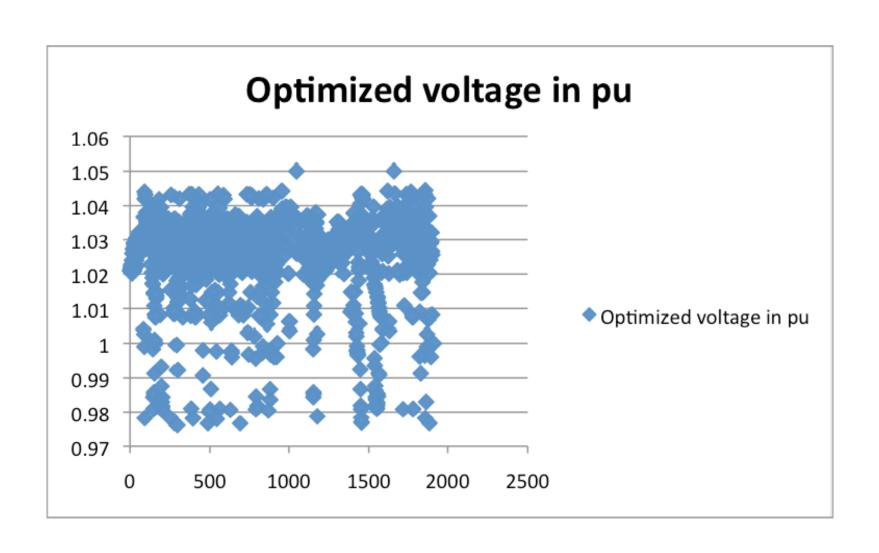


Chapter 3—Sao Miguel Findings

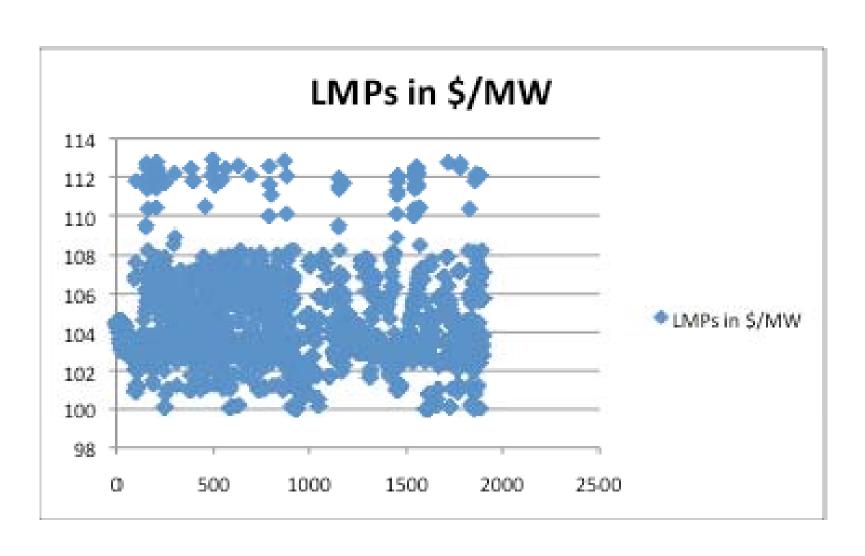
Marija Ilic
Pre-Conference Workshop
March 12, 2012

Outline

- Complex to optimize losses by trial and error
- AC OPF must be used
- The role of optimizing generator voltages
- The role of optimizing settings of voltagecontrolled transformers

