Large Graph Mining Patterns, Explanations and Cascade Analysis

Christos Faloutsos

CMU

Roadmap

- • A case for cross-disciplinarity
- Introduction - Motivation

- Why study (big) graphs?
- Part\#1: Patterns in graphs
- Part\#2: Cascade analysis
- Conclusions

Speed up of Data-Driven State Estimation Using Low-Complexity Indexing Method

Data-Driven State Estimation

- Historical Similar

Data Measurements, States Consuming

Observation:

- Redundancies \& correlations

Problem dfn

(c) 2014, C. Faloutsos

Problem dfn

Measurement $1 \downarrow$

Voltage 1
Voltage N

?
time

Problem dfn

Look for near-neighbors
And use *their* voltages

Problem dfn

But sequential scan Is slow, too (MxT)
Can we do better?
Look for near-neighbors
And use *their* voltages

Problem dfn

But sequential scan Is slow, too (MxT)
Can we do better?

CMU, Feb 2014
(c) 2014, C. Faloutsos

Simulation Results

- Same accuracy, 100x - 100K x faster Relative
Search
Time:
1000 x
1000 x

[1] Yang Weng, Christos Faloutsos, Marija D. Ili'c, and Rohit Negi, Speed up of Data-Driven State Estimation Using Low-Complexity Indexing Method, IEEE PES-General Meeting, (accepted), 2014

Step1: Reducing dimensionality \mathbf{M}

But sequential scan Is slow, too (MxT)
Can we do better?

CMU, Feb 2014
C
(c) 2014, C. Faloutsos

A: yes!
$\cdot T$, and
-M

We can reduce both

Step2: Faster than T timeticks

Measurement $1 \downarrow$

Measurement M >

But sequential scan Is slow, too (MxT)
Can we do better?
CMU, Feb 2014
(c) 2014, C. Faloutsos

A: yes!
-T, and
-M

We can reduce both

K-d trees SVD

Faster than seq. scan: K-d trees

(c) 2014, C. Faloutsos

Thanks to SVD: VISUALIZATION!

- Projection of measurements on to singular vectors of measurement matrix

Thanks to SVD: VISUALIZATION!

4 (or 5) groups of behavior!

- Projection of measurements on to singular vectors of measurement matrix

Thanks to SVD: VISUALIZATION!

- Projection of measurements on to singular vectors of measurement matrix
[1] Yang Weng, Christos Faloutsos, Marija D. Ili'c, and Rohit Negi, Speed up of Data-Driven State Estimation Using Low-Complexity Indexing Method, IEEE PES-General Meeting, (accepted), 2014

Crossdisciplinarity: Already started paying off

- Same accuracy, 100x - 100K x faster

1000 x faster

[1] Yang Weng, Christos Faloutsos, Marija D. II' c, and Rohit Negi, Speed up of Data-Driven State Estimation Using LowComplexity Indexing Method, IEEE PES-General Meeting, (accepted), 2014

Roadmap

- A case for cross-disciplinarity
- Introduction - Motivation

- Why study (big) graphs?
- Part\#1: Patterns in graphs
- Part\#2: Cascade analysis
- Conclusions

Graphs - why should we care?

- Power-grid!
- Nodes: (plants/ consumers)
- Edges: power lines

Graphs - why should we care?

(1)! Linkedin.

Food Web
[Martinez '91]

>\$10B revenue

>0.5B users

Internet Map
[lumeta.com]

Graphs - why should we care?

- web-log ('blog') news propagation FABOO: BLOG
- computer network security: email/IP traffic and anomaly detection
- Recommendation systems
- Many-to-many db relationship -> graph

Roadmap

- A case for cross-disciplinarity
- Introduction - Motivation

- Why study (big) graphs?
\Rightarrow • Part\#1: Patterns in graphs
- Part\#2: Cascade analysis
- Conclusions

Part 1:
 Patterns \& Laws

Laws and patterns

- Q1: Are real graphs random?

