

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

Automatic Event Detection and Ring Down Analysis & Mitigation of Grid Oscillations

Raymond de Callafon and Charles H. Wells

University of California, San Diego & OSIsoft

9th CMU Conference Pittsburgh, PA Feb 2, 2014

email: callafon@ucsd.edu, cwells@osisoft.com

JCSI UCSD Phasor Measurement System

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

UCSD Phasor Measurement System

2

Additional PMUs

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

microPMUs from PSL (ARPA-E funded)

Building Name
EBU3A Biobuilding
Atkinson Hall
Pacific Hall
Natural Sciences
CMME&CMMW
SDSC
Sverdrup
P703
Jacobs
CUP A
CUP B
North Campus Housing
Rady School
RIMAC
Hospital CC Embergency A
Hospital CC Emergency B
SOM Pharm
SOM BSB
SIO Hubbs Hall
CPS WC -9

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

Identification/classification:

- Identify major modes of grid oscillation
- Identify their frequencies, damping and modal participation
- Develop dynamic model that can be used for future control/mitigation of disturbances

Analysis/control:

- Determine how well models correlate with modes
- Use models for automatic control for mitigation

Our main contributions

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

- Detection of Events via Filtered Rate of Change (FRoC) signal
 - Auto Regressive Moving Average (ARMA) filter of ambient data.
 - Definition of Filtered Rate-of-Change (Froc) signal for Event Detection
- Ring Down Analysis of Events via Realization Algorithm
 - Discrete-Time State Space Modeling of disturbance data.
 - Modeling of grid real power dynamics
- Mitigation of Events via Real-time Control
 - Use dynamic model from Realization Algorithm
 - Design low-order real-time (automatic) control with minimal control effort

Illustration in this talk:

- Part 1: Automatic event detection applied to May 30 WECC event
- Part 2: UCSD Microgrid: analysis and control of Oct. 9 event

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

PART 1

Automatic Event Detection Application to May 30 WECC disturbance

➡UCSD Illustration on May 30th WECC data

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

Grid events/oscillations (example: May 30 WECC event)

- PMU generated frequency signal
- How do we detect individual events?
- How can we quantify these events?
- What do these events tell us about our (micro)grid?

Jacobs

Mechanical and

Aerospace Engineering

May 30 data: 972000 data points (30Hz sampling noon-9pm)

FRoC Signal - ARMA filter

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

In ambient situation we may assume:

- Fluctuations in frequency signal F(k) assumed due to "random noise" on grid
- F(k) can be modeled as a "filtered white noise" F(k) = H(q)e(k)

where H(q) is an unknown filter and e(k) is a white noise.

- Possible approximation for filter H(q): ARMA filter $H(q, \theta) = \frac{b_0 + b_1 q^{-1} + \dots + b_n q^{-n}}{1 + a_1 q^{-1} + \dots + a_n q^{-n}}$
 - Filter *H*(*q*) is stable and stably invertible
 - We can compute

$$\varepsilon(k,\theta) = H(q,\theta)^{-1}F(k)$$

Parameters $\theta = [b_1 \cdots b_n a_1 \cdots a_n]$ can be estimated via Least Squares (Prediction Error) to minimize variance of error $\varepsilon(k, \theta)$.

8

$$e(k)$$

$$H(q)$$

$$F(k)$$

$$H^{-1}(q,\theta)$$

$$\varepsilon(k,\theta)$$

Mechanical and

Jacobs | Aerospace Engineering

FRoC Signal – RoC filter

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

• With optimal value of θ we have "smallest possible" $\varepsilon(k,\theta) = H(q,\theta)^{-1}F(k)$

during ambient behavior.

- To create FRoC: add additional filtering on $\varepsilon(k,\theta)$ to monitor Rate of Change in F(k)
- Typical Filter:

$$FRoC(k) = R(q)L(q)H(q,\theta)^{-1}F(k)$$

$$R(q) = \frac{q-1}{q-0.9}, \quad L(q) = \frac{0.1367q + 0.1367}{q-0.7265}$$

END RESULT: a real-time recursive formula to compute FRoC(k):

$$\begin{aligned} FRoC(k) &= b_0 F(k) + b_1 F(k-1) + \dots + b_n F(k-n) \\ -a_1 FRoC(k-1) - \dots - a_n FRoC(k-n) \end{aligned}$$

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

In our case based on real-time PMU data we created the discretetime filter equation to obtain FRoC(k):

$$FRoC(k) = 0.12786 \cdot F(k) - 0.25412 \cdot F(k-1) - 0.00094 \cdot F(k-2) + 0.25411 \cdot F(k-3) - 0.12694 \cdot F(k-4) + 3.48506 \cdot FRoC(k-1) - 4.54036 \cdot FRoC(k-2) + 2.61982 \cdot FRoC(k-3) - 0.56464 \cdot FRoC(k-4)$$

