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Vision
Motivate energy conservation
Facilitate appliance-specific energy awareness

Exploiting low-cost data streams
For high-value information
To empower and motivate consumers

Analog AMR/AMI
User 

engagement



Information Value vs. Cost
Whole house

monthly: free
daily: free (some places)
real-time: $200

Circuit-level: $2k - $10k
Plug-level: $20k - $60k

Hardware costs may fall. Labor won’t.



Non-Intrusive Load Monitoring
NILM has been around 
for 20+ years.
Very promising results 
in laboratory settings.
One commercial 
product for utilities.
Can it be adapted for 
low-cost hardware? Source: Enetics, Inc.



Data flow



Price vs. sampling frequency



Experimental setup
Incoming signals:

Raw Voltage and Current.
Data Acquisition card
(DAQ) converts analog to
digital signals.
Software computes: 

real power (P)
reactive power (Q), etc.

Event detection and
classification algorithms 
use this data.



Data flow



The obtained signals
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Data flow



Event Detection

Probabilistic approach
Generalized Likelihood Ratio

Currently testing wavelets



Data flow



Event Classification: 
Feature Extraction

Electric Kettle:Electric Kettle:

OFF OFF –– ONON

ON ON –– OFFOFF

Electric Burner:Electric Burner:

OFF OFF –– ON ON 

ON ON –– OFFOFF



Data flow



Event Classification:
Training Classifiers

Two different setups:
17 appliances in an occupied residential building  (Real 
World)
8 appliances in a laboratory (Noise Free)

Four different classifiers:
Gaussian Naïve Bayes
1-Nearest Neighbor
AdaBoost
Decision Trees



Event Classification:
Training Results

k-Nearest Neighbors (kNN)
NF – 90% (RBF Coef.), RW – 81% (RBF Coef.)

Gaussian Naïve Bayes (GNB)
NF – 83% (Delta), RW – 57% (Poly. Coef.)

AdaBoost
NF – 76% (Poly. Coef.), RW – 0.50% (Poly. 
Coef.)

Decision Trees
NF – 85% (Delta), RW – 58% (RBF Coef.)



Event Classification:
Validation Results

54%35%76%47%RBF Coefficients
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57%61%80%61%
Polynomial 
Coefficients

47%--73%9%Whole Transient

42%36%73%47%Delta

Real World

64%**67%67%RBF Coefficients

64%2%79%64%Fourier Coefficients

52%51%67%58%
Polynomial 
Coefficients

58%--73%38%Whole Transient
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Noise Free

DTAda
BoostkNN, k=1GNB

Validation Results 
(Accuracy in %)
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Testing sensitivity

Hardware: sampling each phase or total kW?
Power metrics: real and reactive power?
Sampling rate: 20 Hz - 15 seconds/sample?

Averaging vs. point samples
Continuously variable sampling rate

Features of transitions: 2nd-order regression?



Evaluation metrics

10 appliances = 80% of load
Optimize algorithms for weighted metric:

F1 metric includes precision and recall
Weight according to appliance’s portion of load

Not just events, but duty cycle



Vision: many uses for 
detailed energy information

Machine Learning



Vision: many uses for 
detailed energy information

Machine Learning

That’s all, Folks!


