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Motivation: High Penetration of Renewables
s (=

Electrical grid must prepare for high penetration of

renewables.

Challenge: Wind and solar are undispatchable,
intermittent, and unpredictable.
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Key El ts of Approach
e ey Elements of App

1. Increase controllability on demand side through

— Flexible specifications of user needs and preferences, and
— goal-directed optimal planning.

2. Improve robustness to uncertainty in supply and
demand through

— risk-constrained planning and

— distributed risk markets.

3. Reduce labor, hence adoption barriers,
by automating

— Inference of expected user and environmental behavior, and

— model acquisition of physical plant and customer behaviors.
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Architecture: Risk-constrained, Goal-directed Grid Control
1

(Key Technologies
Risk allocation

Goal-direction

\

Dispatchable supply
(Micro-CHP, biomass)

Contingent
power dispatch

~24 hr time scale
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(Framework

Market-based

on-dispatchable

supply

(solar, wind)
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Resource aIIocation)

Goal-directed
demand response

(buildings & E-cars) /




~ Goal-directed Demand Response
Meis

* Today: Demand is inelastic, supply adapts.
* Goal: introduce flexibility in meeting demand.

* Approach:

— Acquire descriptions of the consumer’s intended
activities, constraints and preferences.

— Exploit flexibility in activity descriptions to reduce
e overall energy consumption,

* peak demand, and
* risk of failing to support important consumer activities.
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Testbed: Connected Sustainable Home
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* Goal: Optimally control HVAC, window opacity, washer/dryer, e-car.

* Objective: Minimize energy cost.
* Uncertainty: Solar input, outside temp, energy supply, occupancy.

* Risk: Resident goals not satisfied; occupant uncomfortable.
6
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Example Goals:
s __Description of Resident Activities

“Maintain room temperature after waking up until I go to
work. No temperature constraints while I’m at work, but
when | get home, maintain room temperature until | go to

sleep. Maintain a comfortable sleeping temperature while |
sleep.
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Example Goals:
s __Description of Resident Activities

Also, dry my clothes before morning.
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Example Goals:
s __Description of Resident Activities

| need to use my
car to drive to and from work, so make sure it is fully
charged by morning.
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Example Goals:
== __Description of Resident Activities

It’s acceptable if my clothes aren’t
ready by morning or if the house Is a couple degrees too
cold, but my car absolutely needs to be ready to use before |
leave for work.”
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Example Goals:
s __Description of Resident Activities

“Maintain room temperature after waking up until I go to
work. No temperature constraints while I’m at work, but
when | get home, maintain room temperature until I go to
sleep. Maintain a comfortable sleeping temperature while |
sleep. Also, dry my clothes before morning. | need to use my
car to drive to and from work, so make sure it is fully
charged by morning. It’s acceptable if my clothes aren’t
ready by morning or if the house Is a couple degrees too

cold, but my car absolutely needs to be ready to use before |
leave for work.”
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Flexibility Available to Control
=
 When activities are performed.

* When to charge/discharge batteries.

* Which activities to shed (when supply is low).
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Encoding: Qualitative State Plan (QSP)
=i

[24 hours]

[1-3 hour]

Maintain room
temperature

[7-9 hours] [6-8 hours] [7-8 hours] %
Home Maintain room Go to Maintain comfortable /
from temperature sleep sleeping temperature
WOrK

“Maintain room temperature after waking
up until I go to work. No temperature
constraints while I’m at work, but when |
get home, maintain room temperature
until 1 go to sleep. Maintain a
comfortable sleeping temperature while |
sleep.”
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Encoding: Qualitative State Plan (QSP)
=i
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Encode the Qualitative State Plan and Dynamics
P=rs within a Model-Predictive Controller
minJd(X,U) + H(X;)
U \
S t Cost function (e.g. fuel consumption)
Dynamics \v4 Xt+1 = AXt + But
(Discrete time) 0<t<T -1
T N M - .
| j
Constraints N NV ht X < U
t=01=0 J=0
Mixed Logic or Integer
X = :XO - X State vector (e.g. position of vehicle)

U=|uy-u,, ]TControI inputs
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pSulu
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Energy Savings: Optimal Control

I Winter Il Summer
Energy | Violation Rate Energy | Violation Rate
p-Sulu | 1.9379 x 10° 0.000 | 3.4729 x 10* 0
Sulu | 1.6506 x 10° 0.297 | - -
PID | 3.9783 x 10° 0| 4.1731 x 10* 0
Spring |I Autumn
Energy | Violation Rate Energy | Violation Rate
p-Sulu | 3.3707 x 10° 0 || 3.8181 x 10 0
Sulu | 3.0954 x 10¢ 0.308 || 3.6780 x 104 0.334
PID | 3.9816 x 10* 0 | 3.9955 x 10 0

« 42.8% savings in winter over PID

¢ 15.3%, 16.8%, and 4.4% in spring, summer,
autumn
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Energy Savings: Flexibility
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* Reduction in energy consumption by considering
resident flexibility.