Laws and patterns

- Q1: Are real graphs random?
- A1: NO!!
- Diameter
- in- and out- degree distributions
- other (surprising) patterns
- Q2: why so many power laws?
- A2: <self-similarity - stay tuned>
- So, let's look at the data

Solution\# S. 1

- Power law in the degree distribution [SIGCOMM99] internet domains

Solution\# S. 1

- Power law in the degree distribution [SIGCOMM99]

internet domains

Solution\# S. 1

- Q: So what?

internet domains

Solution\# S. 1

- Q: So what? friends of friends (F.O.F.)
- A1: \# of two-step-away pairs: internet domains

Gaussian trap

Solution\# S. 1

- Q: So what? (F.O.F.) = friends of friends (F.O.F)
- A1: \# of two-step-away pairs: $\mathrm{O}\left(\mathrm{d}_{-} \max { }^{\wedge} 2\right) \sim 10 \mathrm{M}^{\wedge} 2$ internet domains

Gaussian trap

Solution\# S. 1

- Q: So what?

Solution\# S.2: Eigen Exponent E

Eigenvalue

Exponent $=$ slope

$$
E=-0.48
$$

May 2001

Rank of decreasing eigenvalue

- A2: power law in the eigenvalues of the adjacency matrix
CMU, Feb 2014
(c) 2014, C. Faloutsos

Roadmap

- Introduction - Motivation
- Problem\#1: Patterns in graphs

- Static graphs
- degree, diameter, eigen,
- Triangles
- Time evolving graphs
- Problem\#2: Tools

Solution\# S.3: Triangle 'Laws’

- Real social networks have a lot of triangles

Solution\# S.3: Triangle 'Laws'

- Real social networks have a lot of triangles
- Friends of friends are friends
- Any patterns?
$-2 x$ the friends, $2 x$ the triangles?

CarnegieMellon

Triangle Law: \#S. 3 [Tsourakakis ICDM 2008]

Triangle Law: Computations [Tsourakakis ICDM 2008]

But: triangles are expensive to compute
(3-way join; several approx. algos) - $\mathrm{O}\left(\mathrm{d}_{\max }{ }^{2}\right)$
Q: Can we do that quickly?
A:

Triangle Law: Computations [Tsourakakis ICDM 2008]

But: triangles are expensive to compute
(3-way join; several approx. algos) - $\mathrm{O}\left(\mathrm{d}_{\max }{ }^{2}\right)$
$\mathrm{Q}:$ Can we do that quickly?
A: Yes!
\#triangles $=\mathbf{1 / 6 ~ S u m ~}\left(\lambda_{i}{ }^{3}\right)$
(and, because of skewness (S2), we only need the top few eigenvalues! - $\mathrm{O}(\mathrm{E})$

Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]

Triangle counting for large graphs?

Anomalous nodes in Twitter(3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]

Triangle counting for large graphs?

Anomalous nodes in Twitter(3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]

Triangle counting for large graphs?

Anomalous nodes in Twitter(3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD’11]

Roadmap

- A case for cross-disciplinarity
- Introduction - Motivation

- Part\#1: Patterns in graphs
- Static graphs
- Time evolving graphs
- Part\#2: Cascade analysis
- Conclusions

Problem: Time evolution

- with Jure Leskovec (CMU -> Stanford)

- and Jon Kleinberg (Cornell sabb. @ CMU)

Jure Leskovec, Jon Kleinberg and Christos Faloutsos: Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations, KDD 2005

T. 1 Evolution of the Diameter

- Prior work on Power Law graphs hints at slowly growing diameter:
- [diameter $\sim \mathrm{O}\left(\mathrm{N}^{1 / 3}\right)$]

- What is happening in real data?

T. 1 Evolution of the Diameter

- Prior work on Power Law graphs hints at slowly growing diameter:
- [diameter $\left.\left.\sim \mathrm{O}^{(\mathbf{N} / / 3}\right)\right]$
- diameter $\sim($ (log $I)$
- diameter $\sim \mathrm{O}(\log \log \mathrm{N})$

- What is happening in real data?
- Diameter shrinks over time

T. 1 Diameter - "Patents"

- Patent citation network
- 25 years of data
- @1999
- 2.9 M nodes
- 16.5 M edges

