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Flexibility and Reliability: Additional Sources 

•  Demand response systems

•  Price responsive demand


•  Variation in price to encourage customers 
to reduce/shift consumption




•  Load management and control


•  Loads are automated and controlled 
directly based on a control signal


•  Tighter control bounds

•  Faster response time


•  provide fast-timescale (seconds to 
minutes) services 














•  More than 40% of the 

electricity consumed in 

buildings


•  Availability in households


•  24/7 available for signals


•  Disrupted without any effect on 

end-user’s comfort










Thermostatically Controlled Loads (TCLs) 
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Load Aggregation Benefits 
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•  An aggregation of smaller loads provide 

more reliable curtailment than the response 
of a single or multiple large loads with an 
equivalent capacity. (Eto et al. 2012)


•  Aggregations of small load resources 
provide continuous control with simpler 
control actuation. (Callaway et al. 2011)




•  Individual monitoring systems for small 

loads are expected to be less costly than 
large load programs.
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Problem Statement 

Background Research 

Vision and objectives 

Using Smart Devices for System-Level Management and Control in 
the Smart Grid 

Graduate Student: Emre Can Kara, CEE, CMU 

Research Advisors:   Mario Bergés, Assistant Prof., CEE, CMU. Bruce Krogh, Prof., ECE, CMU.  

Researchers are seeking different techniques to maintain the 
balance between the power demand and generation to 
ensure stability and security in the grid. Main research areas 
include: 

! Large-Scale Energy Storage Systems, ex: 
! Plug-In Hybrid Vehicles (Vehicle to Grid Systems) 
! Thermal Storage Systems 
! Large Scale Battery Systems 

! Demand-side management (DSM) techniques, ex: 
! Grid Friendly Appliances 
! Dynamic Pricing 

! Fine-grained and programmable HVAC control 
! Ability to measure each plug load and actuate the 
appliances remotely 
! Programmable control for plug-in appliances 
! Various sensor nodes to provide feedback and help 
investigate algorithms of state prediction 

! The balance between the power demand and generation in 
the electricity grid is managed by traditional generation and 
reserve assets (such as gas turbines and spinning reserves) 
that act on larger time scales (minutes). 
! Attempts to integrate intermittent energy sources (i.e. wind 
and solar) to the grid contributes to the imbalance between the 
power supply and the demand, hence threatening the stability 
and security of the network.  

 
 

Vision:  
Smart devices in the power grid to provide 
load-balancing functions currently assigned 
to a relatively small number of bulk power 
sources and devices. 
 
Characteristics: 
• Non-Intrusive 
• Ability to detect the type of the device 
connected 
• Appliance condition awareness 
• Actuation 
 
Research Timeline: 

 
 
 

  Unlike traditional methods, appliances can be used as 
providers of short-term (seconds) ancillary services, such as 
frequency control and load balancing. 
Research Questions 
! What is the optimum control strategy for different types of 
appliances/ building types? 
! What are desirable communication protocols for distinct 
combinations of control strategy and the appliance type?  
! Can contextual information on buildings help develop better 
demand side management techniques? 
! Can sensor fusion and machine learning techniques be used 
to develop solutions that leverage the existing infrastructure? 

! Test bed for sensor 
fusion opportunities and 

HVAC control. 
! Test bed for 

communication 
framework between the 

appliances and other 
members. 

Source: IEEE Smart Grid Conceptual Framework 

Timeline 

Year 1 Year 2 Year 3 

Control Algorithm Development of a 
local controller 

Development of a 
centralized controller 

Development of a 
distributed controller 

Type of Load Small TCLs* Passive Loads, Small 
and Large TCLs 

All Loads 

Type of Facility Laboratory, 
Residential 

Commercial, 
Residential 

Mixed 

Number of Loads Implementation: 101 

Simulation: 103 
 

Implementation: 102 

Simulation: 104 

 

Implementation: 102 

Simulation: 105 
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Existing Work 

 



•  Real-time state information 
from appliances.  
(Koch et al. 2011; Kara et al. 2012) 



•  Kalman filter and Extended 
Kalman filter for estimation.  
(Mathieu et al. 2012)
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Fig. 1. State bin transition model adopted from [9]

depicted in Figure 1. For each temperature interval k and
different appliance statuses we can define the state variable as:

xON
k,t = Pr{Stt = ON, It = k} (4)

xOFF
k,t = Pr{Stt = OFF, It = k} (5)

These elements for each state form the first and second
portion of the state vector, XON

t and XOFF
t respectively. We

use Xt to denote the state vector at time t.

C. Communication and Control Signal

Availability of the state information, the control strategy, the
control signal characteristics and the methodology to dispatch
the control to appliances are important points when the com-
munication platform is concerned [9].

In this paper, we assume that an appliance is aware of
its current status and temperature interval. To toggle the
appliances ON/OFF we use temperature set-point adjust-
ment similar to [9]. A decision variable for each temperature
interval, k at time, t is defined as a switching probability, d�k,t
where the superscript � denotes the direction of the desired
control action.

