

On The Challenges Related To Using Thermostatically Controlled Loads For Demand Response

Mario Bergés

Assistant Professor

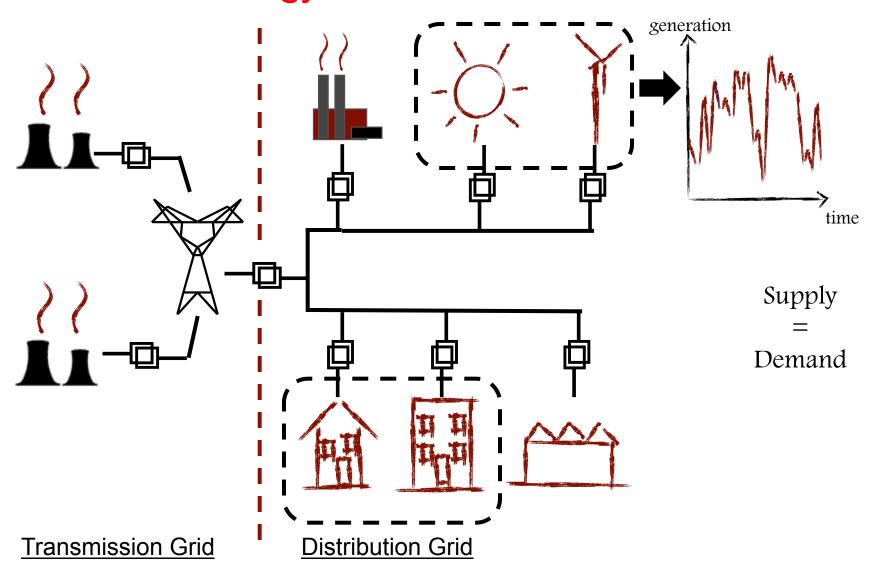
Civil & Environmental ENGINEERING Carnegie Mellon

2/5/2014 – CMU Electricity Conference – Pittsburgh, PA

Collaborators

- Emre Can Kara (CEE, student)
- Bruce Krogh (ECE)
- Zico Kolter (CS)
- Soummya Kar (ECE)
- Gabriela Hug (ECE)

Renewable Energy



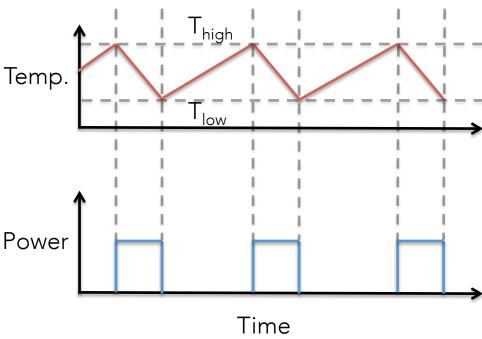
Flexibility and Reliability: Additional Sources

- Demand response systems
 - Price responsive demand
 - Variation in price to encourage customers to reduce/shift consumption
 - Load management and control
 - Loads are automated and controlled directly based on a control signal
 - Tighter control bounds
 - Faster response time
 - provide fast-timescale (seconds to minutes) services

Thermostatically Controlled Loads (TCLs)

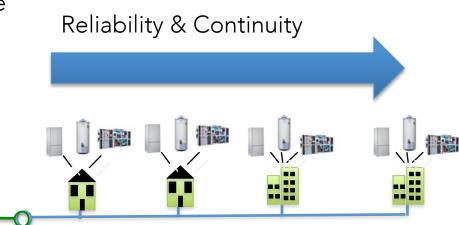
- More than 40% of the electricity consumed in buildings
- Availability in households
- 24/7 available for signals
- Disrupted without any effect on Power end-user's comfort

Refrigeration example:



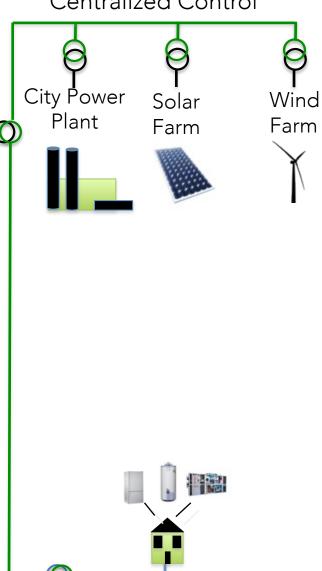
Load Aggregation Benefits

- An aggregation of smaller loads provide more reliable curtailment than the response of a single or multiple large loads with an equivalent capacity. (Eto et al. 2012)
- Aggregations of small load resources provide continuous control with simpler control actuation. (Callaway et al. 2011)
- Individual monitoring systems for small loads are expected to be less costly than large load programs.



Existing Work

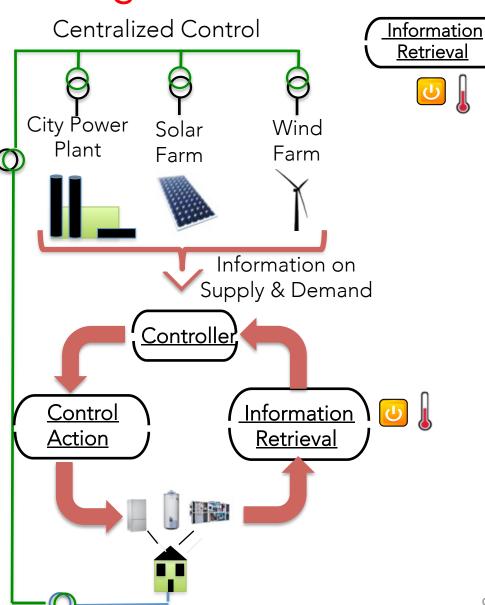
Centralized Control



Existing Work

Centralized Control City Power Solar Wind Plant Farm Farm Information on Supply & Demand Controller, <u>Information</u> <u>Control</u> **Action** <u>Retrieval</u>

Existing Work

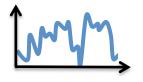


• Real-time state information from appliances.

(Koch et al. 2011; Kara et al. 2012)

 Kalman filter and Extended Kalman filter for estimation. (Mathieu et al. 2012)