(c) 2014, C. Faloutsos

T. 2 Temporal Evolution of the Graphs

- $\mathrm{N}(\mathrm{t})$... nodes at time t
- $\mathrm{E}(\mathrm{t})$... edges at time t
- Suppose that

$$
\mathrm{N}(\mathrm{t}+1)=2 * \mathrm{~N}(\mathrm{t})
$$

Say, k friends on average

- Q: what is your guess for

$$
\mathrm{E}(\mathrm{t}+1)=? 2 * \mathrm{E}(\mathrm{t})
$$

T. 2 Temporal Evolution of the Graphs

- $\mathrm{N}(\mathrm{t})$... nodes at time t

Gaussian trap

- $\mathrm{E}(\mathrm{t})$... edges at time t
- Suppose that
$\mathrm{N}(\mathrm{t}+1)=2 * \mathrm{~N}(\mathrm{t})$
Say, k friends or at re je
- Q: what is your guess for
$\mathrm{E}(\mathrm{t}+1)=? \mathrm{P}(\mathrm{t})$

- A: over-doubled! ~3x
- But obeying the "Densification Power Law"
(c) 2014, C. Faloutsos

T. 2 Temporal Evolution of the Graphs

- $\mathrm{N}(\mathrm{t})$... nodes at time t

Gaussian trap

- $\mathrm{E}(\mathrm{t})$... edges at time t
- Suppose that
$\mathrm{N}(\mathrm{t}+1)=2 * \mathrm{~N}(\mathrm{t})$
Say, k friends or à re le
- Q: what is your guess for

$$
\mathrm{E}(\mathrm{t}+1)=20 * \mathrm{E}(\mathrm{t})
$$

- A: over-doubled! ~3x
- But obeying the "Densification Power Law"'
(c) 2014, C. Faloutsos

T. 2 Densification - Patent Citations

- Citations among patents granted
- @1999
- 2.9 M nodes
- 16.5 M edges
- Each year is a datapoint

MORE Graph Patterns

\begin{tabular}{|c|c|c|}
\hline \& Unweighted \& Weighted

\hline $$
\begin{aligned}
& \substack{0 \\
\stackrel{y}{n} \\
\stackrel{1}{n} \\
\hline}
\end{aligned}
$$ \& L01. Power-law degree distribution [Faloutsos et al. `99, Kleinberg et al. `99, Chakrabarti et al. `04, Newman `04] L02. Triangle Power Law (TPL) [Tsourakakis `08] L03. Eigenvalue Power Law (EPL) [Siganos et al. `03] L04. Community structure [Flake et al. `02, Girvan and Newman '02] & L10. Snapshot Power Law (SPL) [McGlohon et al. `08]

\hline \[
\frac{\stackrel{2}{2}}{\frac{3}{n}} .

\] \& | L05. Densification Power Law (DPL) [Leskovec et al. `05] L06. Small and shrinking diameter [Albert and Barabási `99, Leskovec et al. `05] \\ L07. Constant size \(2^{\text {nd }}\) and \(3^{\text {rd }}\) connected components [McGlohonet al. `08] |
| :--- |
| L08. Principal Eigenvalue Power Law ($\lambda_{1} \mathrm{PL}$) [Akoglu et al. -08] L09. Bursty/self-similar edge/weight additions [Gomez and Santonia `98, Gribble et al. ‘98, Crovella and | \& L11. Weight Power Law (WPL) [McGlohon et al. -08]

\hline \multicolumn{3}{|l|}{RTG: A Recursive Realistic Graph Generator using Random Typing Leman Akoglu and Christos Faloutsos. PKDD'09.}

\hline
\end{tabular}

MORE Graph Patterns

\begin{tabular}{|c|c|c|}
\hline \& Unweighted \& Weighted \\
\hline \[
\begin{aligned}
\& \frac{\sim}{N} \\
\& \frac{N}{n} .
\end{aligned}
\] \& \begin{tabular}{l}
C1. Power-law degree distribution [Faloutsos et al. `99, Kleinberg et al. `99, Chakrabarti et al. `04, Newman `04] \\
Triangle Power Law (TPL) [Tsourakakis `08] \\
Eigenvalue Power Law (EPL) [Siganos et al. `03] Lo4. Community structure [Flake et al. `02, Girvan and Newman `02]
\end{tabular} \& L10. Snapshot Power Law (SPL) [McGlohon et al. `08] \\
\hline \[
3 .
\] \& \begin{tabular}{l}
. Densification Power Law (DPL) [Leskovec et al. `05] \\
. Small and shrinking diameter [Albert and Barabási \\
99, Leskovec et al. `05] \\
L07. Constant size \(2^{\text {nd }}\) and \(3^{\text {rd }}\) connected components [McGlohonet al. `08] \\
L08. Principal Eigenvalue Power Law (\(\lambda_{1} \mathrm{PL}\)) [Akoglu et al. `08] \\
L09. Bursty/self-similar edge/weight additions [Gomez and Santonia `98, Gribble et al. `98, Crovella and
\end{tabular} \& L11. Weight Power Law (WPL) [McGlohon et al. -08] \\
\hline \multicolumn{3}{|l|}{RTG: A Recursive Realistic Graph Generator using Random Typing Leman Akoglu and Christos Faloutsos. PKDD'09.} \\
\hline
\end{tabular}

