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UCSD Phasor Measurement System

, Callafon & Wells
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Additional PMUs

 microPMUs from PSL  (ARPA-E funded)

Callafon & Wells
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Goals

Identification/classification:
 Identify major modes of grid oscillation
 Identify their frequencies, damping and modal 

participation
 Develop dynamic model that can be used for

future control/mitigation of disturbances

Analysis/control:
 Determine how well models correlate with modes
 Use models for automatic control for mitigation

Callafon & Wells
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Our main contributions

 Detection of Events via Filtered Rate of Change (FRoC) signal
 Auto Regressive Moving Average (ARMA) filter of ambient data.
 Definition of Filtered Rate-of-Change (Froc) signal for Event Detection

 Ring Down Analysis of Events via Realization Algorithm
 Discrete-Time State Space Modeling of disturbance data.
 Modeling of grid real power dynamics

 Mitigation of Events via Real-time Control
 Use dynamic model from Realization Algorithm
 Design low-order real-time (automatic) control with minimal control effort

 Illustration in this talk:
 Part 1: Automatic event detection applied to May 30 WECC event
 Part 2: UCSD Microgrid: analysis and control of Oct. 9 event

Callafon & Wells
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PART 1

PART 1

Automatic Event Detection 
Application to May 30 WECC disturbance

Callafon & Wells
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Grid events/oscillations (example: May 30 WECC event)

 PMU generated 
frequency signal

 How do we detect
individual events?

 How can we quantify
these events?

 What do these events
tell us about our 
(micro)grid?

May 30 data: 972000 data points (30Hz sampling noon-9pm)

Illustration on May 30th WECC data

Callafon & Wells
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FRoC Signal - ARMA filter

 In ambient situation we may assume:
 Fluctuations in frequency signal assumed 

due to “random noise” on grid
 can be modeled as a “filtered white noise”

where is an unknown filter and is a white noise.

 Possible approximation for filter : ARMA filter

, 	
⋯

1 ⋯
 Filter is stable and stably invertible
 We can compute

, ,
 Parameters ⋯ 			 ⋯ can be estimated via Least 

Squares (Prediction Error) to minimize variance of error , .

,

,
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FRoC Signal – RoC filter

 With optimal value of we have “smallest possible”
, ,

during ambient behavior.
 To create FRoC: add additional filtering on , to monitor Rate 

of Change in 
 Typical Filter:

,

	
1
0.9 ,

0.1367 0.1367
0.7265

END RESULT: a real-time recursive formula to compute :

1 ⋯
1 ⋯
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FRoC Signal – RoC filter

 In our case based on real-time PMU data we created the discrete-
time filter equation to obtain FRoC(k):

0.12786 ∙ 0.25412 ∙ 1 0.00094 ∙ 2
0.25411 ∙ 3 0.12694 ∙ 4

3.48506 ∙ 1 4.54036 ∙ 2
2.61982 ∙ 3 0.56464 ∙ 4

 Compared with ROCOF(k):

30 1

(dirty discrete-time derivative)

Callafon & Wells
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FRoC Signal – RoC filter

 Bode plot of filters 
used to create FRoC(k) 
and ROCOF(k) 
illustrates the benefits:

 Filter looks like a
‘differentiator’

 Additional filtering of 
harmonic disturbances
ambient data at 0.35Hz

 Additional low pass 
filter to reduce noise

Callafon & Wells
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FRoC Signal – what’s the big deal?

 Small	 	
during ambient 
behavior

 Even for “noisy” 
NI PMU

Callafon & Wells
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FRoC Signal – what’s the big deal?

Compare with ROCOF:

(dirty discrete-time 
derivative)

 Much larger than
FRoC(k)

 Would require
larger thresholds

1
∆

Callafon & Wells
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FRoC Signal – what’s the big deal?

 Small thresholds
with small	 	
during ambient 
behavior 

 Detection of 
events via:
 Set threshold based

on ambient data

 	outside
threshold for m 
consecutive points

 Classify event by saving/analyzing N data points 

Callafon & Wells
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FRoC Signal – what’s the big deal?

Compare with ROCOF
 Much larger than

FRoC(k)
 More false alarms

Callafon & Wells
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Automatically:

 Detect event.
(via threshold on 
Filtered Rate of 
Change signal)

Automatic Detection Results

Callafon & Wells
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Automatic Detection Results

Automatically:

 Detect event.
(via threshold on 
Filtered Rate of 
Change signal)

 Able to distinguish 
14 separate events 
over 9 hour data

Callafon & Wells
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FRoC Signal – application to May 30 data

Callafon & Wells
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FRoC Signal – application to May 30 data

Event 4.1

Callafon & Wells
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FRoC Signal – application to May 30 data

Event 4.3

Callafon & Wells
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FRoC Signal – application to May 30 data

Callafon & Wells
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FRoC Signal – application to May 30 data

Callafon & Wells
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PART 2

PART2

UCSD Microgrid
Ring Down Analysis of Oct. 9 event 

Mitigation of events via real-time control

Callafon & Wells
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Analysis of Events - Realization Algorithm

)()(
)()()1(

tCxtF
tBdtAxtx




analysis

detect beginning of event

Callafon & Wells
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Excellent results
from lab experiments

