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UCSD Phasor Measurement System

, Callafon & Wells
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Additional PMUs

 microPMUs from PSL  (ARPA-E funded)

Callafon & Wells
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Goals

Identification/classification:
 Identify major modes of grid oscillation
 Identify their frequencies, damping and modal 

participation
 Develop dynamic model that can be used for

future control/mitigation of disturbances

Analysis/control:
 Determine how well models correlate with modes
 Use models for automatic control for mitigation

Callafon & Wells
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Our main contributions

 Detection of Events via Filtered Rate of Change (FRoC) signal
 Auto Regressive Moving Average (ARMA) filter of ambient data.
 Definition of Filtered Rate-of-Change (Froc) signal for Event Detection

 Ring Down Analysis of Events via Realization Algorithm
 Discrete-Time State Space Modeling of disturbance data.
 Modeling of grid real power dynamics

 Mitigation of Events via Real-time Control
 Use dynamic model from Realization Algorithm
 Design low-order real-time (automatic) control with minimal control effort

 Illustration in this talk:
 Part 1: Automatic event detection applied to May 30 WECC event
 Part 2: UCSD Microgrid: analysis and control of Oct. 9 event

Callafon & Wells
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PART 1

PART 1

Automatic Event Detection 
Application to May 30 WECC disturbance

Callafon & Wells
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Grid events/oscillations (example: May 30 WECC event)

 PMU generated 
frequency signal

 How do we detect
individual events?

 How can we quantify
these events?

 What do these events
tell us about our 
(micro)grid?

May 30 data: 972000 data points (30Hz sampling noon-9pm)

Illustration on May 30th WECC data

Callafon & Wells
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FRoC Signal - ARMA filter

 In ambient situation we may assume:
 Fluctuations in frequency signal ܨሺ݇ሻ assumed 

due to “random noise” on grid
 ሺ݇ሻܨ can be modeled as a “filtered white noise”

ܨ ݇ ൌ ܪ ݍ ݁ሺ݇ሻ
where ܪሺݍሻ is an unknown filter and ݁ሺ݇ሻ is a white noise.

 Possible approximation for filter ܪሺݍሻ: ARMA filter

ܪ ,ݍ ߠ ൌ 	
ܾ଴ ൅ ܾଵିݍଵ ൅ ⋯൅ ܾ௡ିݍ௡

1 ൅ ܽଵିݍଵ ൅ ⋯൅ ܽ௡ିݍ௡

 Filter ܪሺݍሻ is stable and stably invertible
 We can compute

ߝ ݇, ߠ ൌ ܪ ,ݍ ߠ ିଵܨሺ݇ሻ
 Parameters ߠ ൌ ܾଵ ⋯ ܾ௡			ܽଵ ⋯ ܽ௡ can be estimated via Least 

Squares (Prediction Error) to minimize variance of error ߝ ݇, ߠ .

ሻݍሺܪ

,ݍଵሺିܪ ሻߠ

݁ሺ݇ሻ

ሺ݇ሻܨ

,ሺ݇ߝ ሻߠ

Callafon & Wells
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FRoC Signal – RoC filter

 With optimal value of ߠ we have “smallest possible”
ߝ ݇, ߠ ൌ ܪ ,ݍ ߠ ିଵܨ ݇

during ambient behavior.
 To create FRoC: add additional filtering on ߝ ݇, ߠ to monitor Rate 

of Change in ܨ ݇
 Typical Filter:

ܥ݋ܴܨ ݇ ൌ ܴ ݍ ܪሻݍሺܮ ,ݍ ߠ ିଵܨ ݇

ܴ ݍ ൌ 	
ݍ െ 1
ݍ െ 0.9 , ܮ ݍ ൌ

ݍ0.1367 ൅ 0.1367
ݍ െ 0.7265

END RESULT: a real-time recursive formula to compute ܥ݋ܴܨ ݇ :

ܥ݋ܴܨ ݇ ൌ ܾ଴ܨ ݇ ൅ ܾଵܨ ݇ െ 1 ൅⋯൅ ܾ௡ܨ ݇ െ ݊
െܽଵܥ݋ܴܨ ݇ െ 1 െ⋯െ ܽ௡ܥ݋ܴܨ ݇ െ ݊

Callafon & Wells
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FRoC Signal – RoC filter

 In our case based on real-time PMU data we created the discrete-
time filter equation to obtain FRoC(k):

ܥ݋ܴܨ ݇ ൌ 0.12786 ∙ ܨ ݇ െ 0.25412 ∙ ܨ ݇ െ 1 െ 0.00094 ∙ ܨ ݇ െ 2
൅0.25411 ∙ ܨ ݇ െ 3 െ 0.12694 ∙ ܨ ݇ െ 4