MORE Graph Patterns

- Mary McGlohon, Leman Akoglu, Christos Faloutsos. Statistical Properties of Social

Networks. in "Social Network Data Analytics" (Ed.: Charu Aggarwal)

- Deepayan Chakrabarti and Christos Faloutsos, Graph Mining: Laws, Tools, and Case Studies Oct. 2012, Morgan Claypool.

SKIP

Roadmap

- A case for cross-disciplinarity
- Introduction - Motivation

- Part\#1: Patterns in graphs - ...
- Why so many power-laws?
- Part\#2: Cascade analysis
- Conclusions

Why so many P.L.?

- Possible answer: self-similarity / fractals

SKIP

$20^{\prime \prime}$ intro to fractals

- Remove the middle triangle; repeat
- -> Sierpinski triangle
- (Bonus question - dimensionality?
$->1$ (inf. perimeter $\left.-(4 / 3)^{\infty}\right)$
$-<2\left(\right.$ zero area $\left.-(3 / 4)^{\infty}\right)$

20' intro to fractals

Self-similarity -> no char. scale

-> power laws, eg:
$2 x$ the radius,
$3 x$ the \#neighbors nn(r)

$$
\mathrm{nn}(\mathrm{r})=\mathrm{C} \mathrm{r}^{\log 3 / \log 2}
$$

CMU, Feb 2014
(c) 2014, C. Faloutsos

20', intro to fractals

Self-similarity -> no char. scale

-> power laws, eg:
$2 x$ the radius, $3 x$ the \#neighbors nn(r)

$$
\mathrm{nn}(\mathrm{r})=\mathrm{C} \mathrm{r}^{\log 3 / \log 2}
$$

CMU, Feb 2014
(c) 2014, C. Faloutsos

SKIP

20'9 intro to fractals

Self-similarity -> no char. scale
-> power laws, eg:
$2 x$ the radius,
$3 x$ the \#neighbors
$n n=C r^{\log 3 / \log 2}$

Reminder:
 Densification P.L.
 (2x nodes, $\sim 3 x$ edges)

20' intro to fractals

Self-similarity -> no char. scale
-> power laws, eg:
$2 x$ the radius,
$3 x$ the \#neighbors
$n n=C r^{\log 3 / \log 2}$

$2 x$ the radius,
$4 x$ neighbors
$n n=C r^{\log 4 / \log 2}=C r^{2}$
(c) 2014, C. Faloutsos

SKIP

20^{\prime} intro to fractals

Self-similarity -> no char. scale
-> power laws, eg:
$2 x$ the radius,
$3 x$ the \#neighbors
$2 x$ the radius,
$4 x$ neighbors
$\mathrm{nn}=\mathrm{C} r^{\log 3 / \log 2}=1.58$
$n n=C r^{\log 4 / \log 2}=C r^{2}$
Fractal dim.

CMU, Feb 2014
(c) 2014, C. Faloutsos

20'9 intro to fractals

Self-similarity
 -> power laws

How does self-similarity help in

graphs?

- A: RMAT/Kronecker generators
- With self-similarity, we get all power-laws, automatically,
- And small/shrinking diameter
- And `no good cuts’

R-MAT: A Recursive Model for Graph Mining, by D. Chakrabarti, Y. Zhan and C. Faloutsos, SDM 2004, Orlando, Florida, USA
Realistic, Mathematically Tractable Graph Generation and Evolution, Using Kronecker Multiplication, by J. Leskovec, D. Chakrabarti, J. Kleinberg, and C. Faloutsos, in PKDD 2005, Porto, Portugal

Graph gen.: Problem dfn

- Given a growing graph with count of nodes N_{1}, N_{2}, \ldots
- Generate a realistic sequence of graphs that will obey all the patterns
- Static Patterns

