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1: Introduction
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GE’s Solution on Wide Area
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Data Collection
Multilin P30 POC collects data from €37.118 compliont PMUs at 1 to 120 frames per second.
Multilin P30 POC extrocts, buffers, oggregates and orchives dota from up to 40 PMU devices.

* From GE’s Industrial Solution Website

[T VirginiaTech

Invent the Future



TABLE I
COMPARISON OF INTEGRATED POWER/NETWORK SIMULATORS

Target Components Synchronization Scalability Real-time
Dynamic simulation for . ) )
EPOCHS[13] WAMS applications PSCAD, PSLF, NS2 Time-stepped Good for large system No
. Dynamic simulation for : Limited, have to rewrite
ADEVS[14] WAMS applications Adevs, NS2 DEVS codes for different systems No
Dynamic simulation for T e — N o _—
[15] WAMS applications Simulink, OPNET Not addressed Medium size No
Remotely controlled . . Limited to single or small : No
VPNET[16] _ L Virtual Test Bed, OPNET Time-stepped . . (but have plans to
power devices number of power devices - ) .
integrate RTDS)
PowerNet[17] Remotely conltmllt:d Modelica, NS2 Time-stepped Limited to single or small No
power devices number of power devices
General network OPNET only, power o Limited size due to
[18] . . Delay estimation . : No
controlled system system part is virtualized virtualized power system
. - Yes
SCADA CST[19] 5:’212; ff;ﬁ;;;ﬂg{? PowerWorld, RINSE N/A (static) Good for large system (communication
y network only)
A eohor oo Yes
TASSCS[20] S: f:t[l: ;?ﬁiﬁ;ﬂ:?i PowerWorld, OPNET N/A (static) Good for large system (communication
syste network only)
GECO Dynamic simulation for PSLF, NS2 Gilobal event- Good for large system No
_— WAMS applications s driven ! ge sys

Hua Lin; Veda, S.S.; Shukla, S.S.; Mili, L.; Thorp, J., "GECO: Global Event-Driven Co-Simulation
Framework for Interconnected Power System and Communication Network," Smart Grid, IEEE
Transactions on, vol.3, no.3, pp.1444,1456, Sept. 2012
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2. Global Event-Driven Synchronization
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GECO (Global Event-driven CO-simulation): Platform
Structure
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GECO: A Modulized Global Event-driven CO-simulation platform

Power System Simulator Platform

Application-Specific Physical System Simulators Physical System Application Packages
GE’s Positive Sequence Load Flow State Out of Step | Electric
(PSLF) teee Estimation | Protection | Marketing
. . . Dynamic
Basic Model Simulator Integration Layer Model
Global Scheduler Global Event Queue

Power System Interface Middleware “epcmod”

______ H__ _ __H_ o _H_ R H__ _ _ Messages, Shared Memory,
Formatted Files, Mediators, etc.

Communication Network Simulator Middleware “tcl_PSLF”

Global Scheduler Global Event Queue

SCADA Communication Protocol Package Layer:
Modbus, DNP3, ICCP, Profibus, Ethernet, TCP/IP, IEC 61850

Cyber Network Simulators Cyber Events Applications
i Cyber Network
Network Simulator 2 (NS2) Attacks | Contingency

Communication Network System Simulator Platform
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3: Problem Statement: Attack Model

Malicious Data Injection attack on State Estimation
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The Placement of PMUSs

IEEE 14-Bus Example 12 13 14

TRANSFORMER EQUIVALENT
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PMU1 —— 111
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Test system PMUs Number PMU3
IEEE 14-bus 3 Minimum number of critical
IEEE 24-bus 6 places for installing PMUs
IEEE 30-bus 7 Secured PMUs installed in these
New England 39-bus 3 places make the system observable

TV v o

IEEE 57-bus 11 leI’g}ﬂliEﬁ




Case study:
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Cyber attack Simulation:

Single Network Link Failure
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1.1 4

Estimated value on full measurements

. ------- Reference value

3

=

@

w

2 104

om

@

©

=

=

c

=]

(]

= 094

@

o

=

°

>

0.8 T T T T 1
0.0 0.2 04 0.6 0.8 10

Measurement Time (second)

Saturation attacks
Network saturation 50%

1.10 4
—— Estimated value on full measurements
Estimated value on partial measurements
----- Reference value

1.05
1.00 4

0.95

0.90

Voltage Magnitude at Bus 3 (p.u.)