� =

⇢
0, if Stt = ON and Stt+1 = OFF
1, if Stt = OFF and Stt+1 = ON

(6)

Hence, for temperature interval It = k a probability to toggle
the appliances OFF by the controller at time t is defined as:

d0k,t = Pr{Stt+1 = OFF |Stt = ON, It = k, controller}
(7)

For the appliances that are currently OFF in the temperature
interval k, a similar probability is defined as:

d1k,t = Pr{Stt+1 = ON |Stt = OFF, It = k, controller}
(8)

The control actions that can be achieved with these decision
variables are depicted in Figure 1. Due to the contradicting
nature of d1k,t and d0k,t, a single switching probability for
each interval is sufficient to realize the required probability
mass adjustment at time t. Therefore a decision vector of size

{1⇥N} at time t can be formed as follows:

Dt = [d�1,t, . . . , d
�
N,t] (9)

Note that the complete decision vector is sent to all TCLs,
and each TCL applies the appropriate transition probability
according to its known temperature interval It and status St.

IV. ADAPTIVE CONTROL FRAMEWORK

A. Markov Decision Process (MDP) Formulation
An MDP is formed by a set of states S, a set of deci-
sions/actions D, a reward function R and a state transition
function T where the reward function is used to calculate the
immediate reward of taking the action for the current state
and the state transition function probabilistically maps the
next state as a function of the current state [16]. MDPs are
useful models used for sequential decision making and, when
a complete model is available in which all states are observ-
able, an optimal rule is found by applying various dynamic
programming techniques. Indirect applications of MDPs are
commonly used in literature (e.g., [17] and [18]), where the
model is unknown but the structure of the formulation of the
model is known beforehand. Therefore, it is evident that by
formulating the problem at hand as an MDP, one can benefit
from existing methodologies in the field of sequential decision
making and reinforcement learning.

Using the definitions of xON
k,t and xOFF

k,t given in (4) and (5),
we can use the following equation to obtain xON

i,t+1:

xON
i,t+1 = Pr{Stt+1 = ON, It+1 = i}

=
NX

k=1



Pr{It+1 = i|Stt+1 = ON,Stt = OFF, It = k}
Pr{Stt+1 = ON |Stt = OFF, It = k}
Pr{Stt = OFF, It = k}| {z }

xOFF
k,t

+ Pr{It+1 = i|Stt+1 = ON,Stt = ON, It = k}
(1� Pr{Stt+1 = OFF |Stt = ON, It = k})

Pr{Stt = ON, It = k}| {z }
xON
k,t

�

(10)

An equation for xOFF
i,t+1 is formed similarly by interchanging

the ON and OFF status notations in (10).
Let’s elaborate further on the terms Pr{It+1 = i|Stt+1 =

ON,Stt = OFF, It = k} and Pr{Stt+1 = ON |Stt =
OFF, It = k} in the first portion of (10). The first term is
the transition probability between temperature intervals k and i
conditioned on the status of the appliances at times t and t+1.
The second term denotes the probability of switching from
OFF to ON, which is conditioned on the current status and the
temperature interval. At the marginal temperature intervals, the
thermostat changes the current status of the appliances once
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1 2 N-1 N} } } }
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....

Natural dynamics

Control actions

Monday, April 30, 2012

Fig. 1. State bin transition model adopted from [9]

depicted in Figure 1. For each temperature interval k and
different appliance statuses we can define the state variable as:

xON
k,t = Pr{Stt = ON, It = k} (4)

xOFF
k,t = Pr{Stt = OFF, It = k} (5)

These elements for each state form the first and second
portion of the state vector, XON

t and XOFF
t respectively. We

use Xt to denote the state vector at time t.

C. Communication and Control Signal

Availability of the state information, the control strategy, the
control signal characteristics and the methodology to dispatch
the control to appliances are important points when the com-
munication platform is concerned [9].

In this paper, we assume that an appliance is aware of
its current status and temperature interval. To toggle the
appliances ON/OFF we use temperature set-point adjust-
ment similar to [9]. A decision variable for each temperature
interval, k at time, t is defined as a switching probability, d�k,t
where the superscript � denotes the direction of the desired
control action.

� =

⇢
0, if Stt = ON and Stt+1 = OFF
1, if Stt = OFF and Stt+1 = ON

(6)

Hence, for temperature interval It = k a probability to toggle
the appliances OFF by the controller at time t is defined as:

d0k,t = Pr{Stt+1 = OFF |Stt = ON, It = k, controller}
(7)

For the appliances that are currently OFF in the temperature
interval k, a similar probability is defined as:

d1k,t = Pr{Stt+1 = ON |Stt = OFF, It = k, controller}
(8)

The control actions that can be achieved with these decision
variables are depicted in Figure 1. Due to the contradicting
nature of d1k,t and d0k,t, a single switching probability for
each interval is sufficient to realize the required probability
mass adjustment at time t. Therefore a decision vector of size

{1⇥N} at time t can be formed as follows:

Dt = [d�1,t, . . . , d
�
N,t] (9)

Note that the complete decision vector is sent to all TCLs,
and each TCL applies the appropriate transition probability
according to its known temperature interval It and status St.

IV. ADAPTIVE CONTROL FRAMEWORK

A. Markov Decision Process (MDP) Formulation
An MDP is formed by a set of states S, a set of deci-
sions/actions D, a reward function R and a state transition
function T where the reward function is used to calculate the
immediate reward of taking the action for the current state
and the state transition function probabilistically maps the
next state as a function of the current state [16]. MDPs are
useful models used for sequential decision making and, when
a complete model is available in which all states are observ-
able, an optimal rule is found by applying various dynamic
programming techniques. Indirect applications of MDPs are
commonly used in literature (e.g., [17] and [18]), where the
model is unknown but the structure of the formulation of the
model is known beforehand. Therefore, it is evident that by
formulating the problem at hand as an MDP, one can benefit
from existing methodologies in the field of sequential decision
making and reinforcement learning.