S1 Power Law Degree Distribution
S2 Power Law eigenvalue and eigenvector distribution
 Small Diameter

- Dynamic Patterns

T2 Growth Power Law (2 x nodes; 3 x edges)
T1 Shrinking/Stabilizing Diameters

Kronecker Graphs

Adjacency matrix

Kronecker Graphs

Intermediate stage

1	1	0
1	1	1
0	1	1
G_{1}		

Adjacency matrix

Kronecker Graphs

Intermediate stage

1	1	0	
1	1	1	
0	1	1	
G_{1}			

Adjacency matrix

Kronecker Graphs

- Continuing multiplying with G_{l} we obtain G_{4} and so on ...

G_{4} adjacency matrix

Kronecker Graphs

- Continuing multiplying with G_{l} we obtain G_{4} and so on ...

G_{4} adjacency matrix

Kronecker Graphs

- Continuing multiplying with G_{l} we obtain G_{4} and so on ...

G_{4} adjacency matrix

SKIP

Kronecker Graphs

- Continuing multiplying with G_{l} we obtain G_{4} and so on ...

Holes within holes; Communities
within communities

G_{4} adjacency matrix
(c) 2014, C. Faloutsos

Self-similarity -> power laws

Properties:

- We can PROVE that
- Degree distribution is multinomial ~ power law
new - Diameter: constant
- Eigenvalue distribution: multinomial
- First eigenvector: multinomial

Problem Definition

- Given a growing graph with nodes N_{1}, N_{2}, \ldots
- Generate a realistic sequence of graphs that will obey all the patterns
- Static Patterns
\checkmark Power Law Degree Distribution
\checkmark Power Law eigenvalue and eigenvector distribution
\checkmark Small Diameter
- Dynamic Patterns
\checkmark Growth Power Law
\checkmark Shrinking/Stabilizing Diameters
- First generator for which we can prove all these properties

Impact: Graph500

- Based on RMAT ($=2 \times 2$ Kronecker)
- Standard for graph benchmarks
- http://www.graph500.org/
- Competitions $2 x$ year, with all major entities: LLNL, Argonne, ITC-U. Tokyo, Riken, ORNL, Sandia, PSC, ...
To iterate is human, to recurse is devine
R-MAT: A Recursive Model for Graph Mining,
by D. Chakrabarti, Y. Zhan and C. Faloutsos, SDM 2004, Orlando, Florida, USA

Summary of Part\#1

- *many* patterns in real graphs
- Small \& shrinking diameters
- Power-laws everywhere
- Gaussian trap
- Self-similarity (RMAT/Kronecker): good model

Roadmap

- A case for cross-disciplinarity
- Introduction - Motivation

- Part\#1: Patterns in graphs
\Rightarrow • Part\#2: Cascade analysis
- Conclusions

Comic relief:

- What would a barefooted man get if he steps on an electric wire?

http://energyquest.ca.gov/games/jokes/george.html

Comic relief:

- What would a barefooted man get if he steps on an electric wire? (Answer) A pair of shocks

http://energyquest.ca.gov/games/jokes/george.html

Part 2: Cascades \& Immunization

Why do we care?

- Information Diffusion
- Viral Marketing
- Epidemiology and Public Health
- Cyber Security
- Human mobility
- Games and Virtual Worlds
- Ecology amazon

Sprint
选 4 LIFE
4

Roadmap

- A case for cross-disciplinarity
- Introduction - Motivation

- Part\#1: Patterns in graphs
- Part\#2: Cascade analysis
- (Fractional) Immunization
- Epidemic thresholds
- Conclusions

Fractional Immunization of Networks
B. Aditya Prakash, Lada Adamic, Theodore Iwashyna (M.D.), Hanghang Tong, Christos Faloutsos

SDM 2013, Austin, TX

Whom to immunize?