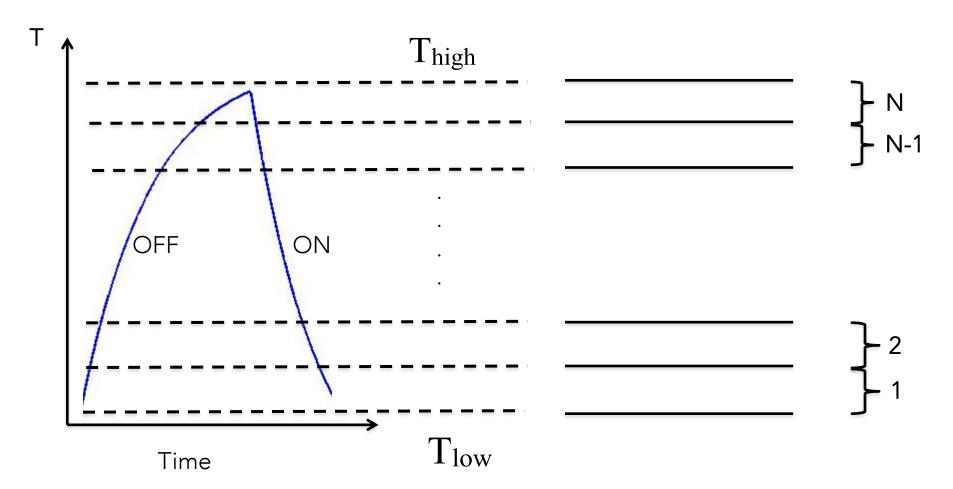
Aggregate Power State Information



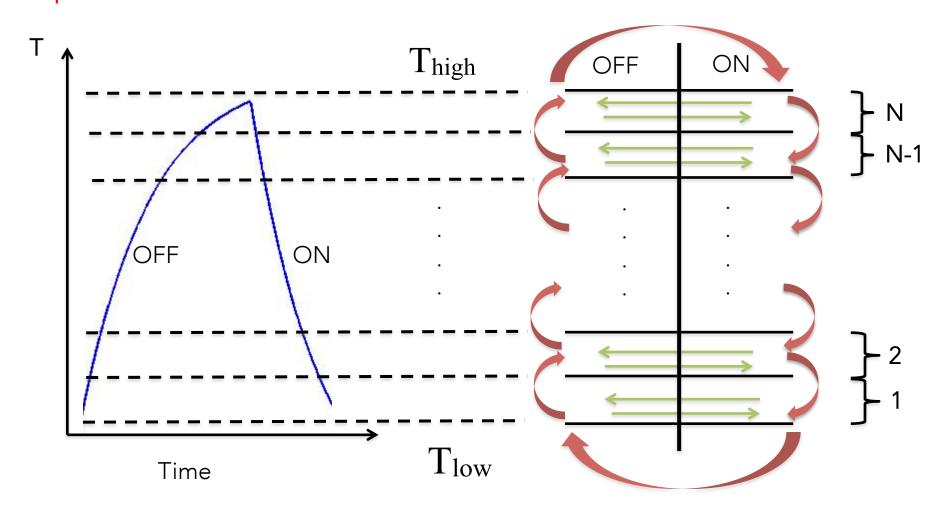
CHALLENGE #1: STATE ESTIMATION

Carnegie Mellon

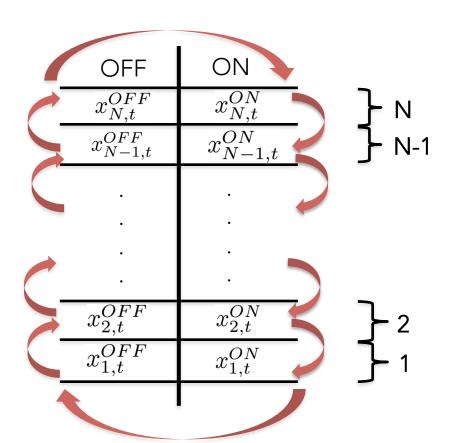
Population Model



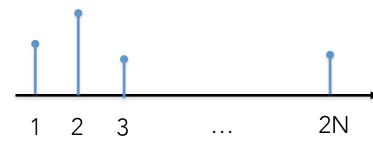
Population Model



Population Model



State Vector: Probability of being in a bin



$$X_t = [x_{1,t}^{ON}, \dots x_{N,t}^{ON}, x_{1,t}^{OFF}, \dots x_{N,t}^{OFF}]$$

Control Action: Switching Probabilities

$$d_{k,t}^{0} = \mathbf{P}\{S_{t+1} = ON | S_t = OFF, I_t = k, controller\}$$

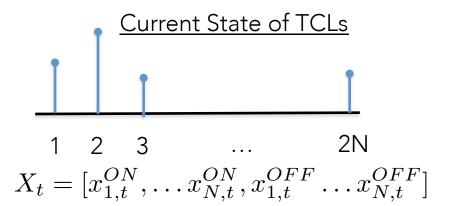
$$d_{k,t}^{1} = \mathbf{P}\{S_{t+1} = OFF | S_t = ON, I_t = k, controller\}$$