൅3.48506 ∙ ܥ݋ܴܨ ݇ െ 1 െ 4.54036 ∙ ܥ݋ܴܨ ݇ െ 2
൅2.61982 ∙ ܥ݋ܴܨ ݇ െ 3 െ 0.56464 ∙ ܥ݋ܴܨ ݇ െ 4

 Compared with ROCOF(k):

ܨܱܥܱܴ ݇ ൌ 30ሺܨ ݇ െ ܨ ݇ െ 1

(dirty discrete-time derivative)

Callafon & Wells
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FRoC Signal – RoC filter

 Bode plot of filters 
used to create FRoC(k) 
and ROCOF(k) 
illustrates the benefits:

 Filter looks like a
‘differentiator’

 Additional filtering of 
harmonic disturbances
ambient data at 0.35Hz

 Additional low pass 
filter to reduce noise

Callafon & Wells
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FRoC Signal – what’s the big deal?

 Small	ܥ݋ܴܨ ݇ 	
during ambient 
behavior

 Even for “noisy” 
NI PMU

Callafon & Wells
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FRoC Signal – what’s the big deal?

Compare with ROCOF:

(dirty discrete-time 
derivative)

 Much larger than
FRoC(k)

 Would require
larger thresholds

ܨܱܥܱܴ ݇ ൌ
ܨ ݇ െ ሺ݇ܨ െ 1ሻ

ݐ∆

Callafon & Wells
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FRoC Signal – what’s the big deal?

 Small thresholds
with small	ܥ݋ܴܨ ݇ 	
during ambient 
behavior 

 Detection of 
events via:
 Set threshold based

on ambient data

 ܥ݋ܴܨ ݇ 	outside
threshold for m 
consecutive points

 Classify event by saving/analyzing N data points 

Callafon & Wells



15

FRoC Signal – what’s the big deal?

Compare with ROCOF
 Much larger than

FRoC(k)
 More false alarms

Callafon & Wells
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Automatically:

 Detect event.
(via threshold on 
Filtered Rate of 
Change signal)

Automatic Detection Results

Callafon & Wells
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Automatic Detection Results

Automatically:

 Detect event.
(via threshold on 
Filtered Rate of 
Change signal)

 Able to distinguish 
14 separate events 
over 9 hour data

Callafon & Wells
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FRoC Signal – application to May 30 data

Callafon & Wells
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FRoC Signal – application to May 30 data

Event 4.1

Callafon & Wells
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FRoC Signal – application to May 30 data

Event 4.3

Callafon & Wells
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FRoC Signal – application to May 30 data

Callafon & Wells
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FRoC Signal – application to May 30 data

Callafon & Wells
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PART 2

PART2

UCSD Microgrid
Ring Down Analysis of Oct. 9 event 

Mitigation of events via real-time control

Callafon & Wells
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Analysis of Events - Realization Algorithm

)()(
)()()1(

tCxtF
tBdtAxtx




analysis

detect beginning of event

Callafon & Wells



25

Excellent results
from lab experiments

Analysis of Events - Realization Algorithm

Approach:
 Assume observed event in frequency F(t) is due to a deterministic system

where (unknown) input d(t) can be `impulse’ or `step’ or `known shape’
 Store a finite number of data points of F(t) in a special data matrix H
 Inspect rank of (null projection on) H: determines # modes
 Compute matrices A, B and C via Realization Algorithm.
 Extension of Ho-Kalman, Kung algorithm. Miller, de Callafon (2010)
 Applicable to multiple time-synchronized measurements! (multiple PMUs)
End Result:
 Dynamic model (state space model) can be used for

 Simulation: simulate the disturbance data
 Analysis: Compute resonance modes and damping  (from eigenvalues of A)

)()(
)()()1(

kCxkF
kBdkAxkx




Discrete-time model

Callafon & Wells
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Measurements from
SEL breaker at 12kV
3 phase line (6.9kV
phase to phase)

 RMS Voltage and
Current of 3 phases

 Real Power
 Apparent Power

Disturbance on
3 phase network

Oct. 9 UCSD microgrid event 

Callafon & Wells
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Measurements from
SEL breaker at 12kV
3 phase line (6.9kV
phase to phase)

 RMS Voltage and
Current of 3 phases

 Real Power
 Apparent Power

Oct. 9 UCSD microgrid event 

Callafon & Wells
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Main conclusions from Measurements from SEL breaker:
 Sustained oscillations in 3 phase V and I mostly due to reactive 

power.
 Real power oscillations dampen out faster
 (time adjusted) Frequency show similar dynamics as Real Power:

Oct. 9 UCSD microgrid event 

Callafon & Wells
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Realization Algorithm:
excellent fit of
oscillation/damping

Modeled 
frequencies Fn, 
damping D and 
model participation P:

Mode around 1.4Hz 
less than 5% damping, 85% participation

Analysis of UCSD microgrid dynamics

Callafon & Wells
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Dynamic model found
by realization in Bode
plot (frequency domain)

Observe large resonance
frequency around 1.4Hz

MITIGATION
Control/damping of
1.4Hz oscillation

Analysis of UCSD microgrid dynamics

Callafon & Wells
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MITIGATION
Control/damping of 1.4Hz oscillation via Real Power control:

 What is the control algorithm?
 How much control power is needed to dampen oscillation?