Using the definitions of xON
k,t and xOFF

k,t given in (4) and (5),
we can use the following equation to obtain xON

i,t+1:

xON
i,t+1 = Pr{Stt+1 = ON, It+1 = i}

=
NX

k=1



Pr{It+1 = i|Stt+1 = ON,Stt = OFF, It = k}
Pr{Stt+1 = ON |Stt = OFF, It = k}
Pr{Stt = OFF, It = k}| {z }

xOFF
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+ Pr{It+1 = i|Stt+1 = ON,Stt = ON, It = k}
(1� Pr{Stt+1 = OFF |Stt = ON, It = k})

Pr{Stt = ON, It = k}| {z }
xON
k,t

�

(10)

An equation for xOFF
i,t+1 is formed similarly by interchanging

the ON and OFF status notations in (10).
Let’s elaborate further on the terms Pr{It+1 = i|Stt+1 =

ON,Stt = OFF, It = k} and Pr{Stt+1 = ON |Stt =
OFF, It = k} in the first portion of (10). The first term is
the transition probability between temperature intervals k and i
conditioned on the status of the appliances at times t and t+1.
The second term denotes the probability of switching from
OFF to ON, which is conditioned on the current status and the
temperature interval. At the marginal temperature intervals, the
thermostat changes the current status of the appliances once
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depicted in Figure 1. For each temperature interval k and
different appliance statuses we can define the state variable as:

xON
k,t = Pr{Stt = ON, It = k} (4)

xOFF
k,t = Pr{Stt = OFF, It = k} (5)

These elements for each state form the first and second
portion of the state vector, XON

t and XOFF
t respectively. We

use Xt to denote the state vector at time t.

C. Communication and Control Signal

Availability of the state information, the control strategy, the
control signal characteristics and the methodology to dispatch
the control to appliances are important points when the com-
munication platform is concerned [9].

In this paper, we assume that an appliance is aware of
its current status and temperature interval. To toggle the
appliances ON/OFF we use temperature set-point adjust-
ment similar to [9]. A decision variable for each temperature
interval, k at time, t is defined as a switching probability, d�k,t
where the superscript � denotes the direction of the desired
control action.

� =

⇢
0, if Stt = ON and Stt+1 = OFF
1, if Stt = OFF and Stt+1 = ON

(6)

Hence, for temperature interval It = k a probability to toggle
the appliances OFF by the controller at time t is defined as:

d0k,t = Pr{Stt+1 = OFF |Stt = ON, It = k, controller}
(7)

For the appliances that are currently OFF in the temperature
interval k, a similar probability is defined as:

d1k,t = Pr{Stt+1 = ON |Stt = OFF, It = k, controller}
(8)

The control actions that can be achieved with these decision
variables are depicted in Figure 1. Due to the contradicting
nature of d1k,t and d0k,t, a single switching probability for
each interval is sufficient to realize the required probability
mass adjustment at time t. Therefore a decision vector of size

{1⇥N} at time t can be formed as follows:

Dt = [d�1,t, . . . , d
�
N,t] (9)

Note that the complete decision vector is sent to all TCLs,
and each TCL applies the appropriate transition probability
according to its known temperature interval It and status St.
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xOFF
1,t = Pr{Stt = OFF, It = k} (11)

xOFF
2,t = Pr{Stt = OFF, It = k} (12)

xOFF
k,t = Pr{Stt = OFF, It = k} (13)

Xt = [xON
1,t , . . . xON

N,t , x
OFF
1,t . . . xOFF

N,t ] (14)

These elements for each state form the first and second portion of the state vector, XON
t and XOFF

t

respectively. We use Xt to denote the state vector at time t.

3.1.3 Communication and Control Signal

Availability of the state information, the control strategy, the control signal characteristics and the methodology
to dispatch the control to appliances are important points when the communication platform is concerned [1].

We assume that an appliance is aware of its current status and temperature interval. To toggle the appliances
ON/OFF we use temperature set-point adjustment similar to [1]. Decision variables for each temperature
interval, k at time, t are defined as switching probabilities, d0k,t and d1k,t as follows:

d0k,t =Pr{Stt+1 = ON |Stt = OFF, It = k, controller}
d1k,t =Pr{Stt+1 = OFF |Stt = ON, It = k, controller}

(15)

The control actions that can be achieved with these decision variables are depicted in Figure 2. Due to the
contradicting nature of d0k,t and d1k,t, a single switching probability for each interval is su�cient to realize the

required probability mass adjustment at time t. Therefore, one of the decision variables (d0k,t and d1k,t) for any
interval k will be zero depending on the desired switching direction. Thus, a decision vector of size {1 ⇥ 2N}
at time t can be formed as follows:

Dt = [d01,t, d
1
1,t, . . . , d

0
N,t, d

1
N,t] (16)

Note that the complete decision vector is sent to all TCLs, and each TCL applies the appropriate transition
probability according to its known temperature interval It and status St.