- Dynamical Processes over networks
- Each circle is a hospital
- ~3,000 hospitals
- More than 30,000 patients transferred
[US-MEDICARE NETWORK 2005]

CMU, Feb 2014

Problem: Given k units of disinfectant, whom to immunize?
(c) 2014, C. Faloutsos

CURRENT PRACTICE

OUR METHOD

Hospital-acquired inf. : 99K+ lives, \$5B+ per year

Fractional Asymmetric Immunization

Hospital

(c) 2014, C. Faloutsos

Fractional Asymmetric Immunization

Hospital

CMU, Feb 2014

Another Hospital
(c) 2014, C. Faloutsos

Fractional Asymmetric Immunization

Hospital

(c) 2014, C. Faloutsos

Another Hospital

Fractional Asymmetric Immunization

Problem:

Given k units of disinfectant, distribute them to maximize hospitals saved

Hospital

Another Hospital

Fractional Asymmetric Immunization

Problem:

Given k units of disinfectant, distribute them to maximize hospitals saved @ 365 days

Hospital

Another Hospital

Straightforward solution:

Simulation:

1. Distribute resources
2. 'infect' a few nodes
3. Simulate evolution of spreading

- (10x, take avg)

4. Tweak, and repeat step 1

Straightforward solution:

Simulation:

1. Distribute resources
2. 'infect' a few nodes
3. Simulate evolution of spreading

- (10x, take avg)

4. Tweak, and repeat step 1

Straightforward solution:

Simulation:

1. Distribute resources
2. 'infect' a few nodes
3. Simulate evolution of spreading

- (10x, take avg)

4. Tweak, and repeat step 1

Straightforward solution:

Simulation:

1. Distribute resources
2. 'infect' a few nodes
3. Simulate evolution of spreading

- (10x, take avg)
\Rightarrow 4. Tweak, and repeat step 1

Wall-Clock Running Time

 Time \uparrow> 30,000x speed-up!
\downarrow better

Simulations
SMART-ALLOC
(c) 2014, C. Faloutsos

Experiments

\# infected

uniform

\downarrow better

SMART-ALLOC
$K=120$
\# epochs
(c) 2014, C. Faloutsos

What is the 'silver bullet'?

A: Try to decrease connectivity of graph

Q: how to measure connectivity?

- Avg degree? Max degree?
- Std degree / avg degree ?
- Diameter?
- Modularity?
- 'Conductance’ (\sim min cut size)?

- Some combination of above?
(c) 2014, C. Faloutsos

What is the 'silver bullet'?

A: Try to decrease connectivity of graph

Q: how to measure connectivity?
A: first eigenvalue of adjacency matrix Avgdegree Max degree
Diameter
Modularity
Q1: why??
'Conductance'
(Q2: dfn \& intuition of eigenvalue ?)

Why eigenvalue?

A1: 'G2' theorem and 'eigen-drop':

- For (almost) any type of virus
- For any network
- -> no epidemic, if small-enough first eigenvalue (λ_{1}) of adjacency matrix

Threshold Conditions for Arbitrary Cascade Models on Arbitrary Networks, B. Aditya Prakash, Deepayan Chakrabarti, Michalis Faloutsos, Nicholas Valler, Christos Faloutsos, ICDM 2011, Vancouver, Canada

Why eigenvalue?

A1: ‘G2' theorem and 'eigen-drop’:

- For (almost) any type of virus
- For any network
- -> no epidemic, if small-enough first eigenvalue (λ_{1}) of adjacency matrix
- Heuristic: for immunization, try to $\min \lambda_{1}$
- The smaller λ_{1}, the closer to extinction.

G2 theorem

Threshold Conditions for Arbitrary Cascade Models on Arbitrary Networks
B. Aditya Prakash, Deepayan Chakrabarti,

Michalis Faloutsos, Nicholas Valler, Christos Faloutsos
IEEE ICDM 2011, Vancouver
extended version, in arxiv http://arxiv.org/abs/1004.0060
~10 pages proof

Our thresholds for some models

- $s=$ effective strength
- $s<1$: below threshold

Models	Effective Strength (s)	Threshold (tipping point)
SIS, SIR, SIRS, SEIR	$\mathrm{s}=\lambda\left(\frac{\beta}{\delta}\right)$	
SIV, SEIV	$\mathrm{s}=\lambda .\left(\frac{\beta \gamma}{\delta(\gamma+\theta)}\right)$	$\mathrm{s}=1$
$\begin{aligned} & \mathrm{SI}_{1} \mathrm{I}_{2} \mathrm{~V}_{1} \mathrm{~V}_{2} \\ & \left(\mathbf{H . I . V} \mathrm{~V}_{\mathbf{0}}\right) \end{aligned}$	$\mathrm{S}=\lambda \cdot\left(\frac{\beta_{1} v_{2}+\beta_{2} \varepsilon}{v_{2}\left(\varepsilon+v_{1}\right)}\right)$	