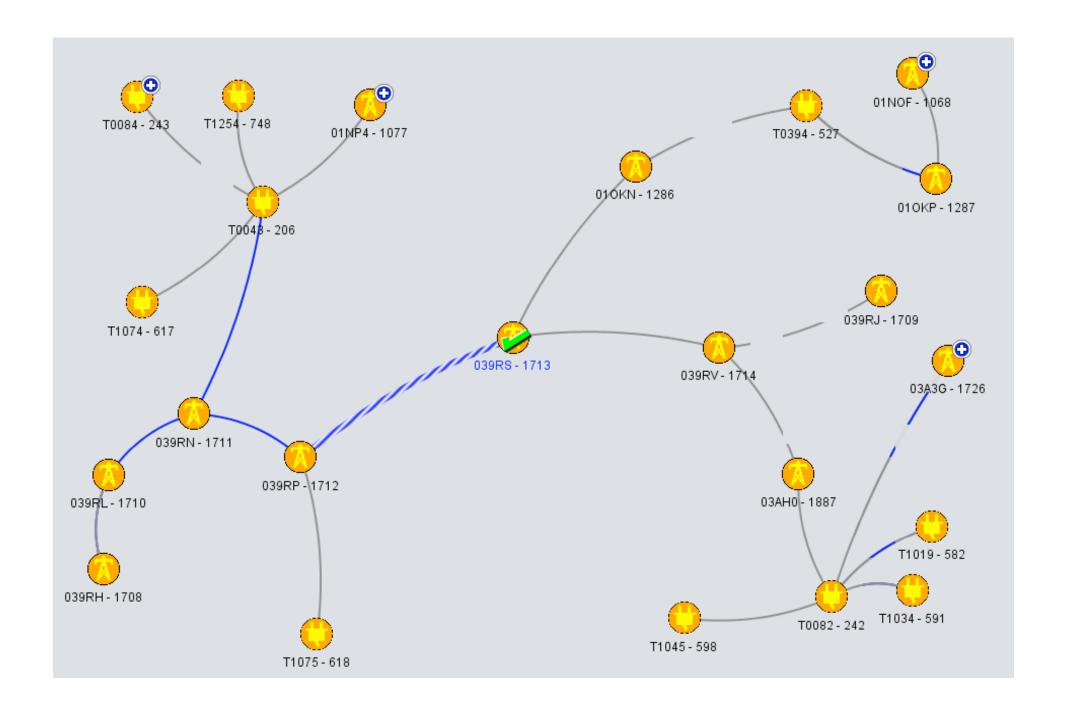

Voltage-controlled transformers in SMG

From Bus	To Bus				Min Ratio	Max Ratio
939	942	0	1	1	0.911247	1.071247
940	941	0	1	1	0.911247	1.071247
958	957	0	1	1	0.93059	1.09059
974	84	0	1	1	0.902988	1.062988
982	983	0	1	1	0.904659	1.064659
999	1000	0	1	1	0.94693	1.04693
1012	1010	0	1	1	0.914655	1.074655
1013	1011	0	1	1	0.914655	1.074655
1021	1024	0	1	1	0.970245	1.130245
1615	956	0	1	1	0.882775	1.002775
1616	959	0	1	1	0.882775	1.002775
1639	1023	0	1	1	0.94519	1.10519


Scenarios studied

- Thermal line limits included
- Voltage limits .95-1.05pu vs. .95-1.02 pu
- Transformer ratios set to 1pu; vs. optimized within allowed limits; vs. set to 1pu +/- .01pu

Typical voltage optimized



Resulting cost sensitivites

Key findings

- Line limits observed; voltage .95-1.05pu; generator and transformer voltage optimized :
 - -Total generation 69.04MW, load 67.732MW and AC line loss 1.27MW.
 - OSF of line 1887-1714 the highest, therefore this is the cause of inefficiency.
- Line 1887-1714 relaxed; voltage .95-1.05pu; generator and transformer voltage optimized.
 - -Total generation 68.96MW, AC line loss 1.119MW.
 - Cost of thermal limit.

Key findings

- Tradeoff between efficiency and reliability
- The effect of voltage-controlled transformers
 - -not huge effect on system loss;
 - -could be critical for feasibility of the solution (1pu does not have a solution; 1pu +/- .01 feasible)
- The effect of generation voltage optimization
 - -critical for feasibility of the solution (below 1.2pu no solution);
 - -voltages are generally set to the highest possible value, but not at all locations (need AC OPF to compute the actual settings)
- The use of highest optimization sensitivities of cost with respect to voltage optimized, thermal limit constraints, real and reactive power capacity limits
 - -extremely useful
 - -identifies where is the real problem (operations and/or planning)

Proposed approach

- Using highest optimization sensitivities decide what to optimize first
- Find first what are the optimization sensitivities of equipment under control of system operator (generator and transformer voltages); in this case these are OSVs and OSF of specific line (hard to find by analysis a 10kV LV line 1887-1714)
- Consider highest optimization sensitivities remaining (typically at LV buses, OSPs and OSQs) to decide where to build distributed generation (DGs) for loss compensation purposes
- There are generally many of these, of the very small size
- The major research question: Is this where it may be beneficial to begin to do loss compensation using DGs instead of investing in large equipment (capacitor banks)

Acknowledgment

- Discussions with Professor Lang from MIT
- Use of New Electricity Transmission Software Solutions (NETSS), Inc.
- Input data preparation by Masoud Nazari,
 CMU
- Information about voltage-controlled transformers