3.1.4 Adaptive Control Framework

3.1.4.1 Markov Decision Process (MDP) Formulation:

An MDP is formed by a set of states S, a set of decisions/actions D, a reward function R and a state transition
function T where the reward function is used to calculate the immediate reward of taking the action for the
current state and the state transition function probabilistically maps the next state as a function of the current
state [22]. MDPs are useful models used for sequential decision making and, when a complete model is available
in which all states are observable, an optimal rule is found by applying various dynamic programming techniques.
Indirect applications of MDPs are commonly used in literature (e.g., [23] and [24]), where the model is unknown
but the structure of the formulation of the model is known beforehand. Therefore, it is evident that by
formulating the problem at hand as an MDP, one can benefit from existing methodologies in the field of
sequential decision making and reinforcement learning.

Using the definitions of xON
k,t and xOFF

k,t given in (4) and (13), we can use the following equation to obtain
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Figure 2. Within a normalized temperature dead-band, (Thigh � Tlow), all appliances have the same

temperature set point. We discretize the temperature dead-band to N number of temperature intervals,

I. Therefore, at any time t, a TCL is positioned within a temperature interval indexed by k where

k 2 {1, 2, . . . , N} and is either OFF or ON (Stt 2 {ON,OFF}). Within a long enough period of time,

each appliance visits each temperature interval due to heat transfer between the environment and the

thermostatic action. The natural dynamics of the system are depicted in Figure 2. For each temperature

interval k and di↵erent appliance statuses, St, we can define the state variable as:

xON
k,t = P{St = ON, It = k} (4)

xOFF
k,t = P{St = OFF, It = k} (5)

These elements for each state form the first and second portion of the state vector, XON
t and XOFF

t

respectively. We use Xt to denote the state vector at time t as follows:

Xt = [xON
1,t , . . . , xON

N,t , x
OFF
1,t , . . . , xOFF

N,t ] (6)

3.1.3 Communication and Control Signal

The availability of the state information, the control strategy, the control signal characteristics and the

methodology to dispatch the control to appliances are important points when the communication platform

is concerned [14].

We assume that an appliance is aware of its current status and temperature interval. To toggle the

appliances ON/OFF , we use temperature set-point adjustments similar to [14]. A decision variable for

each temperature interval, k at time, t is defined as a switching probability, d⇠k,t. The superscript ⇠ is

used to denote the direction of the switch as follows:

⇠ =

8
><

>:

0, if St = ON and St+1 = OFF

1, if St = OFF and St+1 = ON
(7)

Hence, for temperature interval It = k, a probability to toggle the appliances OFF by the controller at

time t is defined as:

d0k,t =P{St+1 = ON |St = OFF, It = k, controller} (8)
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For the appliances that are currently OFF in the temperature interval k, a similar probability is defined

as:

d1k,t = P{St+1 = OFF |St = ON, It = k, controller} (9)

The control actions that can be achieved with these decision variables are depicted in Figure 2. Due to

the contradicting nature of d0k,t and d1k,t, a single switching probability for each interval is su�cient to

realize the required probability mass adjustment at time t. Therefore, one of the decision variables (d0k,t

and d1k,t) for any interval k will be zero depending on the desired switching direction. Thus, a decision

vector of size {1⇥N} at time t can be formed as follows:

Dt = [d⇠1,t, . . . , d
⇠
N,t] (10)

Note that the complete decision vector is sent to all TCLs, and each TCL applies the appropriate

transition probability according to its known temperature interval It and status St.

3.1.4 Adaptive Control Framework

3.1.4.1 Markov Decision Process (MDP) Formulation

An MDP is formed by a set of states S, a set of decisions/actions D, a reward function R and a state

transition function T, where the reward function is used to calculate the immediate reward of taking

the action for the current state and the state transition function probabilistically maps the next state

as a function of the current state [29]. MDPs are useful models used for sequential decision making

and, when a complete model is available in which all states are observable, an optimal rule is found by

applying various dynamic programming techniques. Indirect applications of MDPs are commonly seen

in the literature (e.g., [30] and [31]), where the model is unknown but the structure of the formulation

of the model is known beforehand. Therefore, it is evident that by formulating the problem at hand

as an MDP, one can benefit from existing methodologies in the field of sequential decision making and

reinforcement learning.

Using the definitions of xON
k,t and xOFF

k,t given in (4) and (5), we can use the following equation to
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Note that the complete decision vector is sent to all TCLs, and each TCL applies the appropriate transition
probability according to its known temperature interval It and status St.

3.1.4 Adaptive Control Framework

3.1.4.1 Markov Decision Process (MDP) Formulation:

An MDP is formed by a set of states S, a set of decisions/actions D, a reward function R and a state transition
function T where the reward function is used to calculate the immediate reward of taking the action for the
current state and the state transition function probabilistically maps the next state as a function of the current
state [22]. MDPs are useful models used for sequential decision making and, when a complete model is available
in which all states are observable, an optimal rule is found by applying various dynamic programming techniques.
Indirect applications of MDPs are commonly used in literature (e.g., [23] and [24]), where the model is unknown
but the structure of the formulation of the model is known beforehand. Therefore, it is evident that by
formulating the problem at hand as an MDP, one can benefit from existing methodologies in the field of
sequential decision making and reinforcement learning.

Using the definitions of xON
k,t and xOFF

k,t given in (4) and (13), we can use the following equation to obtain
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distribution is forced to the lower temperature boundary of the dead-band and vice versa. In Figure 3-d,

the number of switchings at each time step can be seen for both cases.