Our thresholds for some models

- $s=$ effective strength
- $s<1$: below threshold

Threshold (tipping point)

SEIR

$$
s=1
$$

Roadmap

- Introduction - Motivation
- Part\#1: Patterns in graphs

- Part\#2: Cascade analysis
- (Fractional) Immunization
- intuition behind λ_{1}
- Conclusions

Intuition for $\boldsymbol{\lambda}$

"Official" definitions:

- Let \boldsymbol{A} be the adjacency matrix. Then λ is the root with the largest magnitude of the characteristic polynomial of $\boldsymbol{A}[\operatorname{det}(\boldsymbol{A}-\boldsymbol{\lambda I})]$.
- Also: $\mathbf{A x}=\lambda \mathbf{x}$

Neither gives much intuition!

Largest Eigenvalue (λ)

better connectivity \longrightarrow higher λ

$N=1000$ nodes

Largest Eigenvalue ($\boldsymbol{\lambda}$)

better connectivity \longrightarrow higher λ

$$
\lambda \approx 2
$$

(a)Chain

$$
\lambda \approx 2 \quad \lambda=31.67
$$

$\lambda=999$
$N=1000$ nodes
(c) 2014, C. Faloutsos

Examples: Simulations - SIR (mumps)

(a) Infection profile PORTLAND graph: synthetic population, 31 million links, 6 million nodes

Examples: Simulations - SIRS (pertusis)

(a) Infection profile PORTLAND graph: synthetic population, 31 million links, 6 million nodes

Immunization - conclusion

In (almost any) immunization setting,

- Allocate resources, such that to
- Minimize λ_{1}
- (regardless of virus specifics)
- Conversely, in a market penetration setting
- Allocate resources to
- Maximize λ_{1}

Roadmap

- Introduction - Motivation
- Part\#1: Patterns in graphs

- Part\#2: Cascade analysis
- (Fractional) Immunization
- Epidemic thresholds
\Rightarrow • Acks \& Conclusions

Thanks

Microsoft

Disclaimer: All opinions are mine; not necessarily reflecting the opinions of the funding agencies

Thanks to: NSF IIS-0705359, IIS-0534205, CTA-INARC; Yahoo (M45), LLNL, IBM, SPRINT, Google, INTEL, HP, iLab

Project info: PEGASUS

WWW.cs.cmu.edu/~pegasus
Results on large graphs: with Pegasus + hadoop + M45
Apache license
Code, papers, manual, video

Prof. U Kang Prof. Polo Chau

Cast

Akoglu, Leman

Beutel, Alex

Prakash, Aditya

Chau, Polo

McGlohon, Mary
(c) 2014, C. Faloutsos

CONCLUSION\#1 - Big data

- Large datasets reveal patterns/outliers that are invisible otherwise

CONCLUSION\#2 - self-similarity

- powerful tool / viewpoint
- Power laws; shrinking diameters

- Gaussian trap (eg., F.O.F.)
- RMAT - graph500 generator

CONCLUSION\#3 - eigen-drop

- Cascades \& immunization: G2 theorem \& eigenvalue

References

- D. Chakrabarti, C. Faloutsos: Graph Mining - Laws, Tools and Case Studies, Morgan Claypool 2012
- http://www.morganclaypool.com/doi/abs/10.2200/ S00449ED1V01Y201209DMK006

TAKE HOME MESSAGE:

Cross-disciplinarity

令

CMU, Feb 2014
(c) 2014, C. Faloutsos

Already started paying off for power grids

- Same accuracy, 100x - 100K x faster

Kd-tree

1000 x

[1] Yang Weng, Christos Faloutsos, Marija D. Il' c, and Rohit Negi, Speed up of Data-Driven State Estimation Using LowComplexity Indexing Method, IEEE PES-General Meeting, (accepted), 2014

THANK YOU!

- Same accuracy, 100x - 100K x faster

Kd-tree

[1] Yang Weng, Christos Faloutsos, Marija D. Ili'c, and Rohit Negi, Speed up of Data-Driven State Estimation Using LowComplexity Indexing Method, IEEF PES-General Meeting, (accepted), 2014

