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1. Agent-based Smart Grid simulation
 Power Trading Agent Competition

2. Intermediary agent strategies
 Strategy learning for broker agents

 Interactions of multiple learning broker agents

3. Factored customer models
 Timeseries simulation using Bayesian learning

 Decision-theoretic demand side management
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Agent based Smart Grid SimulationAgent-based Smart Grid Simulation

Di t ib ti  id d l d   lti t t Distribution grid modeled as a multi-agent system
 Focus on emergent economics of self-interested behavior 1

 Do not assume rationality nor determinismy
 Agents contributed by independent research teams
 Competitive benchmarking to drive innovation

6

1 Leigh Tesfatsion, ACE: A Constructive Approach to Economic Theory. Ch. 16, 
Handbook of Computational Economics, 2005.



Agent based Smart Grid SimulationAgent-based Smart Grid Simulation

Di t ib ti  id d l d   lti t t Distribution grid modeled as a multi-agent system
 Focus on emergent economics of self-interested behavior 1

 Do not assume rationality nor determinismy
 Agents contributed by independent research teams
 Competitive benchmarking to drive innovation

 Power Trading Agent Competition (Power TAC)
 Annual tournament at major AI or MAS conferencej

 Builds upon experience with other TAC domains
 Simulation platform available for offline research

Assumes liberalized retail markets  Assumes liberalized retail markets 
 Customers have choice of “broker agents”
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1 Leigh Tesfatsion, ACE: A Constructive Approach to Economic Theory. Ch. 16, 
Handbook of Computational Economics, 2005.



Power TAC ScenarioPower TAC Scenario

Competition
Participants

Simulation
Infrastructure

http://www.powertac.org
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Strategy Learning for Broker AgentsStrategy Learning for Broker Agents

Reddy & Veloso. Strategy Learning for Autonomous Agents in Smart Grid Markets.
Twenty-Second Intl  Joint Conf  on Artificial Intelligence (IJCAI)  Barcelona  2011
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Interactions of Multiple Learning Broker AgentsInteractions of Multiple Learning Broker Agents

Reddy & Veloso. Learned Behaviors of Multiple Autonomous Agents in Smart Grid Markets.
Twenty-Fifth AAAI Conf  on Artificial Intelligence  San Francisco  2011
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Twenty Fifth AAAI Conf. on Artificial Intelligence, San Francisco, 2011.
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P  TAC i l d  f d t l d t ti ti l d l Power TAC includes fundamental and statistical models
 Trade-off on behavioral accuracy vs. scalability 
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Factored Customer ModelsFactored Customer Models

P  TAC i l d  f d t l d t ti ti l d l Power TAC includes fundamental and statistical models
 Trade-off on behavioral accuracy vs. scalability 

 Goals for statistical models:
1. Representation

a. Represent diverse types of consumers and producers
b. Represent varying levels of granularity

2 Automated learning2. Automated learning
 Learn parameters from “real-world” data

3. Facilitate agent algorithms
 Develop algorithms that can be applied in real-world
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Factored Customer Model RepresentationFactored Customer Model Representation
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Load Originator
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Factored Customer

Load Bundle

Calendar
- Time of day
- Day of week

Tariff Terms
- Fixed Payments
- Variable Rates

Contract Time Load Bundle

Load Originator

Load Originator

Tariff Subscriber
Day of week

- Month of year

Weather
- Temperature

Cloud Cover

- Contract Time
- Exit Penalties
- Reputation

Load Bundle

Utility Optimizer

Load Originator

- Cloud Cover
- Wind Speed
- Wind Direction

Tariff Terms

Tariff Evaluation
- Inertia
- Rationality

Load OriginatorTariff Subscriber - Price Elasticity
- Control Events

Load Origination
- Reactivity
- Receptivity
- Rationality
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Timeseries Simulation using Bayesian LearningTimeseries Simulation using Bayesian Learning

Gi  ll l  f b d d t  fit  d l th t   Given small samples of observed data, fit a model that can 
generate a long range time series forecast
 Use “similar” samples to improve the fitp p
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Timeseries Simulation using Bayesian LearningTimeseries Simulation using Bayesian Learning

Gi  ll l  f b d d t  fit  d l th t   Given small samples of observed data, fit a model that can 
generate a long range time series forecast
 Use “similar” samples to improve the fitp p

 ARIMA forecasting over long range is poor

Consumption

Time (Hours)

Consumption
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Bayesian Timeseries Simulation MethodBayesian Timeseries Simulation Method

Use similarUse similar
training data

Fit hierarchical
Bayesian model

using
Gibbs samplingG bbs sa p g

Latent factorLatent factor
optimization 
to boost fit

Forecast from 
small sample
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Boosted Bayesian Timeseries SimulationBoosted Bayesian Timeseries Simulation
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Boosted Bayesian Forecasting Accuracy Boosted Bayesian Forecasting Accuracy 
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Decision theoretic DSMDecision-theoretic DSM

M lti l  d i i ki  i  t  di i Multi-scale decision-making in two dimensions
1. Temporal:  Metering period vs. tariff contract period
2. Contextual:  Individual load vs. bundle/customer/co-op/ / p
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Monte Carlo Sampling
 Probabilistic multi-attribute utility model:
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Peak Shifting (Herding) BehaviorPeak Shifting (Herding) Behavior
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Ramchurn, et al. Agent-Based Control for Decentralised Demand Side Management in the 
Smart Grid. Autonomous Agent and Multi-Agent Systems (AAMAS), 2011.



Household Demand ShiftingHousehold Demand Shifting

B d  d t  f  G ’  M R i j t Based on data from Germany’s MeRegio project
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Household Demand ShiftingHousehold Demand Shifting

L  i  d t i  f 10% Lower variance and cost savings of ~10%
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DSM Deployment OptionsDSM Deployment Options

ARM C t A8 d Zi b S CARM Cortex-A8 and Zigbee SoC
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ConclusionConclusion

S Summary
 Versatile customer model representation
 Decision-theoretic algorithms for DSMg
 Bayesian learning algorithms for timeseries simulation

F t  W k Future Work
 Customer type-specific factor modeling
 Non-cooperative decision-making modelsg

 Participating in Power TAC
Hosted at AAMAS  Valencia  June 2012 Hosted at AAMAS, Valencia, June 2012

 More information at http://www.powertac.org
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