In this initial study, we presented a classical MDP based adaptive control framework to engage TCLs

to provide short term ancillary services to the power grid. We demonstrated the performance of a simula-

tion based Q-learning approach for a reference tracking scenario using a heterogeneous TCL population.

We showed that a model-free Q-learning approach that leverages the new MDP fomulation of this prob-

lem can provide applicable results similar to a model predictive controller based on [14]. Our goal was to

demonstrate the usefulness of the new formulation with respect to the types of existing techniques that

can now be applied to it.

To demonstrate a use case for the MDP scenario developed, the following section introduces a state

estimator using this framework. Furthermore, a TCL population with di↵erent rated power, thermal

resistance, and thermal capacitance values is created, and the proposed state estimator is evaluated.

3.2 State Estimation

3.2.1 Estimation Using the Nonlinear Dynamics

In this section, we describe a novel state estimator using the state transition function T(Xt, Dt) in 15,

where Xt is the state vector formed by xON
i,t and xOFF

i,t , 8i 2 [1, N ] and Dt is the decision/control action

at time t as defined in Equations (6) and (10), respectively. Assume we have an observation Ŷt and a

matrix C that relates the X̂t, an estimate of the current state, to an output Ŷt:

Ŷt = CX̂t (19)

Hence, for some time period T we can use the following optimization routine to obtain an estimate of the

current state, Xt by using observations on Yt, the aggregate power consumption and the Dt, the decision

vector sent to the plant:

minimize
X̂j

tX

t�T+1

(Yj � Ŷj)
2 (20)

subject to

X̂j = T(X̂j�1, Dj�1)

x̂ON
j,i � 0

x̂OFF
j,i � 0

X̂j
~1 = 1

9
>>>>>>>=

>>>>>>>;

j 2 [t� T + 1, t], i 2 [1, N ] (21)

23

State Estimation Using T(Xt ,Dt)

Assume we have an observation Yt and a matrix C that relates the
Xt to an output Ŷt :

Ŷt = CXt .

Hence, for some time period T we can use the following
optimization routine to estimate the Xt :

minimize
Xt�T+1:t

tX

t�T+1

(Yi � CXi )
2

subject to Xt�T = T(Xt�T+1

, dt�T+1

)

...

Xt = T(Xt�1

, dt�1

)

Xi1
T = 1, 8Xi , i 2 [t � T + 1, t]

Xi � 0, 8Xi , i 2 [t � T + 1, t]

Emre Can Kara State estimation in load following
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they reach to the lower or upper temperature limits. In order to
differentiate between the thermostatic switching probabilities
and the actual control decisions defined in (7) and (8) an
additional term, ⌅�

k is used to denote switching probabilities
for each temperature interval due to thermostatic actions. For
⇧ = 1 and ⇧ = 0 we define:

⌅1
k =Pr{Stt+1 = ON |Stt = OFF, It = k, natural}

⌅0
k =Pr{Stt+1 = OFF |Stt = ON, It = k, natural}

(11)

Note that changing the status of any appliance within a
certain temperature interval does not directly yield a change in
its temperature interval. However, depending on the sampling
time or disturbances in the system, the temperature interval of
a switched appliance can change. Moreover, the temperature
interval transitions may be different when status transitions
are due to thermostatic action which we include as part of
the natural dynamics vs. the control actions. Therefore, we
differentiate the interval transition probabilities conditioned on
the natural dynamics and the control actions by introducing
two types of terms, denoted by O�

k,i and A�
k,i. We will use

the ⇧ terms to denote the associated status change for each
temperature interval. For It = k, ⇧ = 1 and for every possible
It+1 = i, the O�

k,i and A�
k,i terms are defined as follows:

O1
k,i =Pr{It+1 = i|Stt+1 = ON,Stt = OFF, It = k,

controller}
A1

k,i =Pr{It+1 = i|Stt+1 = ON,Stt = OFF, It = k,

natural}

(12)

Similarly for ⇧ = 0:

O0
k,i =Pr{It+1 = i|Stt+1 = OFF, Stt = ON, It = k,

controller}
A0

k,i =Pr{It+1 = i|Stt+1 = OFF, Stt = ON, It = k,

natural}

(13)

The system behavior can now be described as follows:
Appliances receive a switching probability sent by the con-
troller and generate a uniformly distributed random number
between 0 and 1. Depending on the outcome of the comparison
between the switching probability received and the random
number generated, the appliance switches. The TCLs that
do not change status due to this randomized control action
are still governed by the natural dynamics with probabilities
determined by the A�

k,i terms. The TCLs that switch status due
to control actions change their interval according to O�

k,i terms.
Using (10) and the definitions given in (7), (8), (11), (12)
and (13):

xON
i,t+1 =

N⇤

k=1

�
A1

k,i⌅
1
k(1� d�k,t)

�xOFF
k,t

+O1
k,i(d

�
k,t)⇧x

OFF
k,t

+ (1�A0
k,i)(1� ⌅0

k)(1� d�k,t)
(1��)xON

k,t

⇥
(14)

A similar equation can be formed to obtain xOFF
i,t+1 for all i.

Therefore, a function T(Dt, Xt) is constructed by using (14):

Xt+1 = T(Dt, Xt) (15)

For a reference tracking scenario, the simplest instantaneous
reward R is formed by using the tracking error. Assuming the
rated power Prated,i for all appliances is constant, Prated,i =
Prated for all i, we introduce the following reward function:

R(Xt, Dt) = 1/log((Pref,t � Prated ⇤Xt)
2 + 2) ⇤K (16)

This reward function is positive and increasing as the
tracking error term (Pref,t � Prated ⇤ Xt) decreases. K is a
positive constant. This MDP formulation has continuous state
(the probability distribution) and decision spaces. The most
straightforward way to deal with such MDPs is to discretize
both spaces to obtain a set of states S and decisions D.