$$D_t = [d_{1,t}^{\xi}, \dots, d_{N,t}^{\xi}]$$

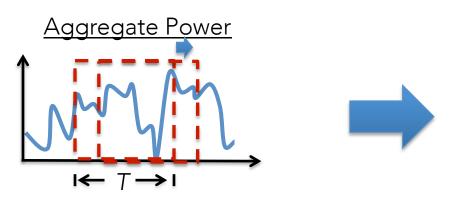
State Estimation

Aggregate Power





State Estimation



 Using system dynamics based on Kara et al. 2012

$$X_{t+1} = \mathfrak{T}(D_t, X_t)$$

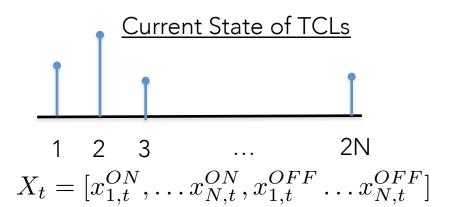
Assume C exists such

that:
$$CX_t$$
. minimize $\sum_{\hat{X}_j}^t (Y_j - \hat{Y}_j)^2$

subject to

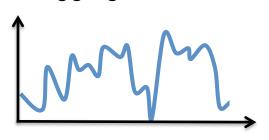
$$\hat{X}_{j} = \mathfrak{T}(\hat{X}_{j-1}, D_{j-1})
\hat{x}_{j,i}^{ON} \ge 0
\hat{x}_{j,i}^{OFF} \ge 0
\hat{X}_{j}\vec{1} = 1$$

$$j \in [t - T + 1, t],
i \in [1, N]$$



State Estimation

Aggregate Power



 Using system dynamics based on Kara et al. 2012

$$X_{t+1} = \mathfrak{T}(D_t, X_t)$$

Assume C exists such

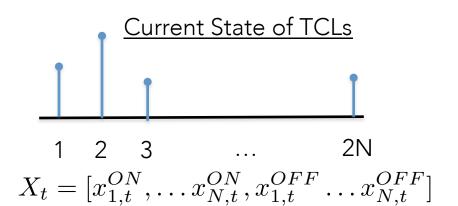
that:
$$CX_t$$
.

minimize
$$\sum_{\hat{X}_j}^t (Y_j - \hat{Y}_j)^2$$

subject to

$$\hat{X}_{j} = \mathfrak{T}(\hat{X}_{j-1}, D_{j-1})
\hat{x}_{j,i}^{ON} \ge 0
\hat{x}_{j,i}^{OFF} \ge 0
\hat{X}_{i}\vec{1} = 1$$

$$j \in [t - T + 1, t],
i \in [1, N]$$



 Using a liner model based on Callaway et al. 2012

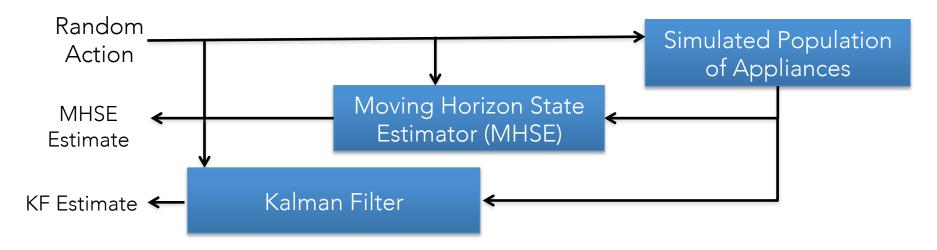
$$X_{t+1} = A_{lin}X_t + Bu_t + B_{\omega}\omega_t$$

$$Y_t = CX_t + v_t$$

• With perfect measurement noise and the process noise given as follows:

$$p(\omega_t) \sim N(0, Q)$$

Case Studies



Case Study I: Understand the effect of changing the time horizon T on estimation performance for MHSE

Case Specific Input	Distribution	Values
Time Horizon, T	Constant	10, 20, 30, 40, 50, 60 minutes

Case Study II: Compare the performances of the Kalman Filter and the MHSE under different switching conditions.

Case Specific Input	Distribution	Values
Time Horizon, T	Constant	40 minutes
Forcing Parameter, f	Constant	12.5, 25, 50, 75, 100%

Case Studies (Cont'd)

• Simulated 500 TCLs with varying thermal characteristics and white noise on the individual appliance temperature dynamics.