* 10.4%, 1.6%, 1.6%, and 0.7% in the winter,
spring, summer, and autumn.
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Testbed: Connected Sustainable Home
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* Goal: Optimally control HVAC, window opacity, washer/dryer, e-car.
* Objective: Minimize energy cost.

e Uncertainty: Solar input, outside temp, energy supply, occupancy.

Risk: Resident goals not satisfied; occupant uncomfortable.
19
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Managing Uncertainty and Risk
e
+ 20% us@scaiparicyisPANGEmirmsive Comroter pudst 12k risk.

* FEach room has a different occupancy profile.
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Figure 2: Occupancy data for ten different offices over the courseofa 12am
single day. Each bar is shaded when the corresponding
office is occupied and blank when the office is vacant.
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Control Decisions Imply Risk
L.
« When should a controller take risk?

— Risk at time t : §, 0,=0 orp,
. . . T
— Acceptable risk over time horizon: A Yo <A
<
t=1
_ =2 100% %
T 3
s
T &
8 o
= &
© Q.
X 3
2R
o o%
© & 12am 6am 12pm 6pm 12am

I -
I I | l Massachusetts Institute of Technology



Approach: Risk Allocation

— vanndla : —
MRS with Masahiro Ono
Framework :

—Chance-constrained
Stochastic Optimization.

Methods:

—Iterative Risk Allocation (IRA)
algorithm.

—Market-based lterative Risk Allocation
(MIRA) algorithm.

22
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Example: Race Car Path Planning
Beis

Planned Path
¢ N/Actual Path

Kty
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Example: Race Car Path Planning
B=fs

% « Cannot guarantee 100%
Planned Path
{.

/ safety.
Actual Path _ T
* Driver wants a probabilistic

guarantee:
P(crash) < 0.1%

Chance constraint.

-
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Chance-Constrained Optimal Planning
=

min J (U )
Ut EU Convex function
S t Cost function (e.g. fuel consumption)
T
Stochastic dynamics t/\O Xt_|_1 — AX _I_ Bu _l_ W
Risk bound
(Upper bound of the
Wt ~ N (Oa Zt ) probability of failure)
Assumption: A< 0.5

Xo ™~ N(Xoazx,o) \

T N

Chance constraint PI‘ /\ /\ hIT gi 2 1—'\,A \
t 1i=1 t t ’
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Example: Race Car Path Planning
B=fs