0.85 4

0.80 T T T T T T T T T 1
00 01 02 03 04 05 06 07 08 08 10

Measurement Time (second)

on network channels

0.9+

Voltage Magnitude at Bus 3 (p.u.)

0.8

Bus16-Busl7 (Tp=60ms)

Estimated value on full measurements
------- Reference value

—WMWMMWv—Ww -------

0

T T T T 1
0 02 04 06 08 10

Measurement Time (second)

Network saturation 85%

1.10 4
Estimated value on full measurements
5 1054 e Reference value
=
©
2 1.00
@
p
5
3 0.95 4
c
o
()
= 0.90
(3]
o
pu]
S oes54
0.80 T T T T 1
0.0 0.2 0.4 06 038 1.0

Measurement Time (second)

[T VirginiaTech

Invent the Future



Cyber attack Simulation: on network nodes

Denial of Service Attack

DoS attack on the router at Bus 16 Enhanced DoS attack
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4. Out-of-Step Protection
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Out-of-Step Protection st T . s
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« Out-of-Step (OOS) means a : -
generator or a group of generators Q| ' s
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system. : : 2
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domain dynamic simulations and - ”b— ® 06
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PMU-based Out-of-Step Protection

. Real-Time Generator
* Protection Scheme ) :
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Clustering Algorithm for Coherent Groups

CoherentGroup1(A) returns S, T

« Clustering algorithm refers to a
group of algorithms whose goal bt
2. for i =1 to A.size() — 1

IS to divide data into subsets ’
. . . 3. if Ali +1] — Ali] > 120
based on certain criteria. e

4. push generators associated with A[1] to A[i] into S
5. push generators associated with Afi + 1] to A[A.size()] into T

» The first algorithm sorts the 6 ream

measured rotor angle and

traverse the measured rOtor angle CoherentGroup2(A) returns 5.1

sequentially. If the gap between
tWO nelghbors IS greater than 120 1. ereate a dynamic array G to hold clusters
degrees, then the OOS condition 2 fore = o dsize

. . e 3. compare A[¢] with the means of the clusters in G sequentially

IS identified.
4. if one of the differences is smaller than 120 degree

. . 5. push pair of < i, Afi] > into that cluster, update the mean
« An alternative second algorithm

6. else

processes the measured rotor ] o o
7. create a new cluster holding pair of < 7, A[{] > and push it into G

angle one by one.

8. find the largest cluster in G
9. push the generators in this cluster into a set S

10. push the other generators into another set T'




Islanding Algorithm

---f:'f\
« As long as we have found two «  u
coherent generator groups S . N /// ‘-‘.\\‘\..
and T, the next step is to find
. , @--2--QqQ T -0
a minimum cut of the entire A e
power system that can -y
separate S and T. S~
S

« Edmonds-Karp algorithm
which is O(|V ||E|?)

A max-flow example Find the min-cut on the residual network
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5: Conclusions & Future Research

Implemented a co-simulation platform GECO, and integrated the
dynamic state estimation and the out-of-step protection modules in
the platform.

Launched two case studies (all-PMU based state estimation and
PMU based out-of-step protection) to reveal the cyber security
vulnerabilities on co-simulation platform.

Cloud-based virtual SCADA testbed for cyber security research
Centralize & Modulize computing and communication resources
Replaceable different communication protocols for security research
Seamlessly interact with power/control system simulators.
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Virtual SCADA Testbed for Cyber Security
Research

RTUs S HMI
OPC 1/0O drivers in iFix
Access Control b3
—Z LY -
L
MatrikonOPC server PC1/0 drivers in iFix || = = |! [!
\ b
& N  INEI =
X < B '
R —— assigns the data to a tag in the monitors the tag in D1’s
) - — iFix database manager database
Data Source Attack! R : " — -
Database Attack! |
. @ VirginiaTech
N Invent the Future



Cloud-based Virtual SCADA Infrastructure in VT
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