Simulation Input	Distribution	Values
Capacitance	Uniform	[8~12 kWh/°C]
Resistance	Uniform	[1.5~2.5 °C/kW]
Rated Power	Uniform	[10~18 kW]
Temperature Set~point	Constant	20°C
Temperature Deadband Width	Constant	0.5°C
Ambient Temperature	Constant	32°C
Temperature Dynamics Noise	Normal	N(0,0.01)
Simulation Time Step	Constant	1 minutes
Total Estimation Duration	Constant	10 hours

• Estimator specific characteristics:

Kalman Filter	Distribution	Values
Process Noise	Normal	N(0,Q)
Measurement Noise	Constant	0

Case Studies (Cont'd)

• To quantify the information lost whe \hat{X}_t is used to repres X_t

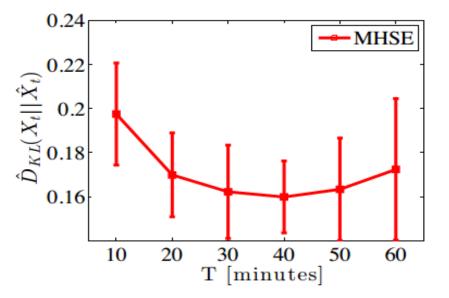
$$D_{KL}(X_t||\hat{X}_t) = \sum_{i=1}^{2N} \ln\left(\frac{x_{i,t}}{\hat{x}_{i,t}}\right) x_{i,t}$$

• Mean Kullback-Liebler (KL) divergence during the estimation period for each

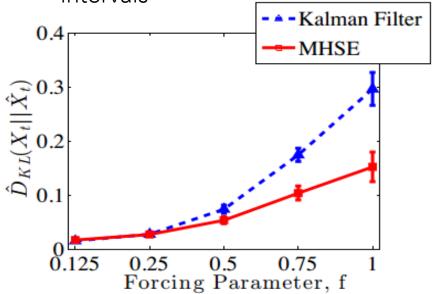
$$\hat{D}_{KL}(X_t||\hat{X}_t) = \frac{\sum_{t=0}^{T_{tot}} D_{KL}(X_t||\hat{X}_t)}{T_{tot}}$$

Results

- Case study I: 10 simulations per estimation horizon
- Showing 95% confidence intervals



- Case study II: 10 simulations per forcing parameter, f
- Showing 95% confidence intervals