i

planned Path |  © Cannot guarantee 100%

~~~~~~~ \Atu al Phth Safety'

Safety Margin * Driver wants a probabillistic
guarantee:

P(crash) < 0.1%

Chance constraint.

uibrep L1vjes

Start « Approach: design safety

gﬁ margin.
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Ilm&lg:[-erative Risk Allocation (IRA) Algorithm

 Starts from a suboptimal risk allocation.
 Improves the risk allocation through iteration.

Iteratic> ii

T smesscrusets it ot ocomtogy 27 o




lterative Risk Allocation Algorithm

No gap = Constraint is active

\

\

Goal

Best available path
given the safety margin

Safety margin

Start

Gap = constraint is inactive

-
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Algorithm IRA

Initialize with arbitrary risk
allocation.

Loop

Compute the best path for
the current risk allocation.

Decrease risk where a
constraint 1s 1nactive.

Increase risk where a
constraint 1s active.

End loop

28
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lterative Risk Allocation Algorithm
MRS

Algorithm IRA

1 Inmitialize with arbitrary risk

allocation.

2 Loop

3 Compute the best path for
the current risk allocation.

4 Decrease risk where a
constraint 18 1nactive.

5 Increase risk where a

. $ constraint 1s active.
Safety margin Start 6 End loop

B sessachusetts mstituse of Toetmeogy 29 okl
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lterative Risk Allocation Algorithm
MRS

Algorithm IRA

1 Inmitialize with arbitrary risk

allocation.
2 Loop
3 Compute the best path for
the current risk allocation.
4 Decrease risk where a

constraint 1s 1nactive.

5 Increase risk where a
. $ constraint 18 active.
Safety margin Start 6 End loop
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-.I?E_bUSt_IRA_ MPC for Dynamic Window

Outside temperature

ol o, Heat the room using sunlight...
212
©
g.;_ _; R e _— e I_ma_l tim_p_erftu_re ______
4%
Sl I
el §°7
S1© ...S0 that'the temperature will stay within the comfortabte
o range WITHOUT using heaters in the night
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L2
R (a) First Iteration (b) Second Iteration
30°C f----------------- A ---------------------------------
ctive
Ra((sa,t,Ua(sa,t,L) s
25°C f----- 8 W |
22°C ) I::>

Inactive

1 1
___________________________ S |
! N

5OC ! ! !
Oam 8aml2pm 5S5pm 12pm Oam 8aml2pm 5S5pm 12pn

N

=58 : Safety margin
— . Optimal plan at current iteration
-------- : Optimal plan at previous iteration

Take risk of violating resident
constraints where largest energy
savings are possible.
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Robust-IRA-MPC Results

Indoor Temperature with Robust MPC
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Temperature (C)

Results
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Improvement in Comfort

Winter | Summer
Energy | Violation Rate I Energy | Violation Rate
p-Sulu | 1.9379 x 10* | 0.000 | 3.4729 x 10* 0
Sulu | 1.6506 x 10* | 0.297 | - -
PID | 3.9783 x 10* | 0 ' 4.1731 x 10 0
Spring |I Autumn
Energy | Violation Rate Energy | Violation Rate
p-Sulu | 3.3707 x 10° 0 || 3.8181 x 10 0
Sulu | 3.0954 x 10¢ 0.308 || 3.6780 x 104 0.334
PID | 3.9816 x 10* 0 | 3.9955 x 10 0

« Deterministic control (Sulu): 30% comfort
violations.

* Risk-sensitive control (p-Sulu): near 0%
violations.
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_(Sub)Urban Scale Sustainability

1 * Heterogeneous

' connected homes with
different energy
sources.

* Symmetric energy
exchange between
houses.

"3 + Challenge:
— How to distribute
energy optimally,

— while limiting the risk of
an energy shortage,

— without centralized
control.




Allocation between Risk-coupled Agents

L=

Operator %

specifies

System’s risk bound: 0.1%

Risk is distributed among agents

0.04%

Risk is/distiributed among constraints

6 & o & & 6

0.02% 0.01% 0.01% 0.01% 0.02%
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0.03%
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Allocation between Risk-coupled Agents

L=

Operator %

specifies

System’s risk bound: 0.1%

Risk is distributed among agents

0.04%

3

e Need to optimize
since they have different
sensitivities to risk.

Multi-agent

min ZJ Uh

Ull

I Ni : :
st. Pr{/\/\’lr']TX'Sg:]}ZI—A

i=1 n=1

AV

Individual System’s
risk bounds S risk bound

Decomposed deterministic reformulation

11111151I ZJ U

Ll _yyll
U~ el iN o1

st. /_\/\h;TX'Sg:,—mL(@i)

N

i: ol <A

I=1 n=1




Market-based Iterative Risk Allocation

Operator _ risk
%  Treat each agent dS an
Operator o
decision maker.
specifies
System’s risk bound: 0.1% * Agents communicate through

Risk is distributed among agents

* Find a globally optimal

(0] .
0.04% solution through
e Annroach ic
@ MM i
; (tdtonnement):
Agents risk traded in a
market.

— Each agent has a demand for risk

for risk of risk

Z[ Demands J< Supply as a function of the price of risk.




Based on Dual Decomposition

Centralized Optimization
(decomposed, deterministic form)

I1|'[1

r ------------------------
|
! :
:Ul.ngﬁ.n&l..ZJ U
i 'Nl.l.-.l
T i i i
st AA X, = A'X +B'u,
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Deé! the i’th agent

Risk taken by . :
v\ptlmlzatlon

I'th agent: (PIN)

min J'(U")

U'eU',sly

Dual variable
T = Prlce of risk_

st. X, =A'X +B'u

nglhfff‘ <g,-m(5;)

N i

D'=>§

n=1

i Demand for risk
Nfrom i’th agent

[d

Market (Dual)
I o
> D'(p)=A
i=1

Root finding problem
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" Welcome abord
dp-Sulu RH has started

Created by Masahire One, 2011




Market-based Contingent Power Dispatch
e
« Two kinds of energies are traded in a market:

— Nominal power
— Contingent power

Probability density

Load (kW)

Mean: 300kW
=Nominal power

Standard deviation: 50kW
= Contingent power it
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Key Elements of Approach
e
1. Increase flexibility on demand side through
— flexible specifications of user needs and preferences, and
— goal-directed optimal planning.
2. Improve robustness to uncertainty in supply and
demand through
— risk-constrained planning, and
— Distributed risk markets.
3. Reduce labor, hence adoption barriers, by automating
— Inference of expected user behavior, and
— Models of environment and plant.
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Questions?
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