

2x the radius,

3x the #neighbors

 $nn = C r \frac{\log 3/\log 2}{r}$

Reminder:
Densification P.L.
(2x nodes, ~3x edges)

CMU, Feb 2014

Self-similarity -> no char. scale

-> power laws, eg:

2x the radius,

3x the #neighbors

 $nn = C r \frac{\log 3/\log 2}{r}$

2x the radius, 4x neighbors $nn = C r^{\log 4/\log 2} = C r^2$

Self-similarity -> no char. scale

-> power laws, eg:

2x the radius,

3x the #neighbors

$$nn = C r^{\log 3/\log 2} + =1.58$$

2x the radius, 4x neighbors nn = C r log4/log2 = C r²

Fractal dim.

CMU, Feb 2014

(c) 2014, C. Faloutsos

61

Self-similarity -> no char. scale

-> power laws, eg:

2x the radius,

3x the #neighbors

 $nn = C r^{\log 3/\log 2}$

2x the radius,
4x neighbors
nn = C r log4/log2 = C

SKIP

How does self-similarity help in graphs?

- A: RMAT/Kronecker generators
 - With self-similarity, we get all power-laws, automatically,
 - And small/shrinking diameter
 - And `no good cuts'

R-MAT: A Recursive Model for Graph Mining, by D. Chakrabarti, Y. Zhan and C. Faloutsos, SDM 2004, Orlando, Florida, USA

Realistic, Mathematically Tractable Graph Generation and Evolution, Using Kronecker Multiplication, by J. Leskovec, D. Chakrabarti, J. Kleinberg, and C. Faloutsos, in PKDD 2005, Porto, Portugal

Graph gen.: Problem dfn

- Given a growing graph with count of nodes N_1 , N_2 , ...
- Generate a realistic sequence of graphs that will obey all the patterns
 - Static Patterns
 - S1 Power Law Degree Distribution
 - S2 Power Law eigenvalue and eigenvector distribution Small Diameter

- T2 Growth Power Law (2x nodes; 3x edges)
- T1 Shrinking/Stabilizing Diameters

1	1	0
1	1	1
0	1	1

 G_1

Adjacency matrix

Intermediate stage

1	1	0
1	1	1
0	1	1

 G_1

Adjacency matrix

Intermediate stage

1	1	0	
1	1	1	
0	1	1	
G_1			

$$G_1$$
 G_1 G_2 G_3 G_4 G_5 G_6 G_1

$$G_2 = G_1 \otimes G_1$$

Adjacency matrix

Adjacency matrix

• Continuing multiplying with G_1 we obtain G_4 and so on ...

G₄ adjacency matrix (c) 2014, C. Faloutsos

• Continuing multiplying with G_1 we obtain G_4 and

so on ...

G₄ adjacency matrix (c) 2014, C. Faloutsos

• Continuing multiplying with G_1 we obtain G_4 and

so on ...

G₄ adjacency matrix (c) 2014, C. Faloutsos

CMU, Feb 2014

• Continuing multiplying with G_1 we obtain G_4 and

so on ...

Holes within holes; Communities within communities

G₄ adjacency matrix (c) 2014, C. Faloutsos

CMU, Feb 2014

Self-similarity -> power laws

Properties:

- We can PROVE that
 - − Degree distribution is multinomial ~ power law

new

- Diameter: constant
- Eigenvalue distribution: multinomial
- First eigenvector: multinomial

Problem Definition

- Given a growing graph with nodes N_1 , N_2 , ...
- Generate a realistic sequence of graphs that will obey all the patterns
 - Static Patterns
 - ✓ Power Law Degree Distribution
 - ✓ Power Law eigenvalue and eigenvector distribution
 - ✓ Small Diameter
 - Dynamic Patterns
 - ✓ Growth Power Law
 - ✓ Shrinking/Stabilizing Diameters
- First generator for which we can **prove** all these properties

Impact: Graph500

- Based on RMAT (= 2x2 Kronecker)
- Standard for graph benchmarks
- http://www.graph500.org/
- Competitions 2x year, with all major entities: LLNL, Argonne, ITC-U. Tokyo, Riken, ORNL, Sandia, PSC, ...

To iterate is human, to recurse is devine

R-MAT: A Recursive Model for Graph Mining, by D. Chakrabarti, Y. Zhan and C. Faloutsos, SDM 2004, Orlando, Florida, USA

Summary of Part#1

- *many* patterns in real graphs
 - Small & shrinking diameters
 - Power-laws everywhere
 - Gaussian trap
- Self-similarity (RMAT/Kronecker): good model

CMU, Feb 2014

Roadmap

- A case for cross-disciplinarity
- Introduction Motivation
- Part#1: Patterns in graphs
- Part#2: Cascade analysis
- Conclusions

• What would a barefooted man get if he steps on an electric wire?

http://energyquest.ca.gov/games/jokes/george.html

Comic relief:

What would a barefooted man get if he steps on an electric wire?
 (Answer) A pair of shocks

http://energyquest.ca.gov/games/jokes/george.html

Part 2: Cascades & Immunization

CMU, Feb 2014 (c) 2014, C. Faloutsos 79

Why do we care?