Compared with ROCOF(k):

$$ROCOF(k) = 30(F(k) - F(k - 1))$$

(dirty discrete-time derivative)

FRoC Signal – RoC filter

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

- Bode plot of filters used to create FRoC(k) and ROCOF(k) illustrates the benefits:
 - Filter looks like a 'differentiator'
 - Additional filtering of harmonic disturbances ambient data at 0.35Hz
 - Additional low pass filter to reduce noise

UCSD | Mechanical and Jacobs | Aerospace Engineering

CONTRACTION OF CALIFORNIA, SAN DIEGO FROC Signal – what's the big deal?

Jacobs School of Engineering

- Small FRoC(k) during ambient behavior
- Even for "noisy" NI PMU

Jacobs

Aerospace Engineering

CONTRACTION OF CALIFORNIA, SAN DIEGO FROC Signal – what's the big deal?

Jacobs School of Engineering

UCSD | Mechanical and Jacobs | Aerospace Engineering

FRoC Signal – what's the big deal? OF CALIFORNIA, SAN DIEGO UNIVERSIT

Jacobs School of Engineering

Small thresholds with small FRoC(k)Ereduency [Hz] 60.05 Frequency 59.95 during ambient behavior 59.9 **Detection of** 16:27:00 16:30:00 16:32:59 16:35:59 16:38:59 events via: time Set threshold based 0.01 FRoC on ambient data threshold 0.005 FRoC [Hz/s] FRoC(k) outside threshold for *m* -0.005 consecutive points -0.01 16:27:00 16:30:00 16:32:59 16:35:59 16:38:59 time Classify event by saving/analyzing *N* data points Mechanical and Jacobs

Aerospace Engineering

CONTRACTION OF CALIFORNIA, SAN DIEGO FROC Signal – what's the big deal?

Jacobs School of Engineering

Compare with ROCOF

- Much larger than FRoC(k)
- More false alarms

Mechanical and

Aerospace Engineering

Jacobs

Automatic Detection Results

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

Automatically:

 Detect event.
 (via threshold on Filtered Rate of Change signal)

UCSD | Mechanical and Jacobs | Aerospace Engineering

Automatic Detection Results

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

Automatically:

- Detect event.
 (via threshold on Filtered Rate of Change signal)
- Able to distinguish
 14 separate events
 over 9 hour data

CSD Mechanical and Jacobs Aerospace Engineering

FRoC Signal – application to May 30 data OF CALIFORNIA, SAN DIEGO UNIVERSITY

Jacobs School of Engineering

Mechanical and

Aerospace Engineering

Jacobs

Jacobs School of Engineering

Mechanical and

Aerospace Engineering

Jacobs

Jacobs School of Engineering

Jacobs School of Engineering

Mechanical and

Aerospace Engineering

UCSD

Jacobs

Jacobs School of Engineering

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

PART2

UCSD Microgrid Ring Down Analysis of Oct. 9 event Mitigation of events via real-time control

UCSD Analysis of Events - Realization Algorithm

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

UCSD Analysis of Events - Realization Algorithm

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

Approach:

Assume observed event in frequency F(t) is due to a deterministic system

$$x(k+1) = Ax(k) + Bd(k)$$

Discrete-time model

where (unknown) input d(t) can be `impulse' or `step' or `known shape'

- Store a finite number of data points of F(t) in a special data matrix H
- Inspect rank of (null projection on) H: determines # modes
- Compute matrices A, B and C via Realization Algorithm.

F(k) = Cx(k)

- Extension of Ho-Kalman, Kung algorithm. Miller, de Callafon (2010)
- Applicable to multiple time-synchronized measurements! (multiple PMUs)
 End Result:
- Dynamic model (state space model) can be used for
 - Simulation: simulate the disturbance data
 - Analysis: Compute resonance modes and damping (from eigenvalues of A)

₹UCSD

Oct. 9 UCSD microgrid event

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

Measurements from SEL breaker at 12kV 3 phase line (6.9kV phase to phase)

- RMS Voltage and Current of 3 phases
- Real Power
- Apparent Power

Disturbance on 3 phase network

CSD | Mechanical and Jacobs | Aerospace Engineering

Oct. 9 UCSD microgrid event

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

Measurements from SEL breaker at 12kV 3 phase line (6.9kV phase to phase)

- RMS Voltage and Current of 3 phases
- Real Power
- Apparent Power

UCSD | Mechanical and Jacobs | Aerospace Engineering

Oct. 9 UCSD microgrid event

CALIFORNIA, SAN DIEGO 0 F UNIVERSIT

Jacobs School of Engineering

Main conclusions from Measurements from SEL breaker:

- Sustained oscillations in 3 phase V and I mostly due to reactive power.
- Real power oscillations dampen out faster
- (time adjusted) Frequency show similar dynamics as Real Power:

Analysis of UCSD microgrid dynamics CALIFORNIA, SAN DIEGO 0 F UNIVERSIT

Jacobs School of Engineering

Jacobs School of Engineering

Dynamic model found by realization in Bode plot (frequency domain)

Observe large resonance frequency around 1.4Hz

MITIGATION

Control/damping of 1.4Hz oscillation

Jacobs School of Engineering

MITIGATION

Control/damping of 1.4Hz oscillation via Real Power control:

Mechanical and

Aerospace Engineering

Jacobs

- What is the control algorithm?
- How much control power is needed to dampen oscillation?

Jacobs School of Engineering

Identified Discrete-Time Model G(z):

$$G(z) = \frac{-0.2791 \, z^{6} + 1.677 \, z^{5} - 4.204 \, z^{4} + 5.63 \, z^{3} - 4.249 \, z^{2} + 1.713 \, z - 0.2882}{z^{7} - 6.89 \, z^{6} + 20.39 \, z^{5} - 33.58 \, z^{4} + 33.26 \, z^{3} - 19.8 \, z^{2} + 6.564 \, z - 0.9344}$$

Proposed control algorithm C(z) that has the following shape:

$$C(z) = K \frac{z-1}{(z-a)(z-b)}$$

- Discrete-time differentiator (to add damping + reduce low frequency control)
- Two poles (a,b) to limit bandwidth
 - Gain K to adjust power gain

32

Jacobs School of Engineering

Choice of control parameters K, and b in

$$C(z) = K \frac{z-1}{(z-a)(z-b)}$$

via loop shaping tool

Shape Bode plot of L(z)=G(z)C(z)

See direct effect of:

- Damping
- Stability
- Control signal

UCSD | Mechanical and Jacobs | Aerospace Engineering

Jacobs School of Engineering

34

End result of control design:

$$C(z) = K \frac{z - 1}{(z - a)(z - b)}, K = 0.085211, a = 0.9757, b = 0.7933$$

Resulting discrete control algorithm:

 $u(k) = 0.0852 \cdot P(k-1) - 0.0852 \cdot P(k-2) + 1.7690 \cdot u(k-1) - 0.7740 \cdot u(k-2)$

WIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

Effect of Control Algorithm:

Damping of UCSD microgrid:

Fn = 0.094653 Hz, D = 0.450955.
Fn = 1.353568 Hz, D = 0.044507.
Fn = 1.461354 Hz, D = 0.026519.

Damping of controlled UCSD microgrid:

```
Fn = 0.089560 \text{ Hz}, D = 0.445131.
Fn = 0.904540 \text{ Hz}, D = 0.415226.
Fn = 1.771599 \text{ Hz}, D = 0.502977.
```


Jacobs

Aerospace Engineering

Slight change in resonance modes, ten-fold increase in damping!

Jacobs School of Engineering

Effect of Control Algorithm:

- Disturbance effect still present (unavoidable)
- Control algorithm does mitigate disturbance faster!
- Less oscillations in microgrid (better damping)
- How much control power needed?

UCSD | Mechanical and Jacobs | Aerospace Engineering

Jacobs School of Engineering

Effect of Control Algorithm:

- For comparison, control power plotted at same scale a disturbance in real power
- Disturbance almost +/- 2MW
- Control power only +/- 0.25MW for mitigation

CSD Mechanical and Jacobs Aerospace Engineering

Jacobs School of Engineering

Reducing control effort to +/- 125KW still works, but:

- Damping cannot be influenced that much
- Fn = 0.092977 Hz, D = 0.448233. Fn = 1.349573 Hz, D = 0.132450.
- Still acceptable to improve dynamics of microgrid
- Control power only +/- 125KW for mitigation

UCSD | Mechanical and Jacobs | Aerospace Engineering

Summary on Detection and Analysis

Jacobs School of Engineering

- Automatically detect when a disturbance/transient event occurs
- Automatically estimate Frequency, Damping and Dynamic Model.
- Main Features:
- Automatically detect event:
 - Predict ambient Frequency signal "one-sample" ahead
 - Observe when prediction deviates for event detection via FRoC signal

Automatically estimate:

- # of modes of oscillations in measured disturbance
- Estimate frequency and damping of the modes
- Put results in dynamic mode
- All done in real-time!
- Note: resulting dynamic model can be used for feedback control design to mitigate event!

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

Thank you

CMU Meeting, Callafon & Wells