CHALLENGE #2: DEVIATIONS FROM LINEAR ASSUMPTIONS

Carnegie Mellon

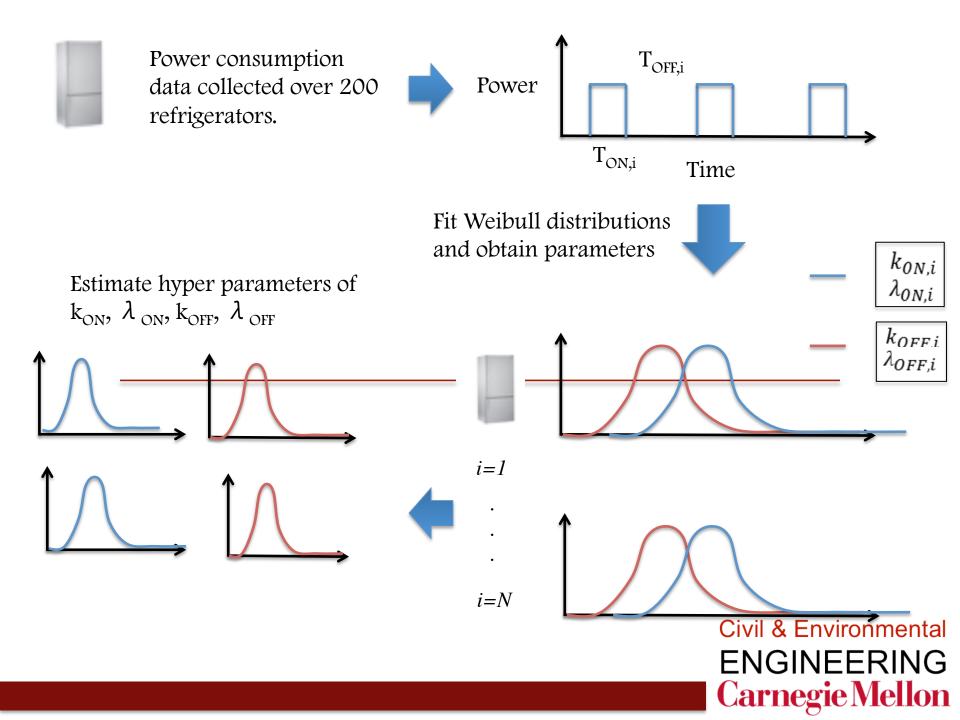
Back to the assumptions

• Simulated 500 TCLs with varying thermal characteristics and white noise on the individual appliance temperature dynamics.

Simulation Input	Distribution	Values
Capacitance	Uniform	[8~12 kWh/°C]
Resistance	Uniform	[1.5~2.5 °C/kW]
Rated Power	Uniform	[10~18 kW]
Temperature Set~point	Constant	20°C
Temperature Deadband Width	Constant	0.5°C
Ambient Temperature	Constant	32°C
Temperature Dynamics Noise	Normal	N(0,0.01)
Simulation Time Step	Constant	1 minutes
Total Estimation Duration	Constant	10 hours

• Estimator specific characteristics:

Kalman Filter	Distribution	Values
Process Noise	Normal	N(0,Q)
Measurement Noise	Constant	0



Parameter	Distribution	Range
Thermal Resistance, R _i (°C/kW)	Uniform	80~100
Thermal Capacitance, C _i (kWh/°C)	Uniform	0.4~0.8
Rated Power, P _{rated,i} (kW)	Uniform	0.2~1.0
Ambient Temperature, $\Theta_{i,a}$ (°C)	Constant	20
Thermostatic dead-band, δ_i (°C)	Uniform	1~2
Temperature set point, $\Theta_{i,set}$ (°C)	Uniform	1.7~3.3

$$\hat{c}_{v,R} = s_R/\bar{R} \quad \hat{c}_{v,R} = s_C/\bar{C}$$

Population	<i>R</i> (°C/kW)	<i>C</i> (kWh/°C)	S _R (°C/kW)	s _C (kWh/°C)	$\hat{c}_{v,R}$	$\hat{c}_{v,C}$	
P1	419.41	0.07	9205.7	0.07	21	1	
P2	90.00	0.60	175.76	0.12	0.06	0.19	_

Carnegie Mellon

References

- Eto, J. H., Nelson-Hoffman, J., Parker, E., Bernier, C., Young, P., Sheehan, D., ... & Kirby, B. (2012, January). The Demand Response Spinning Reserve Demonstration--Measuring the Speed and Magnitude of Aggregated Demand Response. In System Science (HICSS), 2012 45th Hawaii International Conference on. IEEE.
- Callaway, D. S. (2011, July). Can smaller loads be profitably engaged in power system services?. In Power and Energy Society General Meeting, 2011 IEEE(pp. 1-3).
- Koch, S., Mathieu, J. L., & Callaway, D. S. (2011, August). Modeling and control of aggregated heterogeneous thermostatically controlled loads for ancillary services. In Proc. PSCC (pp. 1-7).
- Mathieu, J. L., Koch, S., & Callaway, D. S. (2012). State estimation and control of electric loads to manage real-time energy imbalance.
- Kara, E. C., Kolter, Z., Berges, M., Krogh, B., Hug, G., & Yuksel, T. (2013, October). A moving horizon state estimator in the control of thermostatically controlled loads for demand response. In Smart Grid Communications (SmartGridComm), 2013 IEEE International Conference on (pp. 253-258). IEEE.

Acknowledgments

The End

QUESTIONS?

@bergesmario

marioberges.com