- Information Diffusion
- Viral Marketing
- Epidemiology and Public Health
- Cyber Security
- Human mobility
- Games and Virtual Worlds
- Ecology
- •

Roadmap

- A case for cross-disciplinarity
- Introduction Motivation
- Part#1: Patterns in graphs
- Part#2: Cascade analysis

- (Fractional) Immunization
- Epidemic thresholds
- Conclusions

Fractional Immunization of Networks

B. Aditya Prakash, Lada Adamic, Theodore

Twashyna (M.D.), Hanghang Tong, Christos Faloutsos

SDM 2013, Austin, TX

Whom to immunize?

• Dynamical Processes over networks

- Each circle is a hospital
- ~3,000 hospitals
- More than 30,000 patients transferred

[US-MEDICARE NETWORK 2005]

CMU, Feb 2014

Problem: Given *k* units of disinfectant, whom to immunize? (c) 2014, C. Faloutsos

Hospital-acquired inf.: 99K+ lives, \$5B+ per year

Fractional Asymmetric Immunization

Drug-resistant Bacteria (like XDR-TB)

Hospital

Another Hospital

CMU, Feb 2014

Fractional Asymmetric Immunization

Hospital

Another Hospital

CMU, Feb 2014

Fractional Asymmetric Immunization

Hospital

Hospital

Another

CMU, Feb 2014

Fractional Asymmetric Immunization

Problem:

Given k units of disinfectant, distribute them to maximize hospitals saved

Hospital

Another Hospital

CMU, Feb 2014

Fractional Asymmetric Immunization

Problem:

Given k units of disinfectant, distribute them to maximize hospitals saved @ 365 days

Hospital

Another Hospital

CMU, Feb 2014

(c) 2014, C. Faloutsos

- 1. Distribute resources
- 2. 'infect' a few nodes

- (10x, take avg)
- 4. Tweak, and repeat step 1

- 1. Distribute resources
- 2. 'infect' a few nodes

- (10x, take avg)
- 4. Tweak, and repeat step 1

- 1. Distribute resources
- 2. 'infect' a few nodes
- 3. Simulate evolution of spreading
 - (10x, take avg)
- 4. Tweak, and repeat step 1

- 1. Distribute resources
- 2. 'infect' a few nodes
- 3. Simulate evolution of spreading
 - (10x, take avg)
- 4. Tweak, and repeat step 1

Experiments

infected

uniform

SMART-ALLOC

$$K = 120$$

epochs

CMU, Feb 2014

(c) 2014, C. Faloutsos

What is the 'silver bullet'?

A: Try to decrease connectivity of graph

Q: how to measure connectivity?

- Avg degree? Max degree?
- Std degree / avg degree ?
- Diameter?
- Modularity?
- 'Conductance' (~min cut size)?
- Some combination of above?

What is the 'silver bullet'?

A: Try to decrease connectivity of graph

Q: how to measure connectivity?

A: first eigenvalue of adjacency matrix

Avg degree
Max degree
Diameter
Modularity
'Conductance

Q1: why??

(Q2: dfn & intuition of eigenvalue?)

Why eigenvalue?

A1: 'G2' theorem and 'eigen-drop':

- For (almost) any type of virus
- For **any** network
- -> no epidemic, if small-enough first eigenvalue (λ_1) of *adjacency* matrix

Threshold Conditions for Arbitrary Cascade Models on Arbitrary Networks, B. Aditya Prakash, Deepayan Chakrabarti, Michalis Faloutsos, Nicholas Valler, Christos Faloutsos, ICDM 2011, Vancouver, Canada

Why eigenvalue?

A1: 'G2' theorem and 'eigen-drop':

- For (almost) any type of virus
- For **any** network
- -> no epidemic, if small-enough first eigenvalue (λ_1) of *adjacency* matrix
- Heuristic: for immunization, try to min λ_1
- The smaller λ_1 , the closer to extinction.

G2 theorem

B. Aditya Prakash, Deepayan Chakrabarti, Michalis Faloutsos, Nicholas Valler,

Christos Faloutsos IEEE ICDM 2011, Vancouver

extended version, in arxiv http://arxiv.org/abs/1004.0060

~10 pages proof

Our thresholds for some models

- s = effective strength
- s < 1: below threshold

Models	Effective Strength (s)	Threshold (tipping point)
SIS, SIR, SIRS, SEIR	$\mathbf{s} \neq \lambda \left(\frac{\beta}{\delta}\right)$	
SIV, SEIV	$\mathbf{S} = \lambda \cdot \left(\frac{\beta \gamma}{\delta (\gamma + \theta)} \right)$	s = 1
SI ₁ I ₂ V ₁ V ₂ (H.I.V.)	$\mathbf{S} = \lambda \cdot \left(\frac{\beta_1 v_2 + \beta_2 \varepsilon}{v_2 (\varepsilon + v_1)} \right)$	