Analysis of Events - Realization Algorithm

Approach:
 Assume observed event in frequency F(t) is due to a deterministic system

where (unknown) input d(t) can be `impulse’ or `step’ or `known shape’
 Store a finite number of data points of F(t) in a special data matrix H
 Inspect rank of (null projection on) H: determines # modes
 Compute matrices A, B and C via Realization Algorithm.
 Extension of Ho-Kalman, Kung algorithm. Miller, de Callafon (2010)
 Applicable to multiple time-synchronized measurements! (multiple PMUs)
End Result:
 Dynamic model (state space model) can be used for

 Simulation: simulate the disturbance data
 Analysis: Compute resonance modes and damping  (from eigenvalues of A)

)()(
)()()1(

kCxkF
kBdkAxkx




Discrete-time model
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Measurements from
SEL breaker at 12kV
3 phase line (6.9kV
phase to phase)

 RMS Voltage and
Current of 3 phases

 Real Power
 Apparent Power

Disturbance on
3 phase network

Oct. 9 UCSD microgrid event 

Callafon & Wells
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Measurements from
SEL breaker at 12kV
3 phase line (6.9kV
phase to phase)

 RMS Voltage and
Current of 3 phases

 Real Power
 Apparent Power

Oct. 9 UCSD microgrid event 

Callafon & Wells
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Main conclusions from Measurements from SEL breaker:
 Sustained oscillations in 3 phase V and I mostly due to reactive 

power.
 Real power oscillations dampen out faster
 (time adjusted) Frequency show similar dynamics as Real Power:

Oct. 9 UCSD microgrid event 

Callafon & Wells
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Realization Algorithm:
excellent fit of
oscillation/damping

Modeled 
frequencies Fn, 
damping D and 
model participation P:

Mode around 1.4Hz 
less than 5% damping, 85% participation

Analysis of UCSD microgrid dynamics

Callafon & Wells
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Dynamic model found
by realization in Bode
plot (frequency domain)

Observe large resonance
frequency around 1.4Hz

MITIGATION
Control/damping of
1.4Hz oscillation

Analysis of UCSD microgrid dynamics

Callafon & Wells
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MITIGATION
Control/damping of 1.4Hz oscillation via Real Power control:

 What is the control algorithm?
 How much control power is needed to dampen oscillation?

Mitigation of UCSD microgrid dynamics

Network Relay/PMU

Control
Algorithm C(z)

Identified model G(z)disturbance

control power real power

Callafon & Wells
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Identified Discrete-Time Model G(z):

0.2791	 ^6	 	1.677	 ^5	 	4.204	 ^4	 	5.63	 ^3	 	4.249	 ^2	 	1.713	 	 	0.2882
^7	 	6.89	 ^6	 	20.39	 ^5	 	33.58	 ^4	 	33.26	 ^3	 	19.8	 ^2	 	6.564	 	 	0.9344

Proposed control algorithm C(z) that has the following shape:

1

 Discrete-time differentiator (to add damping + reduce low 
frequency control)

 Two poles (a,b) to limit bandwidth
 Gain K to adjust power gain

Mitigation of UCSD microgrid dynamics

Callafon & Wells
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Choice of control parameters
K, and b in

1

via loop shaping tool

Shape Bode plot of
L(z)=G(z)C(z)

See direct effect of:
 Damping
 Stability
 Control signal

Mitigation of UCSD microgrid dynamics

Callafon & Wells
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End result of control design:
1

, 0.085211, 0.9757, 0.7933

Resulting discrete control algorithm:

0.0852 ∙ 1 0.0852 ∙ 2 1.7690 ∙ 1
0.7740 ∙ 2

Mitigation of UCSD microgrid dynamics

Network Relay/PMU

C(z)

Identified model G(z)disturbance

control power u(k) real power P(k)
Callafon & Wells
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Effect of Control Algorithm:

Damping of UCSD microgrid:

Damping of controlled
UCSD microgrid:

Slight change in resonance modes, ten-fold increase in damping!

Mitigation of UCSD microgrid dynamics

Callafon & Wells
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Effect of Control Algorithm:

 Disturbance effect still
present (unavoidable)

 Control algorithm does
mitigate disturbance
faster!

 Less oscillations in
microgrid (better damping)

 How much control power needed?

Mitigation of UCSD microgrid dynamics

Callafon & Wells



37

Effect of Control Algorithm:
 For comparison, control

power plotted at same
scale a disturbance in
real power

 Disturbance almost
+/- 2MW

 Control power only
+/- 0.25MW for mitigation

 Results scale with size of disturbance and increase of damping

Mitigation of UCSD microgrid dynamics

Callafon & Wells
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Reducing control effort to
+/- 125KW still works, but:

 Damping cannot be
influenced that much

 Still acceptable to improve
dynamics of microgrid

 Control power only
+/- 125KW for mitigation

Mitigation of UCSD microgrid dynamics

Callafon & Wells
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 Automatically detect when a disturbance/transient event occurs
 Automatically estimate Frequency, Damping and Dynamic Model.

Main Features:
 Automatically detect event:

 Predict ambient Frequency signal “one-sample” ahead
 Observe when prediction deviates for event detection via FRoC signal

 Automatically estimate:
 # of modes of oscillations in measured disturbance
 Estimate frequency and damping of the modes
 Put results in dynamic mode

 All done in real-time!
 Note: resulting dynamic model can be used for feedback

control design to mitigate event!

Summary on Detection and Analysis 

Callafon & Wells
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 Thank you

CMU Meeting, Callafon & Wells