In the next section we discuss optimal ways to discretize the
state and action spaces for the problem in hand. Following that
we demonstrate a model free approach based on Q-learning.

B. Discretization
We introduce a simple discretization approach for elements
forming the decision and state vectors Dt, Xt respectively.
We divide the [0, 1] interval into intervals of size ⇥ to obtain
M different discrete values. Since each vector is of size
{1⇥ 2N}, this discretization leads to M2N different possible
states, s 2 S and decisions d 2 D .

One important characteristic of the state vector is that it has
to be a valid probability mass distribution at any time, t. That
is, the elements of the state vector should some up to 1. This
fact allows us to drastically reduce the size of the state space
after removing all invalid state vectors.

We have defined two different decision variables, d�k,t
for each temperature interval k at time t depending on the
direction of the toggling denoted by ⇧ terms introduced in (6).
The decision space D includes the decision vectors Dt formed
by every possible combination of d�k,t variables discretized into
intervals of size ⇥. Since d�k,t variables are valid probability
values (i.e., d�k,t 2 [0, 1]), we obtain M different discrete
values for each interval k and toggling direction ⇧. To estimate
the size of the action space all possible combinations of ⇧
should be considered for all temperature intervals. Considering
⇧ 2 {0, 1}, each element of the Dt vector d�k,t has 2M � 1
different values since there is no difference between d0k,t = 0
and d1k,t = 0 in terms of the system response. Therefore, the
size of the decision space, D, is (2M � 1)N .

C. Q-learning
Q-learning [19] is a model-free reinforcement learning method
based on learning the expected utility given a state decision
pair. The Q-learning update rule is given by:

Q(s, d) := Q(s, d) + �[R(s, d) + ⇤max
d0

Q(s0, d0)�Q(s, d)]

(17)
where � is the learning rate and the ⇤ is the discount rate
[16]. Typically, the learning rate decreases in time as more

subject to
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1
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 …


xOFF
1,t = Pr{Stt = OFF, It = k} (11)

xOFF
2,t = Pr{Stt = OFF, It = k} (12)

xOFF
k,t = Pr{Stt = OFF, It = k} (13)

Xt = [xON
1,t , . . . xON

N,t , x
OFF
1,t . . . xOFF

N,t ] (14)

These elements for each state form the first and second portion of the state vector, XON
t and XOFF

t

respectively. We use Xt to denote the state vector at time t.

3.1.3 Communication and Control Signal

Availability of the state information, the control strategy, the control signal characteristics and the methodology
to dispatch the control to appliances are important points when the communication platform is concerned [1].

We assume that an appliance is aware of its current status and temperature interval. To toggle the appliances
ON/OFF we use temperature set-point adjustment similar to [1]. Decision variables for each temperature
interval, k at time, t are defined as switching probabilities, d0k,t and d1k,t as follows:

d0k,t =Pr{Stt+1 = ON |Stt = OFF, It = k, controller}
d1k,t =Pr{Stt+1 = OFF |Stt = ON, It = k, controller}

(15)

The control actions that can be achieved with these decision variables are depicted in Figure 2. Due to the
contradicting nature of d0k,t and d1k,t, a single switching probability for each interval is su�cient to realize the

required probability mass adjustment at time t. Therefore, one of the decision variables (d0k,t and d1k,t) for any
interval k will be zero depending on the desired switching direction. Thus, a decision vector of size {1 ⇥ 2N}
at time t can be formed as follows:

Dt = [d01,t, d
1
1,t, . . . , d

0
N,t, d

1
N,t] (16)

Note that the complete decision vector is sent to all TCLs, and each TCL applies the appropriate transition
probability according to its known temperature interval It and status St.

3.1.4 Adaptive Control Framework

3.1.4.1 Markov Decision Process (MDP) Formulation:

An MDP is formed by a set of states S, a set of decisions/actions D, a reward function R and a state transition
function T where the reward function is used to calculate the immediate reward of taking the action for the
current state and the state transition function probabilistically maps the next state as a function of the current
state [22]. MDPs are useful models used for sequential decision making and, when a complete model is available
in which all states are observable, an optimal rule is found by applying various dynamic programming techniques.
Indirect applications of MDPs are commonly used in literature (e.g., [23] and [24]), where the model is unknown
but the structure of the formulation of the model is known beforehand. Therefore, it is evident that by
formulating the problem at hand as an MDP, one can benefit from existing methodologies in the field of
sequential decision making and reinforcement learning.

Using the definitions of xON
k,t and xOFF

k,t given in (4) and (13), we can use the following equation to obtain

10

Aggregate Power 
 Current State of TCLs
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current state, Xt by using observations on Yt, the aggregate power consumption and the Dt, the decision

vector sent to the plant:

minimize
X̂j

tX

t�T+1

(Yj � Ŷj)
2 (20)

subject to

X̂j = T(X̂j�1, Dj�1)

x̂ON
j,i � 0

x̂OFF
j,i � 0

X̂j
~1 = 1

9
>>>>>>>=

>>>>>>>;

j 2 [t� T + 1, t], i 2 [1, N ] (21)
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State Estimation Using T(Xt ,Dt)

Assume we have an observation Yt and a matrix C that relates the
Xt to an output Ŷt :

Ŷt = CXt .