Our thresholds for some models

- s = effective strength
- s < 1: below threshold

No immunity

Temp. immunity

e Strength

Threshold (tipping point)

SIS, SIR, SIRS, SEIR
$$w/s = \lambda$$
 $\left(\frac{\beta}{\delta}\right)$
SIV, SEIV $s = \lambda$ $\left(\frac{\beta\gamma}{\delta(\gamma + \theta)}\right)$

$$SI_{1}I_{2}V_{1}V_{2}$$

$$(H.I.V.)$$

$$S = \lambda$$
 $\left(\frac{\beta_{1}v_{2} + \beta_{2}\varepsilon}{v_{2}(\varepsilon + v_{1})}\right)$

$$s = 1$$

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
- Part#2: Cascade analysis
 - (Fractional) Immunization
- intuition behind λ_1
- Conclusions

Intuition for λ

"Official" definitions:

- Let A be the adjacency matrix. Then λ is the root with the largest magnitude of the characteristic polynomial of A [det($A \lambda I$)].
- Also: $\mathbf{A} \mathbf{x} = \lambda \mathbf{x}$

Neither gives much intuition!

"Un-official" Intuition

• For 'homogeneous' graphs, $\lambda == degree$

- $\lambda \sim \text{avg degree}$
 - done right, for skewed degree distributions

Largest Eigenvalue (λ)

better connectivity \longrightarrow higher λ

(a)Chain

(b)Star

(c)Clique

N = 1000 nodes
CMU, Feb 2014

 $\lambda = 31.67$

 $\lambda = 999$

Largest Eigenvalue (λ)

better connectivity \longrightarrow higher λ

$$\lambda \approx 2$$
 $N = 1000 \text{ nodes}$
CMU, Feb 2014

$$\lambda$$
= 31.67

$$\lambda = 999$$

(c) 2014, C. Faloutsos

Examples: Simulations – SIR (mumps)

(a) Infection profile

(b) "Take-off" plot

PORTLAND graph: synthetic population, 31 million links, 6 million nodes

Examples: Simulations – SIRS (pertusis)

(a) Infection profile

(b) "Take-off" plot

PORTLAND graph: synthetic population, 31 million links, 6 million nodes

Immunization - conclusion

In (almost any) immunization setting,

- Allocate resources, such that to
- Minimize λ_1
- (regardless of virus specifics)

- Conversely, in a market penetration setting
 - Allocate resources to
 - Maximize λ_1

CMU, Feb 2014

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
- Part#2: Cascade analysis
 - (Fractional) Immunization
 - Epidemic thresholds

Thanks

Disclaimer: All opinions are mine; not necessarily reflecting the opinions of the funding agencies

Thanks to: NSF IIS-0705359, IIS-0534205, CTA-INARC; Yahoo (M45), LLNL, IBM, SPRINT, Google, INTEL, HP, iLab

Project info: PEGASUS

www.cs.cmu.edu/~pegasus

Results on large graphs: with Pegasus + hadoop + M45

Apache license

Code, papers, manual, video

Prof. U Kang Prof. Polo Chau

Carnegie Mellon

Cast

Leman

Beutel, Alex

Chau, Polo

Kang, U

Koutra, Danai

McGlohon, Mary

Prakash, Aditya

Papalexakis, Vagelis

Tong, Hanghang

CMU, Feb 2014

(c) 2014, C. Faloutsos

113

CONCLUSION#1 – Big data

• Large datasets reveal patterns/outliers that are invisible otherwise

CMU, Feb 2014

(c) 2014, C. Faloutsos

CONCLUSION#2 – self-similarity

- powerful tool / viewpoint
 - Power laws; shrinking diameters

- RMAT - graph500 generator

CONCLUSION#3 – eigen-drop

• Cascades & immunization: G2 theorem & eigenvalue

References

- D. Chakrabarti, C. Faloutsos: *Graph Mining Laws, Tools and Case Studies*, Morgan Claypool 2012
- http://www.morganclaypool.com/doi/abs/10.2200/ S00449ED1V01Y201209DMK006

TAKE HOME MESSAGE:

Cross-disciplinarity

Already started paying off for power grids

Same accuracy, 100x – 100K x faster

[1] Yang Weng, Christos Faloutsos, Marija D. Ili'c, and Rohit Negi, Speed up of Data-Driven State Estimation Using Low-Complexity Indexing Method, IEEE PES-General Meeting, (accepted), 2014

THANK YOU!

Same accuracy, 100x – 100K x faster

1000 x

[1] Yang Weng, Christos Faloutsos, Marija D. Ili'c, and Rohit Negi, Speed up of Data-Driven State Estimation Using Low-Complexity Indexing Method, IEEE PES-General Meeting, (accepted), 2014