Large-scale Wind Power Integration: Challenges and Opportunities

Dr. Niamh Troy

8th CMU Conference on the Electricity Industry

13th March 2012

ERC Industry Members

Energy Solutions

Other stakeholders on ERC board:

Major Funding sources:

Status of Wind in Ireland

- Total installed capacity is 2031.25 MW (Peak load 2011 = 6780 MW)
- Energy Penetration: >10%
- European 20/20/20 Target:
 20% of energy consumption
 from renewable energy
 sources
- National Target: 40%
 electricity from renewables
 by 2020

Capacity Factor

Load, Wind and CO₂ Ireland

Challenges of Large-Scale Wind Integration...

Time Scale	Characteristic of Wind	Solution	
Short (seconds)	Decoupled from the Grid (Asynchronous)	Control features/ Power electronics	
Medium (Minutes, Hours)	Variable	Flexibility	
	Uncertain	Flexibility, Reserve, Forecasting, Rolling Commitment	
Long (Weeks, Months, Years)	Variable	Incentivize flexible generation/resources	
	Uncertain	Robust Planning	
	Distributed	Network Reinforcement	

... and Opportunities

- Flexibility:
 - Demand Side Management
 - e.g. Electric Vehicles
 - Multi-mode operation of CCGTs
 - Stochastic Optimization

Demand Side Management

- Examples electric vehicles, heat pumps, refrigeration
- Opportunities for Wind Power Integration:
 - Load shaping smoothen the net load curve.
 - If controls are fast enough it can provide reserve (up and down).
 - Alleviate minimum generation issues
 - Centralised vs Local control?

Centralised vs. Local Control

Centralised Control

- Requires access to real-time operating conditions across entire network
- Controller determines optimal charging rate for each EV based on network data
- Charging signals sent to EV charger units

Local Control

 Each EV charger unit determines its own charging rate based on local network conditions only

(i.e. voltage and loading at customer point of connection to network)

Centralised control method

- Significant communications infrastructure
- Requires central controller
- More efficient use of existing network capacity

Local control method

- Requires only local network information
- Less communications infrastructure
- Less accurate at maintaining network within acceptable operating limits
- Increased charging time due to less efficient use of network capacity

Multi-mode Operation of CCGTs

Modelling multi-mode operation of CCGTs

Utilization of Multi-mode Function - Sensitivity

Installed Wind	Multi-mode Not Allowed		Multi-mode Allowed	
MW	MWh	No. Hours	MWh	No. Hours
2000	1688.7	13	861.4	3
4000	2972.9	17	880.2	5
6000	609.9	13	7.6	1

Stochastic Unit Commitment

Meibom, P., Barth, R., Hasche, B., Brand, H., Weber, C. and O'Malley, M.J., "Stochastic optimisation model to study the operational impacts of high wind penetrations in Ireland", *IEEE Transactions on Power Systems*, Vol. 26, pp. 1367 - 1379, 2011.

Annual Production from Peaking Plants

Impact of excluding statistical information

Thank you!

Questions/Comments: niamh.troy@ucd.ie

Electric Vehicles: peter.richardson@ucd.ie

Scenario Trees: colm.lowery@ucdconnect.ie