Hence, for some time period T we can use the following
optimization routine to estimate the Xt :

minimize
Xt�T+1:t

tX

t�T+1

(Yi � CXi )
2

subject to Xt�T = T(Xt�T+1

, dt�T+1

)

...

Xt = T(Xt�1

, dt�1

)

Xi1
T = 1, 8Xi , i 2 [t � T + 1, t]

Xi � 0, 8Xi , i 2 [t � T + 1, t]
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they reach to the lower or upper temperature limits. In order to
differentiate between the thermostatic switching probabilities
and the actual control decisions defined in (7) and (8) an
additional term, ⌅�

k is used to denote switching probabilities
for each temperature interval due to thermostatic actions. For
⇧ = 1 and ⇧ = 0 we define:

⌅1
k =Pr{Stt+1 = ON |Stt = OFF, It = k, natural}

⌅0
k =Pr{Stt+1 = OFF |Stt = ON, It = k, natural}

(11)

Note that changing the status of any appliance within a
certain temperature interval does not directly yield a change in
its temperature interval. However, depending on the sampling
time or disturbances in the system, the temperature interval of
a switched appliance can change. Moreover, the temperature
interval transitions may be different when status transitions
are due to thermostatic action which we include as part of
the natural dynamics vs. the control actions. Therefore, we
differentiate the interval transition probabilities conditioned on
the natural dynamics and the control actions by introducing
two types of terms, denoted by O�

k,i and A�
k,i. We will use

the ⇧ terms to denote the associated status change for each
temperature interval. For It = k, ⇧ = 1 and for every possible
It+1 = i, the O�

k,i and A�
k,i terms are defined as follows:

O1
k,i =Pr{It+1 = i|Stt+1 = ON,Stt = OFF, It = k,

controller}
A1

k,i =Pr{It+1 = i|Stt+1 = ON,Stt = OFF, It = k,

natural}

(12)

Similarly for ⇧ = 0:

O0
k,i =Pr{It+1 = i|Stt+1 = OFF, Stt = ON, It = k,

controller}
A0

k,i =Pr{It+1 = i|Stt+1 = OFF, Stt = ON, It = k,

natural}

(13)

The system behavior can now be described as follows:
Appliances receive a switching probability sent by the con-
troller and generate a uniformly distributed random number
between 0 and 1. Depending on the outcome of the comparison
between the switching probability received and the random
number generated, the appliance switches. The TCLs that
do not change status due to this randomized control action
are still governed by the natural dynamics with probabilities
determined by the A�

k,i terms. The TCLs that switch status due
to control actions change their interval according to O�

k,i terms.
Using (10) and the definitions given in (7), (8), (11), (12)
and (13):

xON
i,t+1 =

N⇤

k=1

�
A1

k,i⌅
1
k(1� d�k,t)

�xOFF
k,t

+O1
k,i(d

�
k,t)⇧x

OFF
k,t

+ (1�A0
k,i)(1� ⌅0

k)(1� d�k,t)
(1��)xON

k,t

⇥
(14)

A similar equation can be formed to obtain xOFF
i,t+1 for all i.

Therefore, a function T(Dt, Xt) is constructed by using (14):

Xt+1 = T(Dt, Xt) (15)

For a reference tracking scenario, the simplest instantaneous
reward R is formed by using the tracking error. Assuming the
rated power Prated,i for all appliances is constant, Prated,i =
Prated for all i, we introduce the following reward function:

R(Xt, Dt) = 1/log((Pref,t � Prated ⇤Xt)
2 + 2) ⇤K (16)

This reward function is positive and increasing as the
tracking error term (Pref,t � Prated ⇤ Xt) decreases. K is a
positive constant. This MDP formulation has continuous state
(the probability distribution) and decision spaces. The most
straightforward way to deal with such MDPs is to discretize
both spaces to obtain a set of states S and decisions D.

In the next section we discuss optimal ways to discretize the
state and action spaces for the problem in hand. Following that
we demonstrate a model free approach based on Q-learning.

B. Discretization
We introduce a simple discretization approach for elements
forming the decision and state vectors Dt, Xt respectively.
We divide the [0, 1] interval into intervals of size ⇥ to obtain
M different discrete values. Since each vector is of size
{1⇥ 2N}, this discretization leads to M2N different possible
states, s 2 S and decisions d 2 D .

One important characteristic of the state vector is that it has
to be a valid probability mass distribution at any time, t. That
is, the elements of the state vector should some up to 1. This
fact allows us to drastically reduce the size of the state space
after removing all invalid state vectors.

We have defined two different decision variables, d�k,t
for each temperature interval k at time t depending on the
direction of the toggling denoted by ⇧ terms introduced in (6).
The decision space D includes the decision vectors Dt formed
by every possible combination of d�k,t variables discretized into
intervals of size ⇥. Since d�k,t variables are valid probability
values (i.e., d�k,t 2 [0, 1]), we obtain M different discrete
values for each interval k and toggling direction ⇧. To estimate
the size of the action space all possible combinations of ⇧
should be considered for all temperature intervals. Considering
⇧ 2 {0, 1}, each element of the Dt vector d�k,t has 2M � 1
different values since there is no difference between d0k,t = 0
and d1k,t = 0 in terms of the system response. Therefore, the
size of the decision space, D, is (2M � 1)N .

