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Outline

*» Transient stability problem in Flores Island power system

¢ Proposed solutions
= Using FACTS as short-term energy storage
= Using Flywheels as ‘longer-term’ energy storage

+* Simulation results
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Transient Stability Problems Due to Large Disturbances

O/

*» Types of large disturbances causing transient instabilities
= High wind surges in Flores Island

*  Failures of equipment and faults . _ short term high magritude vind perturbation |
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Transient Stabilization using FACTS

¢ Establish a nonlinear model which is relevant for representing
large disturbances

** Time-varying phasors are used to model dynamics of
generators and FACTS devices

** Nonlinear control is energy-based; energy function is
expressed using time-varying phasors
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accumulated (stored) energy in the system

¢ Controller shifts the incremental stored energy between
generators and FACTS devices
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Time-Varying Phasor Model of FACTS (SVC)

Ieip () + I ()

: 1
Vp(t) =7 (Tup(t) — Ip(t)) + Vo (£)

: 1
Vo®) = 7 (lug(®) = Ig(8)) - WV (8)

+

—_ : . a(t
V@ + V@[ (:) tilo(®) Ip(t) = % Vo (£) + wly (t)
— #(e) a(t)

= Io(t) = - Ve (t) — wilp(t)

** Time-varying phasors are used to model transmission lines and FACTS
= Fast dynamics is captured
= ODE modelis established

s Assume fast thyristor switching — averaged switching model
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Energy-based Control Law

{
V(t) = Vgiss(t) + Vexcn(t) + Vg (1)

e(t) = V7 (£) = Vace(t) £P" (€) — Ve (t)) o ciese
t W — wind

a(t) = Kpe(t) + K; f e(t)dr

0 The biggest amounts of energy are
accumulated in large inductors and capacitors

v®) = ) v ©+ ) v () 2
{ 3

** Temporarily accumulates energy of
a disturbance in FACTS devices [6].
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Transient Stabilization using Flywheels

** Introduce flywheels and their applications
¢ Sliding mode control
**» Use flywheels in response to large wind disturbances when

= Modeling the rest of the system as a disturbance
= Modeling the dynamics of the rest of the system
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Flywheel Energy Storage System

% Stores energy by accelerating a rotor to a i
very high speed Generator

» Tensile strength of rotor material
determines maximum capable stored

energy Vacuum
Housing

Magnetic
Bearings

» Flywheel is connected to electric machine
to control its rotational speed

** To decrease energy losses
= Flywheel is operated in a vacuum

= Magnetic bearings are used to levitate rotor
[2],[3],[4]
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Potential Applications for Flywheels

*** Flywheels have small time constants (compared to generators
and alternative types of storage)

+** Can be used for uninterruptible power supply, frequency
stabilization, frequency regulation

** While FACTS devices can store active power only during
transients, flywheels can store active power in steady state also
ed
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Dynamic Model of Flywheel

** When flywheel is connected to permanent magnet
synchronous machine:
= 3 state variables: wy, iy, g
= 2input variables: v, vy
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Sliding Mode Control

** Drive i and iy to desired values by fast switching of v, and

Vds
Switching Function Voltage Input Flywheel Power
T : : P =T
Sas = tas — tas Vas = Vosign{Sqs} ! N “r
qu = l;s — lgs Vgs = VOSlgn{qu} Pf = Eamiqswf
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Response to Wind Disturbance

*** Treat the rest of the system as a disturbance
 Set i} 28Pying

as = W , SO flywheel absorbs wind disturbance

« 10° Short term High Magnitude Wind Perturbation « 10° Energy stored in the flywheel
T T T T | T I

____________________________________________________________________
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Dynamic Model of Flores Island Power System

Flywheel

T F | gl

** Switches open and close at very high frequency relative to
rest of the grid

“* Large capacitor (C,) serves to keep the voltage across the
wind generator nearly constant

** The polarity of the small capacitor (C) changes to control i

) 15
52 4 Carnegie Mellon ¥




Use Flywheel for Frequency Stabilization

** Include dynamics of the entire system
“* Set i, =0A in order to stabilize the disturbance
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** Transient stability of Flores island has been improved using smart control
on FACTS and flywheels

** While FACTS can store active power only for short time intervals,
flywheels can be used for prolonged disturbances

Open Questions / Future Work

** Determining FACTS parameters based on stability requirements

** Larger power system with multiple flywheels
=  Multiple Input / Multiple Output Control
= Decentralized or Cooperative Control?
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