Mitigation of UCSD microgrid dynamics

Network Relay/PMU

Control
Algorithm C(z)

Identified model G(z)disturbance

control power real power

Callafon & Wells
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Identified Discrete-Time Model G(z):

ܩ ݖ

ൌ
െ0.2791	6^ݖ	 ൅ 	5^ݖ	1.677	 െ 	4^ݖ	4.204	 ൅ 	3^ݖ	5.63	 െ 	2^ݖ	4.249	 ൅ 	ݖ	1.713	 െ 	0.2882

	7^ݖ െ 	6^ݖ	6.89	 ൅ 	5^ݖ	20.39	 െ 	4^ݖ	33.58	 ൅ 	3^ݖ	33.26	 െ 	2^ݖ	19.8	 ൅ 	ݖ	6.564	 െ 	0.9344

Proposed control algorithm C(z) that has the following shape:

ܥ ݖ ൌ ܭ
ݖ െ 1

ሺݖ െ ܽሻሺݖ െ ܾሻ

 Discrete-time differentiator (to add damping + reduce low 
frequency control)

 Two poles (a,b) to limit bandwidth
 Gain K to adjust power gain

Mitigation of UCSD microgrid dynamics

Callafon & Wells
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Choice of control parameters
K, and b in

ܥ ݖ ൌ ܭ
ݖ െ 1

ሺݖ െ ܽሻሺݖ െ ܾሻ
via loop shaping tool

Shape Bode plot of
L(z)=G(z)C(z)

See direct effect of:
 Damping
 Stability
 Control signal

Mitigation of UCSD microgrid dynamics

Callafon & Wells
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End result of control design:

ܥ ݖ ൌ ܭ
ݖ െ 1

ሺݖ െ ܽሻሺݖ െ ܾሻ , ܭ ൌ 0.085211, ܽ ൌ 0.9757, ܾ ൌ 0.7933

Resulting discrete control algorithm:

ݑ ݇ ൌ 0.0852 ∙ ܲ ݇ െ 1 െ 0.0852 ∙ ܲ ݇ െ 2 ൅ 1.7690 ∙ ݑ ݇ െ 1
െ 0.7740 ∙ ݑ ݇ െ 2

Mitigation of UCSD microgrid dynamics

Network Relay/PMU

C(z)

Identified model G(z)disturbance

control power u(k) real power P(k)
Callafon & Wells
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Effect of Control Algorithm:

Damping of UCSD microgrid:

Damping of controlled
UCSD microgrid:

Slight change in resonance modes, ten-fold increase in damping!

Mitigation of UCSD microgrid dynamics

Callafon & Wells
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Effect of Control Algorithm:

 Disturbance effect still
present (unavoidable)

 Control algorithm does
mitigate disturbance
faster!

 Less oscillations in
microgrid (better damping)

 How much control power needed?

Mitigation of UCSD microgrid dynamics

Callafon & Wells
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Effect of Control Algorithm:
 For comparison, control

power plotted at same
scale a disturbance in
real power

 Disturbance almost
+/- 2MW

 Control power only
+/- 0.25MW for mitigation

 Results scale with size of disturbance and increase of damping

Mitigation of UCSD microgrid dynamics

Callafon & Wells
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Reducing control effort to
+/- 125KW still works, but:

 Damping cannot be
influenced that much

 Still acceptable to improve
dynamics of microgrid

 Control power only
+/- 125KW for mitigation

Mitigation of UCSD microgrid dynamics

Callafon & Wells
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 Automatically detect when a disturbance/transient event occurs
 Automatically estimate Frequency, Damping and Dynamic Model.

Main Features:
 Automatically detect event:

 Predict ambient Frequency signal “one-sample” ahead
 Observe when prediction deviates for event detection via FRoC signal

 Automatically estimate:
 # of modes of oscillations in measured disturbance
 Estimate frequency and damping of the modes
 Put results in dynamic mode

 All done in real-time!
 Note: resulting dynamic model can be used for feedback

control design to mitigate event!

Summary on Detection and Analysis 

Callafon & Wells
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 Thank you

CMU Meeting, Callafon & Wells