C. Q-learning
Q-learning [19] is a model-free reinforcement learning method
based on learning the expected utility given a state decision
pair. The Q-learning update rule is given by:

Q(s, d) := Q(s, d) + �[R(s, d) + ⇤max
d0

Q(s0, d0)�Q(s, d)]

(17)
where � is the learning rate and the ⇤ is the discount rate
[16]. Typically, the learning rate decreases in time as more

subject to


be defined as follows to keep the next state vector a valid probability mass distribution:

B =

2

666666666666664

�1 0

. . .

0 �1

1 0

. . .

0 1

3

777777777777775

(25)

The C matrix can be used as defined in equation 22.

3.2.3 Estimation Using Kalman Filtering

The second method that has been used for state estimation is Kalman filtering, similar to the approach

described in [34]. For the Kalman filter, we used a MATLAB routine on the identified linear system:

Xt+1 =AlinXt +But +B!!t

Yt =CXt + vt

(26)

where vt is the measurement noise and !t is the process noise vector. Both of them can be assumed

independent of each other, white and with normal probability distributions [35]:

p(!t) ⇠ N(0, Q)

p(vt) ⇠ N(0, Rmes)

The process covariance matrix Q is computed with the residuals between the state values predicted by

the model and the real state values. Since a perfect Q matrix is hard to obtain, we do not update the Q

matrix in each estimation time step. Instead, we compute Q for the given system parameterization in the

case study and assume it is constant throughout the estimation process. We set the Rmes, measurement

noise variance, to zero since we assume perfect measurements for this study.
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•  Using a liner model based on Callaway et al. 
2012
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•  With perfect measurement noise and the 
process noise given as follows:




Simulated Population 
of Appliances


Kalman Filter


Moving Horizon State 
Estimator (MHSE)


Random 

Action


MHSE 
Estimate


KF Estimate


Case Studies 
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Case Study I: Understand the effect of changing the time horizon T on estimation 
performance for MHSE 






Case Study II: Compare the performances of the Kalman Filter and the MHSE under 
different switching conditions.







Case Specific Input Distribution Values 

Time Horizon, T Constant 10, 20, 30, 40, 50, 60 minutes 

Case Specific Input Distribution Values 

Time Horizon, T Constant 40 minutes 

Forcing Parameter, f  Constant 12.5, 25, 50, 75, 100% 



•  Simulated 500 TCLs with varying thermal characteristics and white 
noise on the individual appliance temperature dynamics.


 











 
 



Case Studies (Cont’d) 

Simulation Input Distribution Values 

Capacitance Uniform [8-12 kWh/oC] 

Resistance Uniform [1.5-2.5 oC/kW] 

Rated Power Uniform [10-18 kW] 

Temperature Set-point Constant 20oC 

Temperature Deadband Width Constant 0.5oC 

Ambient Temperature Constant 32oC 

Temperature Dynamics Noise Normal N(0,0.01) 

Simulation Time Step Constant 1 minutes 

Total Estimation Duration Constant 10 hours 
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•  Estimator specific characteristics:


 











Kalman Filter Distribution Values 

Process Noise Normal N(0,Q) 

Measurement Noise  Constant 0 
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•  To quantify the information lost when          is used to represent  


Case Studies (Cont’d) 

•  Mean Kullback-Liebler (KL) divergence during the estimation period for each 

run.
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Results 

•  Case study I: 10 simulations per 
estimation horizon 



•  Showing  95% confidence 
intervals


•  Case study II:  10 simulations 
per forcing parameter, f 



•  Showing  95% confidence 
intervals




CHALLENGE #2:  
DEVIATIONS FROM LINEAR 
ASSUMPTIONS
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•  Simulated 500 TCLs with varying thermal characteristics and white 
noise on the individual appliance temperature dynamics.


 











 
 



Back to the assumptions 

Simulation Input Distribution Values 

Capacitance Uniform [8-12 kWh/oC] 

Resistance Uniform [1.5-2.5 oC/kW] 

Rated Power Uniform [10-18 kW] 

Temperature Set-point Constant 20oC 

Temperature Deadband Width Constant 0.5oC 

Ambient Temperature Constant 32oC 

Temperature Dynamics Noise Normal N(0,0.01) 

Simulation Time Step Constant 1 minutes 

Total Estimation Duration Constant 10 hours 
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•  Estimator specific characteristics:


 











Kalman Filter Distribution Values 

Process Noise Normal N(0,Q) 

Measurement Noise  Constant 0 



Power consumption 
data collected over 200 
refrigerators. 

Power 

Time 

i=1	



i=N	



.	



.	



.	


	



Fit Weibull distributions 
and obtain parameters 

Estimate hyper parameters of 
kON, λON, kOFF, λOFF 
 

TON,i 

TOFF,i 



Parameter Distribution Range 
Thermal Resistance, Ri(oC/kW) Uniform 80-100 

Thermal Capacitance, Ci(kWh/oC) Uniform 0.4-0.8 

Rated Power, Prated,i (kW) Uniform 0.2-1.0 

Ambient Temperature, Θi,a (oC) Constant 20 

Thermostatic dead-band, δi (oC) Uniform 1-2 

Temperature set point, Θi,set (oC) 
 

Uniform 1.7-3.3 
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